Диметиловый эфир

Свойства диметилового эфира, основные способы его получения (синтез метанола, дегидратация метилового спирта и др.). Особенности применения диметилового эфира в качестве дизельного топлива. Физико-химические показатели и свойства диметилового эфира.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 04.05.2015
Размер файла 25,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Диметиловый эфир. Свойства

2. Получение диметилового эфира

3. Применение диметилового эфира в качестве дизельного топлива

4. Физико-химические показатели и свойства диметилового эфира

Заключение

Список использованной литературы

Введение

Стремительный рост автомобильного транспорта привел к значительному увеличению объемов выбросов загрязняющих веществ в воздушную среду городов. В виде отработавших газов, продуктов испарения бензина и других вредных примесей в атмосферу ежегодно выбрасывается более 1 млн. тонн загрязняющих веществ.

Наряду с Программой оснащения муниципального автотранспорта каталитическими нейтрализаторами, использование альтернативных экологически более чистых видов моторного топлива является одним из основных путей снижения негативного влияния автомобиля на экологию городов.

Интенсивные работы в этом направлении ведутся во всех развитых странах мира. Ведущие мировые автомобильные концерны инвестируют миллиарды долларов в развитие транспорта и технологий альтернативных видов моторного топлива и источников энергии.

В России наиболее предпочтительным представляется частичное замещение традиционных видов моторного топлива на синтетические жидкие углеводороды, получаемые из природного газа, в силу низкой себестоимости и практической неограниченности этого ресурса в стране.

Использование в качестве моторного топлива диметилового эфира, пропан-бутана, метана позволяет уменьшить выбросы в атмосферу окиси углерода, углеводородов и окиси азота на 30-70% по сравнению с обычными жидкими моторными топливами.

диметиловый эфир дизельный топливо

1. Диметиловый эфир. Свойства

Диметиловый эфир (метиловый эфир) с молекулярной формулой СН3ОСН3. Молярная масса М(СН3ОСН3) = 46,07 г/моль. Бесцветный газ с запахом, напоминающим запах хлороформа.

Имеет следующие физические свойства: tплавдения = 138,5 °С; tкипения = 25,0 °С; с=2,091 г/л; h.0,01 мПа.с (20 °С); tкрит =126,9 оС, ркрит =5,32 МПа; ДH0исп = 21,5 кДж/моль, ДH0обр =184,1 кДж/моль; S0298 =266,5 Дж/(моль.К). Растворим в этаноле, диэтиловом эфире, воде. [2, c.25]

Диметиловый эфир - родоначальник класса алифатических эфиров простых, сравнительно инертен, разлагается только при температуре красного каления, не реагирует при умеренных температурах с Na, сильными кислотами и щелочами. Обладает слабо выраженными основными свойствами и при действии сильных кислот превращается в неустойчивые оксониевые соли, например: [(СН3)2ОН]+НаI-. С BF3 и CH3F образует борофторид триметилоксония:

СН3ОСН3 + CH3F + BF3 : [(CH3)30] + BF4-

2. Получение диметилового эфира

Главным образом, диметиловый спирт получают как попутный продукт при синтезе метанола, с использованием катализаторов, содержащих медь, цинк и хром. Реакция протекает по такой схеме:

3СО + 3Н2 = СН3ОСН3 + СО2

Это наиболее современный и экономически обоснованный способ. Синтез осуществляется при повышенных температурах (от 200 до 400 градусов) и давлении (от 4 до 40 мПа). [5, c.63]

Диметиловый эфир получают и из самого метанола, путем его дегидратации, также при повышенных температурах и давлении, применяя алюмосиликатные катализаторы. Преимущества этого метода в том, что он дает хороший выход продукта - около 60%. Однако, с чисто экономической точки зрения, это является «вчерашним днем», так как использование метанола в качестве сырья удорожает продукт.

В лабораторных условиях, диметиловый эфир синтезируют путем дегидратации метилового спирта с помощью концентрированной серной кислотой. Метанольно-кислотную смесь, помещенную в большую «трехгорлую» колбу, кипятят без открытого пламени, постепенно добавляя дополнительную порцию метилового спирта. Образующиеся пары диметилового эфира через холодильник (прямой, шариковый, змеевидный) отводятся в приемный сосуд.

В промышленности диметиловый эфир получают в качестве побочного продукта при производствеве метилового спирта из синтез-газа на оксидных цинкхромовых и медьсодержащих кат. при температурах 200-400 °С и давлениях 4-40 МПа. Содержание диметилового эфира в метаноле-сырце составляет 0,01-6,0%. Перспективно получение диметилового эфира дегидратацией метанола при 300-400°С и 2-3 МПа в присутствии гетерогенного катализатора -- алюмосиликатов (степень превращения метанола в диметиловый эфир -- 60%) и цеолитов (селективность процесса близка к 100%). Диметиловый эфир получают также из синтез-газа на полифункциональных катализаторах при 200-250 °С и давлении 7-9 МПа; степень превращения метанола в диметиловом эфире составляет 59-88%. Препаративно диметиловый эфир получают в лаборатории действием H2SO4 на метанол.[ http://www.kakprosto.ru/kak-50218-kak-poluchit-dimetilovyy-efir#ixzz3FFF1pJyP].

Дегидратация метанола с получением диметилового эфира - исторически первый путь проведения данного синтеза. Этому процессу ещё с 1960-х годов было посвящено множество работ советских и зарубежных учёных.

Реакция дегидратации метанола на -АL2О3 широко использовалась для исследования состояния поверхности катализатора в условиях реакции. Установлено, что основные компоненты реакционной среды - метанол, вода. [6, c.65]

Диметиловый эфир (ДМЭ) адсорбируются на поверхности диссоциативно с образованием метилированных и гидроксилированных центров. В связи с разработкой процесса получения компонентов моторных топлив из метанола эта реакция в последнее время приобрела промышленное значение, и вновь появился интерес к кинетике и механизму ее протекания.

В работе изучение кинетики проводилось путем варьирования объемной скорости подачи метанола. Проведенные по результатам кинетических измерений на катализаторе -А12О3 (195-285°С) расчеты показали, что кинетика реакции:

2СН3ОН = СНзОСНз + Н2О (2)

На изученном катализаторе описывается уравнением второго порядка:

W=k*P2CHз0H

Постоянные уравнения Аррениуса имели следующие значения:

В=2.4108; Е=21800 ккал/моль (91342 кДж/моль)

На основании данных о бимолекулярности реакции, полученных в и других результатов, были проведены исследования механизма дегидратации метанола методом ИК спектроскопии. В работах была подробно изучена адсорбция метанола и ДМЭ на поверхности окиси алюминия в интервале температур 20-450°С, причем поверхность адсорбента в зависимости от обработки была гидратированной или дегидратированной. [8, c.96]

На основании проведенных исследований были сделаны выводы о том, что при повышении температуры имеют место различные виды адсорбции как для ДМЭ (адсорбция на связанных водородной связью гидроксильных группах поверхности; взаимодействие с образованием координационной связи; образование структур с активацией водорода метильной группы поверхностью и образование карбонатно-карбоксилатных структур), так и для метанола (адсорбция на связанных водородной связью гидроксильных группах поверхности, адсорбция с образованием поверхностного метилата, комплекса с координационной связью и карбонатно-карбоксилатных структур).

На основании сравнения спектральных данных в совокупности с полученными ранее термодесорбционными результатами, авторы пришли к выводу, что протекание реакции дегидратации метилового спирта до диметилового эфира идет с образованием поверхностного метилата и комплекса с координационной связью. Карбонатно-карбоксилатные структуры не являются промежуточными соединениями при дегидратации спирта, но ответственны за протекание побочных реакций. Кроме того, авторы пришли к выводу о том, что «свободные» гидроксилы поверхности не принимают участия в адсорбции, а также что адсорбция ДМЭ на дегидратированной поверхности А12О3 протекает с отщеплением воды, дегидратирующей поверхность практически без энергии активации.

На основании сделанных выводов авторы предположили, что каталитической дегидратации спирта до эфира предшествует хемосорбция, которая на окиси алюминия протекает с образованием метилата и координационной связи кислород спирта - алюминий решетки. Другая хемосорбционная форма, через которую протекает реакция, возникает при образовании координационной связи между атомом кислорода спирта и атомом алюминий решётки.

Реакция протекает между двумя молекулами спирта, связанными с поверхностью координационной связью. В активном четырехчленном циклическом комплексе происходит одновременный изоэнергетический разрыв и образование двух связей С-О и двух связей О-Н. Образующийся при реакции эфир остается на поверхности связанным координационной связью. Лимитирующей стадией процесса может быть как реакция на поверхности через циклический активный комплекс, так и десорбция эфира с разрывом координационной связи. Помимо основной реакции дегидратации метилового спирта на -Аl2О3 протекают побочные процессы, сопровождающиеся выделением в газовую фазу монооксида углерода, водорода и углеводородов. Эти побочные процессы являются результатом разложения карбонатно-карбоксилатных структур. [6, c.78]

В работе показано, что при пропускании над цеолитом NaX метанола, содержащего йодистый метил, интенсивность образования ДМЭ была выше, чем при пропускании чистого метанола. Авторы объясняют это тем, что галоидные алкилы склонны ионизироваться по механизму SN1 с образованием карбоний-ионов, что существенно способствует образованию простых эфиров. При этом, даже без использования активирующей добавки выход ДМЭ на цеолите NaX выше, чем на применяемом ранее катализаторе ?-А12О3 на 2-5% в интервале температур 250-400°С и составляет 90% масс. при 250°С практически линейно снижаясь до 75% масс. при 400°С. Конверсия метанола как на NaX, так и на ? -А12О3 изменялась от 80 до 100% масс, при варьировании температуры реакции от 250 до 400°С.

В работе описаны катализаторы Cu-Hect и Cu-Bent, которые также очень активны в дегидратации метанола до диметилового эфира. Их активность возрастает с увеличением кислотности среды. Свойства этих цеолитных катализаторов очень похожи, причем Cu-Bent является природным минералом, a Cu-Hect сделанным искусственно. [9, c.92]

Кроме цеолитов разрабатывается также различные модификации катализаторов на основе -А1203. Носителем для катализатора может быть любое инертное вещество, но окись алюминия в ходе гидротермического процесса дегидратации за счет спекания подвергается довольно быстрому старению, что приводит к заметному снижению конверсии спирта в простой эфир уже через 200 часов работы катализатора. Указанный недостаток присущ и катализатору на носителе, поскольку кремневое производное играет роль инертной подложки, служащей лишь носителем активной составляющей катализатора, на его поверхности также имеет место наличие ОН-групп, способствующих спеканию. Авторы предлагают модифицировать поверхность оксида алюминия слоем двуокиси кремния в количестве 8-18% от веса катализатора. Такая модификация позволяет проводить процесс по крайней мере 500 часов без заметного снижения конверсии, которая находится в пределах 75-79 % все время работы катализатора.

3. Применение диметилового эфира в качестве дизельного топлива

В России с 1992-го, а за рубежом с 1994 г. ведутся работы по использованию ДМЭ в качестве моторного топлива для дизелей. Основными фирмами разработчиками в России является НИИ двигателей, а за рубежом Haldtr Topse A/S, Technical University of Denmark, AVL LIST Gmbh (Austria), Amoco Corp. (USA), Navistar International Co (USA). ДМЭ обладает весьма высоким цитановым числом (ЦЧ=55-60), превышающим аналогичный показатель для дизельного топлива, и низкой температурой кипения (-25°С). Благодаря этим свойствам ускоряются процессы смесеобразования и сгорания, сокращается период задержки воспламенения и обеспечивается хороший пуск дизельных двигателей при любых температурах окружающей среды, а так же существенно улучшаются экологические характеристики выбросов ОГ. Высокое содержание кислорода в ДМЭ (35%) обеспечивает бездымное сгорание топлива и позволяет работать с высокой степенью рециркуляции ОГ.

Основными компонентами выброса являются углекислый газ и вода. [5, c.51] Содержание окислов азота в ОГ не превышает аналогичные показатели для дизельного топлива. Проведенные на АМО ЗИЛ испытания доработанного образца серийного двигателя на ДМЭ показали его соответствие требованиям ЕЭК ООН "Евро-2". В НИИ двигателей создан опытный образец дизельного автомобиля на ДМЭ. По оценке специалистов США и Дании, присутствовавших на испытаниях, характеристики выбросов ОГ этого автомобиля превзошли все ожидания. В конце 1997 г. в Дании организованы полупроизводственные испытания городских автобусов с дизельными двигателями, использующими в качестве моторного топлива ДМЭ. В мае-июне 1998 г. на международной конференции по альтернативным видам топлива ДМЭ был признан топливом XXI века. Себестоимость производства ДМЭ в России (при отпускных ценах на сырье - природный газ - на уровне мировых цен) составляет не более 2/3 от себестоимости производства дизельного топлива, в то время как у западных фирм - на уровне себестоимости дизельного топлива. Модернизация серийных дизельных двигателей для работы на ДМЭ сводится к повышению объемной подачи ДМЭ топливным насосом, герметизации трубопроводов и замены топливных баков на баллоны, аналогичные баллонам для сжиженного нефтяного газа. В качестве топливозаправочной инфраструктуры можно использовать сеть заправочных станций СНГ(с проведением замены уплотнительных прокладок для герметизации трубопроводов). Как в России, так и за рубежом внедрению ДМЭ активно препятствуют фирмы производители и продавцы моторного топлива, а так же государственные и муниципальные структуры, регулирующие отношения в этой сфере.

4. Физико-химические показатели и свойства ДМЭ

Физико-химические показатели ДМЭ

Молекулярная масса

46,07

Температура плавления

-138,5°С

Температура кипения

-24,9°С

Критическая температура

127°С

Критическое давление

53,7 бар

Давление пара при 20°С 38°С

5,1 бар 8 бар

Теплота парообразования при -20°С

410кДж/кг

Результаты выполненных исследований различных аспектов применения ДМЭ в качестве альтернативного моторного топлива для дизелей дают основания для следующих выводов. [9, c.63]

1. ДМЭ обладает целым рядом преимуществ по сравнению с другими альтернативными топливами и даже дизельным топливом по следующим показателям:

Химическим:

- отсутствием валентных углеродно-углеродных связей, что понижает склонность к сажеобразованию при горении,

- содержанием порядка 35% связанного кислорода, что практически полностью устраняет дымность выпускных газов,

- хорошей самовоспламеняемость в условиях цилиндра дизеля (цетановое число ЦЧ=55=60 по сравнению с ЦЧ=45-50 для дизельного топлива, не говоря уж об альтернативных топливах типа метанола и этанола, а также природных газах, имеющих плохую воспламеняемость), что делает его идеальным в качестве моторного топлива дизелей:

Физическим:

- хорошей испаряемостью, что приводит к быстрой газификации впрыскиваемых в цилиндры топливных струй, способствуя совершенствованию процесса смесеобразования и улучшению экономичности при понижении требуемого уровня давлений впрыскивания и, следовательно, повышению надежности работы топливовпрыскивающей аппаратуры и снижению ее уровня шума.

2. Результаты моторных испытаний дизелей на ДМЭ показали возможность значительного улучшения следующих характеристик:

Экологическим:

- снижение уровня выброса вредных выбросов с выпускными газами по окислам азота- в 3-4 раза при практически бездымном выхлопе на всех режимах работы;

- ДМЭ является экологически чистым продуктом, не наносящим никакого вреда окружающей среде.

Экономическим:

- сохранение или даже улучшение (до 5%) экономичности дизеля по сравнению с работой на дизельном топливе.

Эксплуатационным:

- снижение динамики цикла и давлений сгорания, что повышает надежность работы двигателей и снижает шумность на 10 дБ(А), открывая возможность конвертирование в дизели, работающие на ДМЭ, обычных карбюраторных двигателей, а также возрождения с улучшением экологических характеристик широко распространенных, например, в дорожно-строительных машинах безнаддувных дизелей.

3. Конвертирование обычных дизелей для работы на ДМЭ состоит только в модернизации их топливоподающей аппаратуры, направленной на увеличение объемной подачи топлива и уплотнения линии низкого давления для приспособления ее к работе на повышенных порядка 10-20 бар давлениях, а также в замене топливных баков на баллоны низкого давления, используемые для работы с сжиженными природными газами.

К недостаткам следует отнести пониженную вязкость ДМЭ по сравнению с дизельным топливом, что может потребовать доводки топливоподающей аппаратуры для обеспечения ее противозадирных качеств и повышения долговечности. [6, c.52]

4. Существуют отработанный (через получение метанола), а также более эффективный новый (через получение синтез-газа) технологические способы массового производства ДМЭ на базе природного газа. ДМЭ может также производиться на базе каменного угля, углеродосодержащих продуктов (битумов), а также биомассы, что позволяет считать его возобновляемым видом топлива.

5. Технико-экономический анализ применения диметилового эфира в качестве альтернативного моторного топлива для дизелей свидетельствует о возможности сбыта его по ценам, приблизительно равным ценам на дизельное топливо.

6. Из описанных результатов исследования можно заключить, что диметиловый эфир по своим физико-химическим показателям и данным моторных испытаний может стать в XXI-м веке основным видом моторного топлива во всем мире, над внедрением которого в настоящее время интенсивно работают многие ведущие фирмы и государственные организации за рубежом.

По существу, речь, по-видимому, может идти о глобальной отработке новой прогрессивной технологии преобразования природного газа (и других видов сырья), обеспечивающего только умеренный экологический эффект, в идеальное моторное топлива, отвечающее всем самым жестким экологическим и экономическим нормам наступающего века.

Результаты проведенных исследований свидетельствуют, что по целому ряду экологических, эксплуатационных и технико-экономических показателей диметиловый эфир может стать в 21-м веке одним из основных видов моторного топлива для дизелей во всем мире, что дает основание рекомендовать всемерную поддержку и развитие соответствующих НИОКР, которые должны способствовать ускорению массового внедрения в нашей стране диметилового эфира в качестве альтернативного моторного топлива.

Одним из самых важных положительных факторов использования ДМЭ в качестве моторного топлива является отсутствие необходимости строительства специальных АЗС. Так как по своим физико-химическим свойствам (за исключением цетанового числа) ДМЭ аналогичен пропан-бутану для заправки автомобильного транспорта ДМЭ можно использовать существующие АГНС.

В этом случае АГНС становится двухтопливной заправкой (пропан-бутана и ДМЭ), по аналогии с действующими АЗС (бензин + дизельное топливо).

Заключение

Таким образом, В перспективе на транспорте возможно использование конкурирующего топлива - диметилового эфира (ДМЭ), имеющего определенные технологические преимущества перед сжиженным природным газом. По своим физическим свойствам это вещество очень схоже с СУГ и может являться его заменителем в качестве моторного топлива, топлива для газовых турбин, в коммунальном хозяйстве и быту (приготовление пищи). В сравнении с СПГ он имеет существенно более высокую температуру сжижения (- 24,5°С), что позволяет хранить ДМЭ в тех же резервуарах, что и СУГ. При его правильном сгорании не образуется сажа, а только вода и углекислый газ. Теплотворная способность ДМЭ (28,4 МДж/кг) только немного ниже низшей удельной теплоты сгорания природного газа. Кроме того, ДМЭ используется для производства аэрозольных красок и в парфюмерной промышленности, т.к. является отличным растворителем и пропеллентом одновременно, и при этом практически полностью разлагается при попадании в атмосферу (не является парниковым газом, в отличие от метана).

Важное преимущество ДМЭ - это возможность поставлять его в контейнерах, баллонах и цистернах прямо от производителя или с приемного терминала конечным потребителям на заправки и в личные (домашние) коммунальные хозяйства. При этом снижаются затраты на распределение. Возможна транспортировка ДМЭ в контейнерах и лихтерах (судами-контейнеровозами/лихтеровозами) непосредственно с места отгрузки. При этом контейнеры/лихтеры могут загружаться на судно как уже в заполненном виде (заправленными), так и заполняться непосредственно на судне через специальный распределительный манифольд. Таким образом, ДМЭ - это не только новая транспортная технология, но и готовый продукт для потребителей (бутилированный ДМЭ). ДМЭ имеет высокое цетановое число, что позволяет использовать его в качестве эффективного дизельного топлива.

Список использованной литературы

1. «Энергия» 2002, N 11. С. 42-44.

2. Бухаркин А.К., Лихтерова Н.М., Капкин В.Д. «Основы химии и технологии производства и применения транспортных энергоносителей». Москва, МИТХТ, 1997

3. Караваев М.М., Леонов А. Л., Мастеров Б. П. «Промышленный синтез метанола». Москва, «Химия», 1974 г.

4. Караваев М.М. и др, «Технология синтетического метанола». Москва, «Химия», 1984 г.

5. Хенрице-Оливе Г., Оливе С., «Химия каталитического гидрирования СО». Москва, «Мир», 1987

6. «Перспективные автомобильные топлива». Под редакцией Черникова Я.Б., Москва, Транспорт, 1998 г.

7. Смаль Ф. В., Аксенов Е. Е., «Перспективные топлива для автомобилей». Москва, Транспорт, 1979 г.

8. Гайнуллин Ф. Г., «Природный газ как моторное топливо на транспорте». Москва, Транспорт, 1986 г

9. Топчиева К.В., Кубасов А.А., Тыонг Ван Дао, «Дегидратация метилового спирта на щелочных формах цеолитов X и Y», Вестник МГУ. Химия. 1972, т. 13, №6, стр. 628-632.

10. Хамагульгова Н.С., Хадишев С.Н., Кубасов А.А., «Закономерности конверсии метанола в микрореакторе на цеолитах ультрасил», Вестник МГУ. Химия. 1981, т. 22, №2, стр. 156-160.

11. Нефедов Б.К., Сергеева Н.С., «Влияние состава катализатора Rh -носитель и добавок различных веществ в зону реакции на карбонилирование метанола окисью углерода при атмосферном давлении», Известия АН СССР, серия Химия. 1976, №10, стр. 2271 -2276.

12. Соловьев А.А., Каденцев В.И., Чижов О.С., «Метиловык эфиры метилдезоксигексопиранозидов», Известия АН СССР, серия Химия. 1976, №11, стр. 2500-2505.

13. Герич А.П., Шмелев А.С., «Кинетика образования диметилового эфира на у-А12О3», «Метанол и его переработка», сборник трудов НИИТЭХИМ и ГосНИИ Метанолпроект, Москва, 1985, стр. 49 - 52.

Размещено на Allbest.ru

...

Подобные документы

  • Достижения Московских нефтехимических НИИ по внедрению диметилового эфира в качестве альтернативы дизельному топливу. Исследование каталитических систем на основе аморфного алюмофосфата с SiO2 в процессе дегидратации метанола до диметилового эфира.

    дипломная работа [3,6 M], добавлен 04.01.2009

  • Проведение конструктивного функционального анализа технологического процесса схемы переэтерификации диметилового эфира цианоэтилфосфоновой кислоты моноэтиленгликоль (мет) акрилатом. Морфологический анализ процесса и аппарата проведения переэтерификации.

    курсовая работа [340,1 K], добавлен 13.12.2010

  • Разработка альтернативных видов топлива и новых направлений в области переработки природного газа и других источников углерода. Технологии синтеза диметилового эфира из биомассы и синтез-газа. Особенности нетрадиционных процессов получения топлива.

    контрольная работа [227,2 K], добавлен 04.09.2010

  • Строение и схема получения малонового эфира. Синтез ацетоуксусного эфира из уксусной кислоты, его использование для образования различных кетонов. Таутомерные формы и производные барбитуровой кислоты. Восстановление a,b-Непредельных альдегидов и кетонов.

    лекция [270,8 K], добавлен 03.02.2009

  • Свойства диэтилового эфира малеиновой кислоты. Практическое применение диэтилмалеата - использование в качестве органического растворителя. Методика синтеза. Дикарбоновые кислоты. Реакция этерификации. Механизм этерификации. Метод "меченых атомов".

    курсовая работа [585,5 K], добавлен 17.01.2009

  • Класификация дикарбонильных соединений, физические свойства альдегидо- и кетокислот. Ацетоуксусная кислота, ее эфир, химические свойства. Получение опытным путем натриевого производного ацетоуксусного эфира, исследование ее взаимодействия с веществами.

    курсовая работа [71,7 K], добавлен 07.06.2011

  • Характеристика этапов и особенностей переведения установки метилтретбутилового эфира на выпуск этилтретбутилового эфира. Изучение условий синтеза этилтретбутилового эфира. Разработка технологической схемы производства ЭТБЭ. Нормы технологического режима.

    презентация [165,5 K], добавлен 01.12.2014

  • Рассмотрение методов проведения реакций ацилирования (замещение водорода спиртовой группы на остаток карбоновой кислоты). Определение схемы синтеза, физико-химических свойств метилового эфира монохлоруксусной кислоты и способов утилизации отходов.

    контрольная работа [182,3 K], добавлен 25.03.2010

  • Электронное строение и физико-химические свойства спиртов. Химические свойства спиртов. Область применения. Пространственное и электронное строение, длины связей и валентные углы. Взаимодействие спиртов с щелочными металлами. Дегидратация спиртов.

    курсовая работа [221,6 K], добавлен 02.11.2008

  • Физические свойства метил-трет-бутилового эфира (МТБЭ), способы его синтеза с использованием различных катализаторов. Сырье для промышленного производства МТБЭ, технологии его получения. Расчет теплового и материального балансов установки синтеза МТБЭ.

    курсовая работа [418,2 K], добавлен 07.01.2013

  • Синтез алкилроданидов. Синтез ароматических роданидов. Синтез роданоспиртов и роданоэфиров. Свойства тиоцианатов. Экспериментальная часть. Реагенты. Лабораторная посуда и оборудование. Методика синтеза. Органические тиоцианаты в народном хозяйстве.

    курсовая работа [96,3 K], добавлен 21.11.2008

  • Товарные и определяющие технологию свойства метанола, области применения в химической технологии. Сырьевые источники получения метанола. Перспективы использования различных видов сырья. Промышленный синтез метилового спирта и его основные стадии.

    контрольная работа [42,6 K], добавлен 10.09.2008

  • Физические и химические свойства спиртов, их взаимодействие с щелочными металлами. Замещение гидроксильной группы спирта галогеном, дегидратация, образование сложных эфиров. Производство этилового, метилового и других видов спиртов, области их применения.

    презентация [1,5 M], добавлен 07.04.2014

  • Формирование стабильных желтых корриноидов. Структура и основные электронные свойства гептаметилового эфира дициано- и аквацианокобириновой кислот и их стабильных желтых форм гептаметилового эфира. Особенности проведения спектрофотометрического анализа.

    реферат [2,5 M], добавлен 04.04.2015

  • Описание адамантана как насыщенного трициклического мостикового углеводорода, его номенклатура, строение молекулы, химические и физические свойства. Первый успешный синтез адамантана из эфира Меервейна. Реакции по узловым и мостиковым положениям.

    курсовая работа [862,2 K], добавлен 13.03.2011

  • Свойства изоамилацетата. Практическое применение в качестве растворителя в различных отраслях промышленности. Методика синтеза (уксусная кислота и уксуснокислый натрий). Реакция этерификации и гидролиз сложных эфиров. Механизм реакции этерификации.

    курсовая работа [634,2 K], добавлен 17.01.2009

  • Синтезирование полиметилакрилата из сложного эфира метакриловой кислоты. Основные свойства плексигласа, его преимущества перед обычным стеклом. Устойчивость оргстекла к действию разбавленных кислот и щелочей, воды, спиртов, жиров и минеральных масел.

    презентация [196,1 K], добавлен 01.12.2013

  • Понятия катализа, катализатора и каталитического процесса, их различные определения. Механизмы ускорения реакций катализаторами. Химический (небиологический) катализ. Синтез диэтилового эфира из спирта при участии серной кислоты. Теории катализа.

    реферат [314,9 K], добавлен 26.01.2009

  • Синтез метанола из оксида углерода и водорода. Технологические свойства метанола (метиловый спирт). Применение метанола и перспективы развития производства. Сырьевые источники получения метанола: очистка синтез-газа, синтез, ректификация метанола-сырца.

    контрольная работа [291,5 K], добавлен 30.03.2008

  • Механизм и субстраты реакции Даффа. Хроматографическое исследование синтезированных соединений. Получение метилфеофорбида (а), выделение метилового эфира 13(2)-гидроксифеофорбида (а) в ходе реакции Даффа. Анализ полученных результатов превращений.

    курсовая работа [362,4 K], добавлен 04.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.