Современные достижения в химии взрывчатых веществ
Определение понятия взрывчатого вещества, его роль в жизни человека, область применения и современные достижения. Характеристика форм химического превращения взрывчатых веществ, их физические свойства. История развития пиротехники и взрывчатых веществ.
Рубрика | Химия |
Вид | доклад |
Язык | русский |
Дата добавления | 12.05.2015 |
Размер файла | 29,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Кубанский Государственный Технологический Университет
Доклад
на тему: Современные достижения в химии взрывчатых веществ
Краснодар 2015
Введение
Взрывчатые вещества (ВВ) это химические соединения или смеси веществ, способные к быстрой химической реакции, сопровождающейся выделением большого количества тепла и образованием газов. Эта реакция, возникнув в какой-либо точке в результате нагревания, удара, трения, взрыва другого ВВ или иного внешнего воздействия, распространяется по заряду за счёт передачи энергии от слоя к слою с помощью процессов горения либо детонации. Характерным признаком взрыва является образование ударной волны (УВ) в среде, примыкающей к месту взрыва. Причиной возникновения УВ является быстрое расширение (со сверхзвуковой скоростью в данной среде) газов или паров, содержащихся до взрыва или возникших в системе в момент взрыва. пиротехника взрывчатый химический
При взрывчатом превращении типа горения, передача энергии от одного слоя вещества к другому происходит путем теплопроводности. Взрыв типа горения характерен для пороха. Процесс образования газов происходит достаточно медленно. Благодаря этому, при взрыве пороха в замкнутом пространстве происходит выбрасывание пули, снаряда из ствола, но не происходит разрушения гильзы, патронника оружия.
При взрыве же типа детонации процесс передачи энергии обуславливается прохождением ударной волны по взрывчатому веществу со сверхзвуковой скоростью (6-7 тысяч метров в секунду). В этом случае газы образуются очень быстро, давление возрастает мгновенно до очень больших величин. Иными словами, у газов нет времени уходить по пути наименьшего сопротивления и они в стремлении расшириться, разрушают все на своем пути. Этот тип взрыва характерен для тротила, гексогена, аммонита и сходных с ними веществ.
1. Формы химического превращения взрывчатых веществ
В зависимости от типа взрывчатого вещества (ВВ), условий возбуждения (инициирования) процессы химического превращения могут протекать в различных формах с различными скоростями, отличающимися на порядок и более. К основным формам химического превращения относятся термическое разложение и горение (дозвуковые процессы), детонация (сверхзвуковой процесс).
Термическое разложение ВВ является гомогенным процессом, протекающем во всем объеме заряда при данной температуре. Скорость термического распада ВВ измеряется числом молей, реагирующих в единицу времени в единице объёма - моль/(с·см3). Таким образом, скорость термораспада соответствует данной температуре и одинакова во всех точках объема ВВ. Основные продукты разложения - оксиды горючих элементов (СО, СО2, Н2О др.), азот, альдегиды, кислоты и т.п. Термическое разложение может завершиться при определенных условиях тепловым взрывом
Разложение при трении или ударе азида свинца:
Pb(N3)2 > Pb + 3N2 + 474 кДж/моль.
Горение ВВ является самораспространяющимся гетерогенным направленным процессом с выраженной зоной химической реакции, разделяющей исходное вещество и продукты горения. Как и в случае термического разложения, продуктами горения являются СО, СО2, Н2О, N2. Горение протекает за счет химических реакций между окислителем и горючими компонентами, содержащимися в составе ВВ, и определяется механизмом передачи энергии из зоны химической реакции в примыкающий к ней слой исходного вещества.
Так как основные составляющие процесса тепло- и массопереноса при горении (конвекция, диффузия, теплопроводность) медленные, то и процесс горения протекает медленно - с дозвуковой скоростью. Обычно линейная скорость горения составляет несколько миллиметров в секунду (редко десятки и сотни миллиметров в секунду). Скорость горения существенно зависит от массы ВВ и внешних факторов - давления и температуры. В весьма ограниченном пространстве давление повышается быстро и горение может перейти в детонацию. В связи с этим уничтожение ВВ сжиганием проводят на открытых площадках.
Основным видом реакции медленного термического распада ВВ является мономолекулярный распад, на который накладываются вторичные реакции с участием продуктов первичного распада. Ускорение реакции распада особенно активно происходит при повышении температуры ВВ. Если приход тепла при реакции преобладает над процессом его отвода в окружающую среду, то возможно прогрессивное нагревание ВВ и в дальнейшем значительный рост реакции, а в итоге - тепловой взрыв. Такая критическая точка называется температурой вспышки ВВ. Или другими словами, та минимальная температура, при которой в течение условно заданного отрезка времени подвод тепла становится больше теплоотвода и химическая реакция вследствие самоускорения принимает характер взрывчатого превращения, называется температурой вспышки.
Детонация- это процесс химического превращения ВВ, сопровождающийся выделением теплоты и распространяющийся с постоянной скоростью, превышающей скорость звука в данном веществе. В отличие от горения детонация представляет собой комплекс мощной ударной волны и следующей за ее фронтом зоны химического превращения вещества.
Исходная структура взрывчатых веществ является термодинамически метастабильной. Перед достижением более стабильного состояния с меньшей энергией система должна пройти через промежуточное менее стабильное состояние с повышенной энергией, это означает как бы наличие барьера, препятствующего непрерывному превращению, если при этом не обеспечена необходимая активация процесса. Химические превращения ВВ в конечные продукты взрыва могут быть инициированы путем подвода тепла, механической энергии (удар, трение), либо другими видами воздействий.
Основной формой взрывчатых превращений промышленных ВВ является детонация. Импульсом для начала развития химической реакции является, как правило, ударная волна, возбуждаемая взрывом капсюль-детонатора или электродетонатора, т.е. промежуточных детонаторов. Таким образом, химическая реакция возникает в результате адиабатического сжатия и разогрева вещества в ударном фронте. Комплекс из ударного фронта и зоны химической реакции называется детонационной волной.
В зависимость от типа ВВ, давление на ударном фронте может быть от десятков атмосфер (газовые взрывные смеси) до сотен тысяч (бризантные ВВ). В режиме стационарного распространения скорость фронта детонации может для разных ВВ составлять от 1 до 10 км/с. Тепло, выделяющееся при детонационной форме химического превращения, компенсирует потери энергии, идущие на сжатие и движение вещества, обеспечивая постоянство параметров детонационной волны. Следует подчеркнуть, что скорость детонации не зависит от начального импульса; она является характеристикой и постоянной величиной данного ВВ. Участок заряда от точки инициирования до начала распространения детонации со стационарной скоростью называют участком нестационарной детонации.
Экзотермическая реакция, возбуждаемая механическим ударом, который передается от реагирующего слоя к соседнему слою, распространяется в виде волны давления. Такой процесс возможен лишь при том условии, что химическая реакция заканчивается прежде, чем спадет давление за счет волны разгрузки, идущей от свободной поверхности со скоростью звука. Такой сценарий возможен только при очень высоких давлениях, когда волны давления переходят в ударную волну. Таким образом, детонацию можно представить как сочетание ударной волны с зоной химической реакции.
Ударная волна возбуждает реакцию в веществе, а реакция усиливает ударную волну, пока не установится равновесие между передаваемой и рассеиваемой энергией не установится стационарный режим распространения волны детонации. С учетом энерговыделения при детонации, основные соотношения между начальными и конечными параметрами состояния вещества, а также скоростью детонации и массовой скоростью движения продуктов химического превращения за фронтом находятся из законов сохранения массы, импульса и энергии в волне.
Скорость распространения ударной волны в среде всегда превышает скорость звука этой среды. Линейная зависимость скорости ударной волны от параметров среды записывается следующим образом:
где D - скорость ударной волны; С - скорость звука в среде; - коэффициент (находят в таблицах или определяют экспериментально); U - массовая скорость частицу за фронтом ударной волны.
Фронт ударной волны можно представить как линию, разделяющую два принципиально различных физических состояния в одной среде. Состояния, возникшего в результате прохождения ударной волны, и невозмущенной среды, по которой УВ еще не прошла. Таким образом, фронт УВ, распространяющийся со сверхзвуковой скоростью в среде, представляет скачкообразное изменение давления, температуры и плотности. На некотором расстоянии от заряда ВВ по среде распространяется ударная волна, которая с расстоянием постепенно вырождается в звуковую. Ударная волна отличается от упругой тем, что создает поток вещества, следующий за ее фронтом.
Расстояние, на котором ударная волна ослабляется до звуковой, в газе намного больше, чем в твердом веществе. При заданном диаметре заряда это расстояние в воздухе составляет несколько десятков и даже сотен диаметров заряда, в воде - около 2-3 диаметров, в твердом теле - меньше одного диаметра.
Ширина фронта ударной волны в воздухе на уровне моря составляет 0,025 мкм (для сравнения: длина волны в инфракрасной области примерно равна 1 мкм). При распространении ударной волны в любой среде давление, плотность и температура в возмущенной области увеличиваются во много раз. Поэтому люди и животные, попавшие в зону действия ударной волны, гибнут, а сооружения разрушаются. Кроме этого, поток воздуха, возникающий за фронтом ударной волны, также наносит большой ущерб живым организмам и сооружениям.
2. История создания
Первым взрывчатым веществом, которое изобрел человек, был чёрный дымный порох. Время его открытия и имена изобретателей остались неизвестными. В древние времена порох знали в Китае и Индии, откуда его заимствовали арабы. В XV в. порох начали применять в минно-подрывном деле для разрушения укреплений противника.
Чёрный порох состоит обычно из трёх компонентов: селитры, угля и серы. При сгорании пороха селитра даёт кислород для сжигания угля; сера -- цементирует угольно-селитряную смесь.
2KNO3 + 3C + S = K2S + N2 +3CO2
Большим событием в области создания ВВ было получение профессором А.Собреро нитроглицерина путём обработки глицерина азотной кислотой в присутствии серной кислоты в 1846 г.
Реакция нитрации происходила, если 1 часть глицерина обрабатывали тремя частями концентрированной азотной кислоты в присутствии 6 частей концентрированной серной кислоты.
Уравнение имело следующий вид:
C3H5(OH)3 + 3HNO3 = C3H5(NO3)3 +3H2O.)
Серная кислота в соединении не участвовала, но ее присутствие было необходимо, во-первых, для поглощения выделявшейся в результате реакции воды, которая в противном случае, разжижая азотную кислоту, тем самым препятствовала бы полноте реакции, а, во-вторых, для выделения образующегося нитроглицерина из раствора в азотной кислоте, так как он, будучи хорошо растворим в этой кислоте, не растворялся в ее смеси с серной. Это было, по существу, концом эпохи порохов и началом эры мощных ВВ. В чистом виде нитроглицерин - бесцветная маслянистая жидкость, ядовит, чувствителен к механическим воздействиям и огню. Даже при минимальном сотрясении, жидкости резко возрастает температура, которая практически моментально достигает необходимой для того, что бы началась взрывная реакция.
Огромная взрывная сила нитроглицерина объясняется тем, что при взрыве происходит его разложение, в результате чего сначала образуются газы СО2, СО, Н2, СН4, N2 , и NO, которые вновь взаимодействуют между собой с выделением огромного количества теплоты. Конечную реакцию можно выразить формулой:
2С3H5(NO3)3 =6CO2+5H2O+ 3N+ O2
Нитроглицерин широко применялся во взрывотехнике. В чистом виде он очень неустойчив и опасен. После открытия Собреро нитроглицерина, в 1853 г. русский химик Зинин предложил использовать его в технических целях. Альфред Нобель в 1867 г. изобрёл динамит, смешав нитроглицерин с кизельгуром (пористой породой), это позволило снизить чувствительность к детонации в несколько раз. Подрыв динамита, как и нитроглицерина, лучше всего было проводить с помощью детонации. Для этой цели Нобель в том же 1867 году изобрел капсюльный детонатор с гремучей ртутью ( Hg(CNO)2 ).
В 1892 г. Д. И. Менделеев получил бездымный порох и разработал безопасную технологию его изготовления. Нитроцеллюлоза была открыта совершенно случайно в 1846 году. Он вытер пролитую азотную кислоту хлопковой тканью, после чего заметил, что высушенная материя мгновенно сгорала от поднесенного пламени. Процесс горения был настолько стремительным, что огонь даже не успевал обжечь руку. Через 40 лет после получения нитроцеллюлозы из нее впервые был изготовлен бездымный порох. В 1884 году француз Павел Вьель растворил нитроцеллюлозу в эфире, получив вязкую массу, которая после высушивания превратилась в идеальный порох. Он был намного мощнее черного пороха, и при этом не производил дыма
Ко второй половине ХХ в. в большинстве стран мира перешли от использования динамитов, в составе которых содержатся весьма чувствительные и опасные в производстве нитроэфиры, к применению аммонитов и аммоналов, содержащих в качестве горючего сравнительно более безопасные тротил, гексоген и алюминий, а также такие ВВ, компоненты которых до их смешивания не взрываются.
3. Свойства
Важнейшими характеристиками взрывчатых веществ являются:
o скорость детонации
o давление детонации
o теплота взрыва
o температура взрыва
o чувствительность к внешним воздействиям
o критический диаметр детонации
o критическая плотность детонации
Разрушительное действие взрыва обусловлено работой, которую совершают газообразные продукты взрыва при расширении. Различают 2 основных вида действия ВВ: бризантное и фугасное.
Бризантностью называется способность взрывчатых веществ к местному разрушительному действию, которое является результатом резкого удара продуктов взрыва по окружающим ВВ предметам. Бризантное действие проявляется лишь на близких расстояниях от места взрыва, где давление и плотность энергии продуктов взрыва еще достаточно велики.
За счет бризантного действия происходит измельчение, пробивание или дробление среды, соприкасающейся с зарядом взрывчатого вещества. Применительно к металлической оболочке заряда бризантность ВВ определяет характеристики осколочности боеприпасов; применительно к взрыву заряда на преграде - характер местных разрушений.
Фугасностью называется способность взрывчатых веществ к разрушительному действию за счет расширения продуктов взрыва до сравнительно невысоких давлений и прохождения по среде ударной волны. Фугасное действие проявляется в форме раскалывания и отбрасывания среды, в которой происходит взрыв.
5. Современные достижения
Из многих способных к взрыву соединений в качестве ВВ и компонентов взрывчатых смесей применяют лишь 2-3 десятка веществ. Основные из них - нитросоединения: тринитротолуол (тротил, ТНТ) C6H2(NO2)3CH3, тетрил C6H2(NO2)3NCH3NO2, гексоген C3H6N6O6, октоген, нитроглицерин, нитроклетчатка, нитрометан и соли азотной кислоты, особенно нитрат аммония.
Как правило, эти вещества применяют не в чистом виде, а в виде смесей, например смеси октогена, гексогена с тротилом, нитроглицерина с нитрогликолем, диэтиленгликольдинитратом (O2NOCH2CH2)2O и нитроклетчаткой, тротила с нитратом аммония, смеси аммиачной селитры с жидкими (например, соляровым маслом) и порошкообразными (например, древесной мукой, порошкообразным алюминием) горючими веществами. Для уменьшения чувствительности и опасности в обращении мощные ВВ смешивают с парафином, церезином и др. легкоплавкими добавками (флегматизация ВВ). Для увеличения теплоты взрыва в смеси вводят порошкообразный алюминий или магний. Большое значение имеют смесевые ВВ, изготовляемые из невзрывчатых (или слабовзрывчатых) горючих и окислителей - игданиты, гранулиты, дымный порох, хлоратные и перхлоратные ВВ - смеси на основе солей хлорной и хлорноватой кислот, жидкого кислорода (оксиликвиты) и др. По взрывчатым свойствам (условиям перехода горения в детонацию) и обусловленным ими областям применения ВВ подразделяют на инициирующие (первичные), бризантные (вторичные) и метательные (пороха). Инициирующие ВВ характеризуются чрезвычайно высокой скоростью взрывного превращения. Чувствительность их высока, горение неустойчиво и быстро переходит в детонацию уже при атмосферном давлении. Взрыв может быть возбуждён поджиганием, ударом или трением. Инициирующие ВВ используют для возбуждения взрывчатого превращения других веществ. Основные представители инициирующих ВВ - азид свинца, гремучая ртуть, тринитрорезорцинат свинца, тетразен. Бризантные ВВ более инертны. Чувствительность их к внешним воздействиям гораздо меньше, чем инициирующих. Горение может перейти в детонацию только при наличии прочной оболочки либо большого количества ВВ. Поэтому они относительно безопасны в обращении. В качестве бризантных ВВ применяют главным образом нитросоединения и взрывчатые смеси на основе нитратов, хлоратов, перхлоратов и жидкого кислорода, о которых говорилось выше. Основной режим их взрывного превращения - детонация, возбуждаемая небольшим зарядом инициирующего ВВ. Бризантные ВВ применяют для взрывных работ, а также в снарядах и др. боеприпасах. Метательные ВВ горят ещё более устойчиво, чем бризантные: они не детонируют при горении даже в самых жёстких условиях [большие заряды, давления порядка десятков и сотен Мн/м2 (сотен и тысяч кгс/см2)]. Основной режим взрывного превращения метательных ВВ - горение. Отличие метательных ВВ от бризантных определяется в основном не химическим составом, а физической структурой этих веществ (плотностью и прочностью заряда).
6. Области применения ВВ
ВВ широко применяют в народном хозяйстве при взрывных работах, взрывной сварке, взрывном упрочнении металла, взрывном штамповании. ВВ, применяемые в горной промышленности, подразделяют на непредохранительные - для открытых работ и для подземных работ (кроме шахт, опасных по газу или пыли, обычно ВВ для подземных работ обладают большей детонационной способностью, чем ВВ для открытых работ, и образуют при взрыве меньше ядовитых газообразных продуктов - окислов азота и окиси углерода), и на предохранительные взрывчатые вещества (для шахт, опасных по газу или пыли). Основную массу промышленных ВВ составляют аммониты и гранулиты.
В военной технике ВВ применяют для снаряжения боеприпасов: вторичные ВВ - для разрывных зарядов мин, снарядов, авиационных бомб, боевых частей ракет, боевых зарядных отделений торпед, ручных и ружейных гранат и др.; метательные - в качестве пороховых зарядов артиллерийских и миномётных выстрелов, патронов для стрелкового оружия, твёрдотопливных ракетных двигателей и др.; инициирующие - для устройств, обеспечивающих детонацию разрывного или воспламенение порохового зарядов (в капсюлях-детонаторах, электродетонаторах, детонирующем шнуре и т.п.).
ВВ используют также для изготовления генераторов газа высокого давления (пороховые заряды для подачи компонентов в камеру сгорания жидкостных ракетных двигателей, для огнемётов и т.д.), устройства инженерных взрывных заграждений (минные поля, фугасы). Они являются важной частью атомных и термоядерных боеприпасов: взрыв зарядов вторичного ВВ обеспечивает достижение надкритической массы ядерного заряда.
Размещено на Allbest.ru
...Подобные документы
Обзор свойств и технологий получения штатных бризантных взрывчатых веществ: тротил, гексоген, ТЭН, октоген. Разработка факультативного занятия по теме "Бризантные взрывчатые вещества" для учащихся старших классов средней общеобразовательной школы.
дипломная работа [672,2 K], добавлен 10.08.2009Классификация аварийно химически опасных веществ по характеру воздействия на человека. Промышленный способ получения аммиака. Производство азотных удобрений, взрывчатых веществ и полимеров, азотной кислоты. Физиологическое действие нашатырного спирта.
презентация [629,7 K], добавлен 23.11.2014Классификация и область применения промышленных взрывчатых веществ. История появления эмульсионных взрывсистем. Безопасность при производстве, хранении, транспортировании и применении ПВВ. Теплота взрыва, работоспособность и чувствительность эмульсии.
дипломная работа [597,5 K], добавлен 11.07.2014Исследование электропроводности продуктов детонации. Особенности распределения электропроводности конденсированных взрывчатых веществ за фронтом пересжатой детонации. Выявление природы возникновения электропроводности за фронтом детонационной волны.
дипломная работа [3,1 M], добавлен 28.02.2011Непредохранительные и предохранительные взрывчатые вещества. Акваниты и акваналы. Ифзаниты, карботолы, детониты. Компоненты промышленных взрывчаток. Горючие и структурообразующие добавки. Принципы составления рецептур водосодержащих взрывчатых веществ.
презентация [233,0 K], добавлен 23.07.2013Аллотропичные формы фосфора. Применение красного фосфора в изготовлении спичек, взрывчатых веществ. Фосфаты и их применение в сельском хозяйстве и продукции бытовой химии. Главные особенности применения ортофосфорной кислоты в пищевой промышленности.
презентация [8,2 M], добавлен 11.12.2011Вещества и их взаимные превращения являются предметом изучения химии. Химия – наука о веществах и законах, которым подчиняются их превращения. Задачи современной неорганической химии – изучение строения, свойств и химических реакций веществ и соединений.
лекция [21,5 K], добавлен 26.02.2009Общая характеристика марганца, его основные физические и химические свойства, история открытия и современные достижения в исследовании. Распространенность в природе данного химического элемента, направления его применения в промышленности, получение.
контрольная работа [75,4 K], добавлен 26.06.2013Жизненный путь Юстуса Либиха. Развитие производства и становление практической химии. Изучение свойств гремучей кислоты. Вклад Юстуса Либиха в агрохимию, химию сплавов, взрывчатых веществ. В лаборатории Либиха в Гиссене. Исследования мочевой кислоты.
реферат [883,7 K], добавлен 22.07.2008Грань между органическими и неорганическими веществами. Синтезы веществ, ранее вырабатывавшихся только живыми организмами. Изучение химии органических веществ. Идеи атомистики. Сущность теории химического строения. Учение об электронном строении атомов.
реферат [836,2 K], добавлен 27.09.2008Методы и концепции познания в химии. Понятие состава вещества, анализ структуры веществ в рамках химической системы. Общая характеристика концептуальных уровней в познании веществ и химические системы. Сущность периодического закона Д.И. Менделеева.
реферат [115,8 K], добавлен 01.12.2010Роль углеродов в живой природе. Распространение в природе. Физические и химические свойства. Роль углеводов в живой природе. Крупные достижения в изучении обмена веществ и круговорота углерода в природе. Механизмы биосинтеза белка.
реферат [12,0 K], добавлен 06.10.2006Свойства 2-нафтилацетата и исходных веществ. Расчет количеств исходных веществ. Приготовление исходных и вспомогательных реактивов. Отделение вещества от сопутствующих продуктов. Физико-химические константы и растворимость синтезированного вещества.
курсовая работа [385,5 K], добавлен 22.10.2011Определение малых количеств (следов) веществ в аналитической химии. Содержание примесей в чистых металлах и оптические методы их анализа. Теория и практика измерения мутности. Турбидиметрия и нефелометрия. Современные мутномеры, область их приминения.
курсовая работа [606,8 K], добавлен 10.01.2010Характеристика химического равновесия. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры, величины поверхности реагирующих веществ. Влияние концентрации реагирующих веществ и температуры на состояние равновесия.
лабораторная работа [282,5 K], добавлен 08.10.2013Химия и технология душистых веществ. Связь между структурой душистых веществ и их запахом. Основы производства парфюмерии и косметики. Душистые вещества и полупродукты парфюмерно-косметических производств. Классификация пахучих веществ. Благоухающая ретор
научная работа [1,4 M], добавлен 04.11.2008Тиофен как гетероциклическое соединение, история его открытия и исследований, современные достижения в данной области и сферы практического применения. Главные физические и химические свойства тиофена. Этапы получения 3-Бром-2-Тиофенкарбоновой кислоты.
практическая работа [207,0 K], добавлен 04.01.2013Характеристика металлов - веществ, обладающих в обычных условиях высокой электропроводностью и теплопроводностью, ковкостью, "металлическим" блеском. Химические и физические свойства магния. История открытия, нахождение в природе, биологическая роль.
презентация [450,8 K], добавлен 14.01.2011Управление химическими процессами, особенности анализа и идентификации структуры сложных молекул. Образование земных и внеземных веществ, получение новых химических элементов. Современные синтетические материалы. Важнейшие открытия в химии XXI века.
контрольная работа [57,8 K], добавлен 06.01.2011Особенности измерения состава веществ и материалов. Детальная характеристика приёмов определения неизвестной концентрации в инструментальных методах анализа. Обобщенная трактовка физико-химического анализа как самостоятельной научной дисциплины.
реферат [58,6 K], добавлен 30.03.2015