Свойства кобальта

Использование оксидов кобальта для окрашивания стекол и эмалей в глубокий синий цвет. Физические и химические свойства кобальта. Электронная формула химического элемента. Окислы и гидроокиси двухвалентного кобальта. Применение кобальта в промышленности.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 14.05.2015
Размер файла 21,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

«МАТИ» - Российский государственный технологический

университет им. К.Э. Циалковского

Институт материаловедения и технологий материалов

Кафедра "технологии композиционных материалов, конструкций и микросистем"

Реферат

по химии

на тему: «Свойства кобальта»

Работу выполнила студентка группы 1МТМ-1ДБ-006

Хасанова Айгузель Нуритдиновна

Проверила

Соловьева Ирина Витальевна

Москва-2014

История открытия

С древности оксиды кобальта использовались для окрашивания стекол и эмалей в глубокий синий цвет. До 17 века секрет получения краски из руд держался в тайне. Эти руды в Саксонии называли «кобольд» (нем. Kobold -- домовой, злой гном, мешавший рудокопам добывать руду и выплавлять из нее металл). Честь открытия кобальта принадлежит шведскому химику Г. Брандту. В 1735 году он выделил из коварных «нечистых» руд новый серебристо-белый со слабым розоватым оттенком металл, который предложил называть «кобольдом». Позднее это название трансформировалось в «кобальт».

Нахождение в природе

В земной коре содержание кобальта равно 410-3% по массе. Кобальт входит в состав более 30 минералов. К ним относятся каролит CuCo2SO4, линнеит Co3S4, кобальтин CoAsS, сферокобальтит CoCO3, смальтит СоAs2 и другие. Как правило, кобальту в природе сопутствуют его соседи по 4-му периоду -- никель, железо, медь и марганец. В морской воде приблизительно (1-7)·10-10 % кобальта.

кобальт оксид химический электронный

Получение

Кобальт -- относительно редкий металл, и богатые им месторождения в настоящее время практически исчерпаны. Поэтому кобальтсодержащее сырье (часто это никелевые руды, содержащие кобальт как примесь) сначала обогащают, получают из него концентрат. Далее для извлечения кобальта концентрат или обрабатывают растворами серной кислоты или аммиака, или методами пирометаллургии перерабатывают в сульфидный или металлический сплав. Этот сплав затем выщелачивают серной кислотой.

Иногда для извлечения кобальта проводят сернокислотное «кучное» выщелачивание исходной руды (измельченную руду размещают в высоких кучах на специальных бетонных площадках и сверху поливают эти кучи выщелачивающим раствором).Для очистки кобальта от сопутствующих примесей все более широко применяют экстракцию. Наиболее сложная задача при очистке кобальта от примесей -- это отделение кобальта от наиболее близкого к нему по химическим свойствам никеля. Раствор, содержащий катионы двух этих металлов, часто обрабатывают сильными окислителями -- хлором или гипохлоритом натрия NaOCl; кобальт при этом переходит в осадок. Окончательную очистку (рафинирование) кобальта осуществляют электролизом его сульфатного водного раствора, в который обычно добавлена борная кислота Н3ВО3.

Физические и химические свойства

Кобальт -- твердый металл, существующий в двух модификациях. При температурах от комнатной до 427°C устойчива a-модификация (кристаллическая решетка гексагональная с параметрами а=0,2505 Нм и с=0,4089 Нм). Плотность 8,90 кг/дм3. При температурах от 427°C до температуры плавления (1494°C) устойчива b-модификация кобальта (решетка кубическая гранецентрированная). Температура кипения кобальта около 2960°C. Кобальт -- ферромагнетик, точка Кюри 1121°C. Стандартный электродный потенциал Со0/Со2+ -0,29 B.На воздухе компактный кобальт устойчив, при нагревании выше 300°C покрывается оксидной пленкой (высокодисперсный кобальт пирофорен). С парами воды, содержащимися в воздухе, водой, растворами щелочей и карбоновых кислот кобальт не взаимодействует. Концентрированная азотная кислота пассивирует поверхность кобальта, как пассивирует она и поверхность железа.

Известно несколько оксидов кобальта. Оксид кобальта(II) СоО обладает основными свойствами. Он существует в двух полиморфных модификациях: a-форма (кубическая решетка), устойчивая при температурах от комнатной до 985°C, и существующая при высоких температурах b-форма (также кубическая решетка). СоО можно получить или нагреванием в инертной атмосфере гидроксоркарбоната кобальта Со(ОН)2СоСО3, или осторожным восстановлением Со3О4.Если нитрат кобальта Со(NO3)2, его гидроксид Со(ОН)2 или гидроксокарбонат прокалить на воздухе при температуре около 700°C, то образуется оксид кобальта Со3О4 (CoO·Co2O3). Этот оксид по химическому поведению похож на Fe3О4. Оба эти оксида сравнительно легко восстанавливаются водородом до свободных металлов:Со3О4 + 4H2 = 3Со + 4H2O.При прокаливании Со(NO3)2, Со(ОН)2 и т. д. при 300°C возникает еще один оксид кобальта -- Со2О3.При приливании раствора щелочи к раствору соли кобальта(II) выпадает осадок Со(ОН)2, который легко окисляется. Так, при нагревании на воздухе при температуре немногим выше 100°C Со(ОН)2 превращается в СоООН.Если на водные растворы солей двухвалентного кобальта действовать щелочью в присутствии сильных окислителей, то образуется Со(ОН)3.При нагревании кобальт реагирует со фтором с образованием трифторида СоF3. Если на СоО или СоCO3 действовать газообразным HF, то образуется еще один фторид кобальта СоF2. При нагревании кобальт взаимодействует с хлором и бромом с образованием, соответственно, дихлорида СоСl2 и дибромида СоBr2. За счет реакции металлического кобальта с газообразным НI при температурах 400-500°C можно получить дииодид кобальта СоI2.Сплавлением порошков кобальта и серы можно приготовить серебристо-серый сульфид кобальта СоS ( b-модификация). Если же через раствор соли кобальта(II) пропускать ток сероводорода H2S, то выпадает черный осадок сульфида кобальта СоS (a-модификация):

CoSO4 + H2S = CoS + H2SO4

Известны растворимые в воде соли кобальта -- сульфат СоSO4, хлорид СоСl2, нитрат Со(NO3)2 и другие. Интересно, что разбавленные водные растворы этих солей имеют бледно-розовую окраску. Если же перечисленные соли (в виде соответствующих кристаллогидратов) растворить в спирте или ацетоне, то возникают темно-синие растворы. При добавлении воды к этим растворам их окраска мгновенно переходит в бледно-розовую.К нерастворимым соединениям кобальта относятся фосфат Со3(PO4)2, силикат Со2SiO4 и многие другие.Для кобальта, как и для никеля, характерно образование комплексных соединений. Так, в качестве лигандов при образовании комплексов с кобальтом часто выступают молекулы аммиака NH3. При действии аммиака на растворы солей кобальта(II) возникают амминные комплексы кобальта красного или розового цвета, содержащие катионы состава

[Co(NH3)6n(H2O)n]2+

Эти комплексы довольно неустойчивы и легко разлагаются даже водой.

При взаимодействии смеси водорода и СО с гидроксокарбонатом кобальта при повышенном давлении, а также взаимодействием под давлением СО и порошка металлического кобальта получают биядерный октакарбонил дикобальта состава Со2(СО)8. При его осторожном нагревании образуется карбонил Со4(СО)12. Карбонил Со2(СО)8 используют для получения высокодисперсного кобальта, применяемого для нанесения кобальтовых покрытий на различные материалы.

Электронная конфигурация кобальта с атомным номером 27 1s22s22p63s23p63d74s2.

Электронная формула химического элемента

Кобальт Co- [Ar] 4s 2 3d 7 Co-1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^7

КОмБАЛЬТ Со, химический элемент с атомным номером 27

В периодической системе элементов Д. И. Менделеева кобальт входит в группу VIII В

Конфигурация двух внешних электронных слоев атома кобальта 3s^2 p^6 d^7 4s^2.

Стоит в 4 периоде атомный вес 58,9332

Химический элемент кобальт относится к d элементам.

Подгруппа кобальта Со, НЬ, 1г( 5 НЬ з ). Теоретическая максимальная валентность 9 (по числу и 5-электронов). Максимальная наблюдаемая положительная валентность 4 (Со и НЬ) и 6 (1г).

Кобальт образует соединения по большей части в степени окисления +2 (вторая валентность), а реже образует соединения в степени окисления +3 (третья валентность), ну и крайне редко образует соединения в степенях окисления +5, +4, и +1 (соответственно, пятая, четвертая и первая валентности).

1 2 3 4 5 6 7

n 3 3 3 3 3 3 3

l 2 2 2 2 2 2 2

m -2 -2 -1 -1 0 1 2

s +1/2 -1/2 +1/2 -1/2 +1/2 +1/2 +1/2

d-электроны атома кобальта: 3d7

m= -2; -1; 0; 1; 2

Для кобальта и его аналогов в степени окисления О известны карбонилы. Простейший карбонил кобальта Cо2(CО)3 -- двухъядерное соединение: В ней атомы Со образуют по шесть s-связей. Четыре связи обязаны донорно-акцепторному взаимодействию электронных пар четырех молекул СО и свободных орбиталей Со. Пятая связь образуется при участии одной d-электронной пары атома Со и свободной p-орбитали молекулы СО. Связь Со--Со образуется за счет непарных электронов двух атомов кобальта. Стабилизация молекулы достигается за счет p-связей, на образование которых используются 3de6-электроны атома кобальта:

Известны окислы и гидроокиси двух-, трех- и четырехвалентного кобальта.

Окислы и гидроокиси двухвалентного кобальта. Закись кобальта СоО образуется при окислении металлического кобальта парами воды при температуре красного каления, а также при нагревании карбонатов, сульфатов.характеристика кобальтаСо2+ +Н2О t красного каления Со + Н2

Закись кобальта имеет серо-зеленый цвет с различными оттенками в зависимости от способа получения.

Закись кобальта легко растворяется в соляной, серной, азотной и других сильных кислотах, труднее - в уксусной, фтористоводородной кислотах с образованием соответствующих солей двухвалентного кобальта розового цвета

СоО + 2НСl Х CoCl2 + H2O

Гидроокись двухвалентного кобальта образуется при добавлении едкого натра или гидроокиси аммония к растворам солей двухвалентного кобальта

2NaOH + CoS Х Co(OH)2 + Na2S

При обычной температуре, особенно без доступа воздуха, и при осаждении небольшим избытком раствора гидроокиси натрия сначала образуется синий осадок. Синий осадок постепенно становится фиолетовым и, наконец, розовым.

Гидроокись кобальта окисляется кислородом воздуха, превращаясь в Со(ОН)3 с изменением цвета из розового в бурый. Окисление ускоряется добавлением хлора, брома или перекиси водорода.

При незначительном нагревании происходит превращение Co(OH)2 в НСоО2, а затем в Со3О4; при более высокой температуре Со3О4 превращается в СоО.

Закись-окись кобальта Со3О4 образуется при нагревании закиси кобальта СоО (400-900°С) и при сгорании пирофорного кобальта на воздухе. Она получается также при нагревании гидроокиси кобальтахарактеристика кобальтахарактеристика кобальтаСо(ОН)3 120-190°С НСоО2 240-300°С Со3О4характеристика кобальтаСо3О4 770-920°С 3СоО + Ѕ О2

Закись-окись Со3О4 медленно растворяется в кислотах с образованием солей двухвалентного кобальта и выделением свободного кислорода. Растворение в соляной кислоте сопровождается выделением хлора

Окись Со2О3 и гидроокись трехвалентного кобальта Со(ОН)3.

Характеристика кобальта

Со2О3 +H2S CoS + O2 + H2O

Простые ионы трехвалентного кобальта в водных растворах неустойчивы, они легко восстанавливаются до ионов двухвалентного кобальта.

Окись четырехвалентного кобальта СоО2.

Этот окисел частично образуется при получении Со2О3. Он неустойчив, легко разлагается с выделением кислорода.

Оксид кобальта ( II, III) СозО4 получается в виде черного порошка прокаливанием нитрата кобальта в пределах температур от 300 до 700 С.

Оксид кобальта Со2О3 получают кипячением гидр-оксида кобальта ( II) с окислителями, например с хлорной водой, с последующей дегидратацией осадка при 250 С. Однако продукт может содержать примесь низших оксидов. Этот оксид кобальта черного цвета, на воздухе устойчив.

Оксид кобальта (, III), осажденный на носителе. Применяют реагент хч или чда, осажденный на носителе ( корунд, полисорб и др.) или распределенный встряхиванием на кварцевом волокне.

Оксид кобальта Со3О4 имеет структуру нормальной шпинели с а 0 809 нм. В технологии ферритов на этот факт необходимо обращать внимание, так как СоО применяют в качестве добавок во многие ферриты.

Оксид кобальта ( II) СоО, Нитрат кобальта нагревают в фарфоровой чашке ( тяга. Вначале соль плавится ( растворяется в кристаллизационной воде), затем при повышении температуры переходит в твердую массу - смесь оксидов. Ее растирают в порошок и прокаливают в течение 2 - 3 ч в тигле при температуре не ниже 930 - 950 С. При более сильном нагревании реакция разложения ускоряется. Полученный продукт следует охлаждать по возможности быстро, чтобы предотвратить присоединение кислорода. Верхний слой оксидов отбрасывают. [

Оксиды кобальта с примесями, полученные в результате обработки руд, содержащих серебро.

Оксид кобальта ( II) СоО представляет собою серо-зеленый порошок. Родий и иридий аналогичных соединений не образуют. Подобные же соединения родия Rh2O3 - оксид родия ( III) и иридия 1г2О3 - оксид иридия ( III) являются порошками серо-черного и черного цвета. Для кобальта также известен черный смешанный оксид Со3О4 - соединение, изоморфное с магнетитом.

Оксид кобальта ( III) Со2О3 обычно получают осторожным нагреванием нитрата трехвалентного кобальта до 300 С.

Оксид кобальта СоО ( коричнево-зеленый) получается термическим разложением нитрата или карбоната, а также окислением металла кислородом при высокой температуре.

Оксид кобальта ( И, III) Со3О4 - серые или черные кристаллы с кубич решеткой типа шпинели ( а 0 8086 ими 2 8, пространств, группа РсКт); плотн 6 073 г / см3, С; 122 8 ДжДмоль-К); ДЯ.

Оксиды кобальта в воде нерастворимы.

Оксид кобальта ( III) Со2О3 существует в виде моногидрата коричневого или черного цвета, образуясь при воздействии на оксид - кобальта ( II) сильных окислителей. Оксид кобальта ( III) растворим в соляной кислоте с образованием соли в степени окисления 2 и выделением хлора.

Гидроксид кобальта (II) существует в двух аллотропных модификациях: синей (?-форма) и розовой (?-форма).

Гидроксиды практически не растворимы в воде, проявляют в основном основные свойства. Реагируют с кислотами, например:

Co(OH)2 + 2HCl = CoCl2 + 2H2O.

Гидроксид кобальта растворяется в концентрированных растворах щелочей с образованием гексагидроксокобальтата (II) натрия, что свидетельствует о проявлении слабовыраженных кислотных свойств:

Co(OH)2 + 4NaOH = Na4[Co(OH)6].

Аналогично гидроксиду железа (II), гидроксид кобальта (II) медленно окисляется кислородом воздуха:

4Сo(OH)2 + O2 + 2H2O = 4Co(OH)3.

Кобальт (II) образует соли практически со всеми анионами. Обычно соли кристаллизуются в виде розовых или красных кристаллогидратов:

Co(NO3)2*6H2O, CoSO4*7H2O, CoCl2*6H2O и др.

Растворы солей имеют ярко-розовую окраску, характерную для аквакомплексов кобальта (II).

Сульфид кобальта СоS - черного цвета, выделяется пропусканием сероводорода в нейтральные воды раствора солей кобальта, содержащие ацетат натрия или добавлением раствора сульфида аммония и слабощелочным водным раствором солей кобальта.

Образования, которые можно получить при действии сульфида аммония (или сероводорода) на водные растворы солей кобальта, при прямом соединении элементов при высоких температурах можно также получить сульфид кобальта Со5S4 и др. в природе встречается минерал линнеит Со3S4, который можно получить искусственно.

Сульфат кобальта СоSO4 и СоSO4 • 7 H2O. Безводный сульфат кобальта используется как весовая форма при определении кобальта.

Тиосульфат кобальта СоS2О3 мало диссоциирует.

Применение кобальта

В чистом виде кобальт не применяют, но он является важнейшим компонентом сплавов и специальных сталей. Это прежде всего магнитотвердые (магнитожесткие ) материалы - соединения редкоземельных элементов (главным образом самария и эрбия) с кобальтом. Магнитотвердые материалы обладают очень важным свойством: они способны намагничиваются до насыщения и перемагничиваются в сравнительно сильных магнитных полях напряженностью в тысячи и десятки тысяч А/м, и характеризуются высокими значениями коэрцитивной силы, остаточной магнитной индукции, магнитной энергии на участке размагничивания («спинка» петли гистерезиса), в связи с чем широко применяются для изготовления специальных постоянных магнитов, обладающих сильным магнитным полем. Также кобальт входит в состав жаропрочных, сверхтвердых коррозионностойких сплавов. Стали для изготовления режущих инструментов часто содержат кобальт. В ряде случаев этот металл используют в качестве гальванических покрытий, поскольку они являются более устойчивыми к воздействию слабых кислот, чем хромовые или никелевые. По этой же причине тонким слоем кобальта иногда покрывают столовые ножи для защиты от воздействия агрессивных сред. Хлорид кобальта придает стекломассе синюю окраску, поэтому он применяется для производства синего и голубого декоративного стекла. При облучении нейтронами в атомном реакторе кобальт переходит в радиоактивный изотоп 60Со . Это радиоактивное вещество обладает очень интенсивным гамма - излучением; период его полураспада 5,2 года. Радиоактивный кобальт применяется как источник гамма - лучей при лечении рака и в исследовательских работах.

В химической промышленности металл, его соли и соединения применяются главным образом в качестве катализаторов различных химических процессов. Со2 (СО)8 - карбонил кобальта применяют для получения чистых металлов, нанесения металлических покрытий, в качестве антидетонаторных добавок. Соли кобальта добавляют в краски и лаки для ускорения процесса их высыхания (т.н. сиккативы ).

Говоря о техническом применении кобальта, следует заметить, что он имеет также и значительное биологическое значение в природе. Кобальт относится к числу биологически активных элементов и всегда содержится в организме животных и в растениях. С недостаточным содержанием его в почвах связано недостаточное содержание кобальта в растениях, что способствует развитию малокровия у животных (таежно-лесная нечерноземная зона). Входя в состав водорастворимого витамина В12 (цианкобаламин), кобальт весьма активно влияет на поступление азотистых веществ, увеличение содержания хлорофилла и аскорбиновой кислоты. Этот витамин влияет на углеводный и жировой обмен; участвует в кроветворении. Кобальт является компонентом ряда ферментов, которые активизируют биосинтез метионина, нуклеиновых кислот и повышают содержание белкового азота . В микродозах кобальт является необходимым элементом для нормальной жизнедеятельности многих растений и животных. Вместе с тем повышенные концентрации соединений кобальта являются токсичными. В настоящее время остро стоит проблема загрязнения окружающей среды солями тяжелых металлов. Более всего пострадали водные экосистемы. В природные воды соединения кобальта попадают в результате процессов выщелачивания их из медноколчедановых и других руд, из почв при разложении организмов и растений, а также со сточными водами металлургических, металлообрабатывающих и химических заводов.

Некоторые количества кобальта поступают из почв в результате разложения растительных и животных организмов. Соединения кобальта в природных водах находятся в растворенном и взвешенном состоянии, количественное соотношение между которыми определяется химическим составом воды, температурой и значениями рН.

Растворенные формы представлены в основном комплексными соединениями, в т.ч. с органическими веществами природных вод. Соединения двухвалентного кобальта наиболее характерны для поверхностных вод. В присутствии окислителей возможно существование в заметных концентрациях трехвалентного кобальта. Предельно допустимая концентрация солей металла составляет порядка 0,05 - 0,1 мг/дм. куб.

Чистой считается вода, в которой содержание металла не превышает тысячных долей миллиграмма на кубический дециметр.

Литература

1. Свойства элементов в двух книгах. Под общей редакцией М.Е. Дрица. книга 2. Москва изд. Дом «Руда и металлы» 2003г.

2. Химия с сельскохозяйственным анализом. Издание 2, переработанное и дополненное. И.К.Цитович Москва «Колос» 1974г.

3. Аналитическая химия кобальта. И.В.Пятницкий Изд. «Наука» Москва 1965г.

4. «Большая энциклопедия Кирилла и Мефодия 2001»

Размещено на Allbest.ur

...

Подобные документы

  • Характеристика кобальта по положению в периодической системе. Электронная формула. Нахождение кобальта в природе. Получение кобальта. Химические свойства кобальта, соединений кобальта. Биологическая роль кобальта для сельского хозяйства.

    реферат [12,7 K], добавлен 08.04.2005

  • Общая характеристика кобальта как химического элемента. Определение и исследование физических и химических свойств кобальта. Изучение комплексных соединений кобальта и оценка их практического применения. Проведение химического синтеза соли кобальта.

    контрольная работа [544,0 K], добавлен 13.06.2012

  • Магнитные наночастицы металлов. Физико-химические свойства мицелярных растворов. Кондуктометрическое исследование, синтез наночастиц кобальта в прямых мицеллах. Получение пленки Ленгмюра-Блоджетт, растровая электронная и атомно-силовая микроскопия.

    дипломная работа [4,6 M], добавлен 21.09.2012

  • Общая сравнительная характеристика металлов. Кобальт и никель: получение, химические свойства. Сравнение оксидов и гидроксидов кобальта и никеля, хлориды, сульфид. Нахождение количества вещества сульфата кобальта, массы раствора по уравнению реакции.

    курсовая работа [27,3 K], добавлен 14.11.2011

  • Переходные металлы - элементы побочных подгрупп периодической системы химических элементов. Элементы VIIB и VIIIB группы: химические и физические свойства. Соединения марганца. Применение перманганата калия. Соединения кобальта и никеля и их свойства.

    презентация [73,6 K], добавлен 02.05.2013

  • Исследование влияния параметров метода химического осаждения на структуру, толщину, морфологию поверхности и эксплуатационные характеристики тонких пленок кобальта из металлоорганического соединения с заданными магнитными и электрическими свойствами.

    дипломная работа [5,8 M], добавлен 09.07.2014

  • Рассмотрение способов получения пурпуреосоли. Характеристика соединений гексаминового (шесть нейтральный молекул аммиака на один атом металла), ацидопентаминового, диацидотетраминового типов. Изучение механизмов замещения реакции комплексов кобальта.

    курсовая работа [3,1 M], добавлен 26.04.2010

  • Определение концентрации кобальта в растворе, температуры раствора и плотности токов. Приготовление электролита, проведение электролиза в ячейках, с использованием нерастворимых анодов (свинец) и медных катодов. Математическое планирование эксперимента.

    научная работа [490,2 K], добавлен 29.03.2015

  • Физико-химическая характеристика кобальта. Комплексные соединения цинка. Изучение сорбционного концентрирования Co в присутствии цинка из хлоридных растворов в наряде ионитов. Технический результат, который достигнут при осуществлении изобретения.

    реферат [34,9 K], добавлен 14.10.2014

  • Салициловая кислота и её производные. Биологическое действие салицилатов. Эффекты салицилатов кобальта и цинка на нервную систему, роль кальция в ее функционировании. Нервная система улиток рода Helix, подготовка моллюска к эксперименту и его результаты.

    курсовая работа [1,3 M], добавлен 21.04.2012

  • Условия и способы перевода ценных компонентов из катализаторов на основе оксида алюминия в раствор. Процессы сорбции и десорбции молибдена и кобальта. Технологическая схема извлечения элементов из катализатора, основанная на выщелачивании серной кислотой.

    дипломная работа [698,8 K], добавлен 09.01.2014

  • Общая характеристика, краткие сведения об истории открытия элементов и их распространённости в природе. Физико-химические свойства железа, кобальта и никеля. Свойства соединений железа в степенях окисления. Цис-, транс-изомерия соединений платины.

    реферат [36,7 K], добавлен 21.09.2019

  • История и становление химии витамина В12. Строение кобаламинов, их биологические функции и химические модификации. Реакции, с участием центрального атома кобальта. Модификации фрагмента рибозы в молекуле кобаламина. Очистка производных кобаламинов.

    реферат [981,5 K], добавлен 29.10.2016

  • Качественная реакция на отделение кобальта. Определение нормальности раствора; концентрации и количество вещества, выделяемого на электроде. Условия съемки полярограмм в вольтамперометрии. Сущность атомно-эмисссионного оптического спектрального анализа.

    контрольная работа [596,7 K], добавлен 04.02.2011

  • Молибден, кобальт и никель: свойства, области применения. Регенерация катализаторов, утилизация после использования. Способы выделения ценных компонентов из растворов. Выщелачивание молибдена и кобальта. Десорбция молибдена раствором гидроксида натрия.

    дипломная работа [653,7 K], добавлен 27.11.2013

  • Синтез малеимидов циклизацией малеамовых кислот и других линейных производных малеиновой кислоты. Применение металлсодержащих полимеров. Определение констант устойчивости и термодинамических параметров образования соединений меди, кобальта, никеля, хрома.

    диссертация [2,3 M], добавлен 15.10.2011

  • Свойства молибдена и его соединений. История открытия элемента. Электронная структура атома, его расположение в периодической системе химических элементов Д.И. Менделеева. Химические и физические свойства молибдена, его оксидов и гидроксидов.

    курсовая работа [2,3 M], добавлен 24.06.2008

  • Характеристика тест-методов химического анализа и приемы их оценки. Погрешность тест-определений, нижняя граница диапазона определяемых содержаний и область ненадежной реакции. Результаты стандартизации раствора кобальта и оценка предела обнаружения.

    курсовая работа [100,1 K], добавлен 16.10.2011

  • Характеристика, классификация и химические основы тест-систем. Средства и приёмы анализа различных объектов окружающей среды с использованием тест-систем. Определение ионов кобальта колориметрическим методом из растворов, концентрации ионов меди.

    дипломная работа [304,6 K], добавлен 30.05.2007

  • История открытия элемента и его нахождение в природе. Способы получения металлов из руд, содержащих их окислы. Восстановление двуокиси титана углем, водородом, кремнием, натрием и магнием. Физические и химические свойства. Применение титана в технике.

    реферат [69,5 K], добавлен 24.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.