Анализ понятия адсорбции
Характеристика фундаментального уравнения Гиббса. Особенность определения Гиббсовской адсорбции. Сущность поверхностно-активных и поверхностно-инактивных веществ. Главный анализ адсорбционных равновесий. Установление удельной поверхности адсорбента.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 18.05.2015 |
Размер файла | 55,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Украины
Одесская национальная академия пищевых технологий
Кафедра автоматизации производственных процессов
Реферат
«Адсорбция»
Выполнила:
ст. гр. ПВ-30; ф-та ТВКПиТ
Манова Юлия
Преподаватель:
Береговая О.М.
Одесса - 2015
План
1. Понятие адсорбции
2. Фундаментальное уравнение Гиббса. Определение Гиббсовской адсорбции
3. Поверхностная активность. Поверхностно-активные и поверхностно-инактивные вещества
4. Адсорбционные равновесия
1. Понятие адсорбции
Адсорбция - процесс самопроизвольного перераспределения компонентов системы между поверхностным слоем и объемом фазы.
Адсорбция может наблюдаться в многокомпонентных системах и при перераспределении в поверхностный слой уходит тот компонент, который сильнее понижает поверхностное натяжение. В однокомпонентной системе при формировании поверхностного слоя происходит изменение его структуры - уплотнение, которое называется автоадсорбцией.
В общем случае адсорбция может происходить не только благодаря стремлению поверхностной энергии к уменьшению, но и за счет химической реакции компонентов с поверхностью вещества. В этом случае поверхностная энергия может даже увеличиваться на фоне снижения энергии всей системы.
Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а вещество, которое перераспределяется - адсорбатом.
Обратный процесс перехода вещества с поверхности в объем фазы - десорбция.
В зависимости от агрегатного состояния фаз различают адсорбцию газа на твердых адсорбентах, твердое тело - жидкость, жидкость - жидкость, жидкость - газ. Для количественного описания адсорбции применяют две величины: первая измеряется числом молей или граммами, приходящимися на единицу поверхности или массы адсорбента:
А = m1/m2 - абсолютная адсорбция, А = ni/S.
Величина, определяемая избытком вещества в поверхностном слое, также отнесенным к единице площади поверхности или массы адсорбента, называется Гиббсовской или относительной адсорбцией (Г).
Размещено на http://www.allbest.ru/
Рис. 1. Серия изотерм, полученных при различных температурах
Адсорбция зависит от концентрации компонентов и температуры.
А = f(c,T)- жидкость;
А = f(P,T)- газ
Различают следующие виды зависимостей:
2. Фундаментальное уравнение Гиббса. Определение Гиббсовской адсорбции
Считаем Vповерхности раздела = 0.
dU = TdS + dS +
Проинтегрировав, получим:
U = TS + S +
Полный дифференциал от этого уравнения:
dU = TdS + SdT + dS + + Sd + .
Подставляя значение dU из (6) в (7) и сократив одинаковые члены правой и левой части, получим:
SdT + Sd + = 0.
Предположим, что
T = const:
Разделив правую и левую часть на поверхность S, получим фундаментальное адсорбционное уравнение Гиббса:
;
;
.
Определение зависимости поверхностного натяжения от адсорбции одного компонента, при постоянстве химических потенциалов других компонентов.
.
Известно, что , , (где , - равновесный и стандартный химический потенциал компонента i; ln ai- логарифм активности i -го компонента). Тогда уравнение Гиббса будет выглядеть так
Активность связана с концентрацией: с = ?а. Предположим, что ? = 1 (при с 0). Тогда
- для жидкости и газа
Размещено на http://www.allbest.ru/
Рис.2. Схема графического расчета изотермы адсорбции
Обычно уравнение Гиббса применяют для растворов. Растворителем может быть не только индивидуальное вещество, но и смесь. В разбавленных растворах гиббсовская адсорбция очень мала, а его химический потенциал меняется очень мало с изменением концентрации растворенного вещества, т.е. d?= 0. Поэтому для разбавленного раствора фундаментальное уравнение Гиббса выглядит так:
Из этих уравнений следует, что зная зависимость = f(С) (где С - концентрация растворенного вещества), можно рассчитать изотерму адсорбции, пользуясь адсорбционным уравнением Гиббса.
Схема графического расчета показана на рис. 2:Тангенс угла наклона соответствует значениям производных в этих точках.
Зная эти производные уравнения Гиббса, можно рассчитать значение Г, что позволяет построить зависимость Г = f(С). Уравнение Гиббса показывает, что единица измерения гиббсовской адсорбции не зависит от единицы измерений концентрации, а зависит от размерности величины R. Так как величина R отнесена к молю вещества, а - к единице площади, то Г = [моль/ единица площади]. Если выразить в [Дж/м2], то R нужно подставлять: R = 8,314 Дж/мольК.
3. Поверхностная активность. Поверхностно-активные и поверхностно-инактивные вещества
В уравнении Гиббса влияние природы вещества на адсорбцию отражается производной. Эта производная определяет и знак гиббсовской адсорбции, и может служить характеристикой вещества при адсорбции. Чтобы исключить влияние концентрации на производную берут ее предельные значения, т.е. при стремлении концентрации к нулю. Эту величину Ребиндер назвал поверхностной активностью.
;
g = [Джм/моль] = [Нм2/моль]; [эрг см/моль] = [Гиббс].
Уравнение показывает, что чем сильнее снижается = f(c) с увеличением концентрации, тем больше поверхностная активность этого вещества. Физический смысл поверхностной активности состоит в том, что она представляет силу, удерживающую вещество на поверхности и отнесенную к единице гиббсовской адсорбции.
Поверхностную активность можно представить как отрицательный тангенс угла наклона к касательной, проведенной к кривой Г = f(C) в точке пересечения с осью ординат. Поверхностная активность может быть положительной и отрицательной. Значение и знак ее зависят от природы растворенного вещества и растворителя.
1. 2<1, тогда <0 и Г>0: g>0 с увеличением концентрации поверхностное натяжение на границе раздела фаз убывает и вещество поверхностно-активно.
2<1, то g<0: Г <0 вещество поверхностно-инактивно.
g = 0, Г = 0 - адсорбции нет, т.е. вещество индифферентно.
Поверхностно-активными веществами являются органические вещества, состоящие из углеводородного радикала и функциональной группы. Неорганические соли являются поверхностно-инактивными веществами. Ребиндер и Щукин в своих работах показали, что развитие микротрещин в твердых телах при деформации может происходить гораздо легче при адсорбции веществ из среды, в которой ведется деформирование: адсорбироваться могут как ионы электролитов, так и молекулы поверхностно-активного вещества (ПАВ), образуя на адсорбирующей поверхности их двумерный газ в результате нелокализованной адсорбции. Молекулы под давлением этого газа проникают в устье трещин и стремятся раздвинуть их, таким образом содействуя внешним силам, т.е. наблюдается адсорбционное понижение твердости твердого тела, что получило название эффекта Ребиндера. Поверхностная активность в гомологическом ряду поверхностно-активных веществ (ПАВ) повышается в среднем в 3,2 раза на каждую группу СН2 (в водных растворах)- правило Дюкло - Траубе.
4. Адсорбционные равновесия
Предположим, что имеются компоненты-неэлектролиты. Будем считать, что адсорбат образует на поверхности адсорбента мономолекулярный слой. Мономолекулярная адсорбция с точки зрения термодинамики процесса выражается химическим потенциалом в адсорбционном слое и объемной фазе:
;
;
,
где - химический потенциал вещества в адсорбционном слое;
- химический потенциал вещества в объемной фазе.
При равновесии потенциалы равны: .
Преобразуем:
;
- адсорбция; аi = c.
,
,
где D - коэффициент распределения.
Выражение
- константа Генри. Она не зависит от концентрации, определяется при постоянной температуре, A/a=Kг,
А=аКг - закон Генри, т.е. при разбавлении системы коэффициент распределения стремится к постоянному значению, равному константе Генри. Если концентрация в сорбционном слое стремится к нулю, то а с; а = ?с; ? 1. Поэтому на практике закон Генри используют в следующем виде: а=Кгсi. Если одна из фаз - газ, то имеем следующий вид: a = КгРi,
Эти уравнения представляют собой уравнения изотермы адсорбции при малых концентрациях. В соответствии с этими уравнениями можно по другому сформулировать закон Генри: величина адсорбции при малых давлениях газа (малых концентрациях вещества в растворе) прямо пропорциональна давлению (концентрации).
Эти зависимости показаны на рисунке 2. При адсорбции на твердых телах область действия закона мала из-за неоднородности поверхности, но даже на однородной поверхности при увеличении концентрации обнаруживается отклонение от закона. При малых концентрациях распределенного вещества отклонения обусловлены в основном соотношением между взаимодействием молекул друг с другом и с поверхностью адсорбента. гиббс адсорбция инактивный вещество
Кг = Кг/RT.
Размещено на http://www.allbest.ru/
Рис. 3. Изотерма адсорбции Генри (отрицательные и положительные отклонения от закона Генри)
Если когезионные взаимодействия адсорбата больше, то отклонение от закона отрицательно, и коэффициент распределения увеличивается (кривая 1 на рис. 3). Если сильнее взаимодействие «адсорбат - адсорбент», то отклонение положительно и D уменьшается (кривая 2 на рис. 3). При дальнейшем увеличении концентрации происходит уменьшение свободной поверхности, снижается реакционная способность и кривые загибаются к оси абсцисс. Константу Генри получают экстраполяцией коэффициента распределения на нулевую концентрацию. В соответствии с правилом фаз Гиббса в гетерогенных системах равновесные параметры зависят от дисперсности или удельной поверхности. Для адсорбционных систем эта зависимость выражается в уменьшенных концентрациях вещества в объемной фазе с увеличением удельной поверхности адсорбента. Если в такой системе содержание распределяемого вещества постоянно, то
АmSуд + сV = const,
где m - масса адсорбента;
Sуд- удельная поверхность адсорбента;
V - объем фазы, из которой извлекается вещество;
const - постоянное количество вещества в системе.
,
или : разделим второй член на с;
D - коэффициент распределения;
;
Из соотношения следует, что с увеличением удельной поверхности при постоянной концентрации адсорбата концентрация уменьшается и тем сильнее, чем больше константа Генри и меньше объем фазы.
Теория Ленгмюра позволяет учесть наиболее сильные отклонения от закона Генри, что связано с ограничением адсорбционного объема или поверхности адсорбента. Ограниченность этого параметра приводит к адсорбционному насыщению поверхности адсорбента по мере увеличения концентрации распределяемого вещества. Это положение уточняется следующими утверждениями.
Адсорбция локализована на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбента - образуется мономолекулярный слой.
Адсорбционные центры энергетически эквивалентны - поверхность адсорбента эквипотенциальна.
Адсорбированные молекулы не взаимодействуют друг с другом.
Ленгмюр предположил, что при адсорбции происходит квазихимическая реакция между распределяемым компонентом и адсорбционными центрами поверхности:
,
где А - адсорбционые центры поверхности;
В - распределенное вещество;
АВ - образующийся комплекс на поверхности.
Константа равновесия процесса:
,
где сав = А - величина адсорбции;
са = А0 = А - А,
где А - емкость адсорбционного монослоя или число адсорбционных центров, приходящихся на единицу поверхности или единицу массы адсорбента; А0 - число оставшихся свободных адсорбционных центров, приходящихся на единицу площади или единицу массы адсорбента; св - концентрация распределенного вещества.
Подставляя величину концентрации в уравнение константы, получим выражения
, св = с,
А = АКс - АКс,
- для жидкостей;
- для газов.
Эти выражения - уравнения изотермы адсорбции Ленгмюра. К и Кр в уравнении характеризуют энергию взаимодействия адсорбента с адсорбатом. Адсорбционное уравнение часто представляют относительно степени заполнения поверхности, т.е. как отношение А/А:
,
.
Экспериментальные результаты по определению изотермы адсорбции обычно обрабатывают с помощью уравнения, записанного в линейной форме;
,
т.е. уравнение типа
y = b + ax.
Такая линейная зависимость позволяет графически определить А и К. Зная А, можно определить удельную поверхность адсорбента (поверхность единицы массы адсорбента):
,
где А - предельная адсорбция, выражаемая числом молей адсорбата на единицу массы адсорбента;
NA - число Авогадро;
0 - площадь, занимаемая одной молекулой адсорбата.
1. Если с 0, тогда уравнение примет вид:
А=АКс;
;
А = Кгс, =Кс,
т.е. при с 0 уравнение Ленгмюра переходит в уравнение Генри.
2. Если с, тогда А = А , А/А = 1. Это случай предельной адсорбции.
3. Пусть адсорбция идет из смеси компонентов, в этом случае уравнение Ленгмюра записывается следующим образом:
.
Все рассмотренные выше уравнения справедливы для мономолекулярной адсорбции на адсорбенте с энергетически эквивалентными адсорбционными центрами. Однако реальные поверхности этим свойством не обладают. Приближенной к реальности является возможность распределения адсорбционных центров по энергии. Приняв линейное распределение, Темкин использовал формулу уравнения Ленгмюра и получил уравнение для средних степеней заполнения адсорбента.
,
где б - константа, характеризующая линейное распределение;
К0 - константа уравнения Ленгмюра, отвечающая максимальной теплоте адсорбции.
Из уравнения следует, что увеличение парциального давления (из-за увеличения концентрации) одного компонента подавляет адсорбцию другого и тем сильнее, чем больше его адсорбционная константа равновесия. Уравнение часто называют логарифмической изотермой адсорбции. Если принять экспоненциальное распределение центров по поверхности, то в области средних заполнений получается ранее найденное эмпирическим путем уравнение Фрейндлиха:
.
Прологарифмировав, получим
,
где K, n - постоянные.
Использование уравнения Фрейндлиха в логарифмической форме позволяет определить константу уравнения.
Уравнение Ленгмюра можно использовать только при адсорбции в мономолекулярном слое. Это условие выполняется при хемосорбции, физической адсорбции газов при меньшем давлении и температуре выше критической. Однако в большинстве случаев мономолекулярный адсорбционный слой не компенсирует полностью избыточную поверхностную энергию и поэтому остается возможность влияния поверхностных сил на второй и т.д. адсорбционные слои. Это реализуется в том случае, когда газы и пары адсорбируются при температуре ниже критической, т.е. образуются полимолекулярные слои на поверхности адсорбента, что можно представить как вынужденную конденсацию.
В результате этих представлений была выведена следующая формула:
- уравнение полимолекулярной адсорбции БЭТ,
где ;
KL = aж/ап - константа конденсации пара;
аж - активность вещества в жидкости;
ап - активность вещества в состоянии насыщенного пара;
ап = Рs.
Физический смысл С: характеризует разность энергии Гиббса в процессах чистой адсорбции и конденсации. Это уравнение получило название БЭТ (Бранауэр-Эммет- Теллер).
При р/рs<<1, уравнение БЭТ превращается в уравнение Легмюра, которое при дальнейшем уменьшении давления (Р 0) переходит в закон Генри:
.
При обработке экспериментальных данных уравнение БЭТ используют в линейной форме (рис. 6):
Размещено на http://www.allbest.ru/
; ,
таким образом графически находят обе константы уравнения А и С.
Размещено на Allbest.ru
...Подобные документы
Применение уравнения Фрейндлиха и Ленгмюра для описания адсорбции поверхностно-активных веществ на твердом адсорбенте. Определение предельной адсорбции уксусной кислоты из водного раствора на активированном угле; расчет удельной поверхности адсорбента.
лабораторная работа [230,8 K], добавлен 16.06.2013Понятие и единицы измерения адсорбции. Зависимость величины адсорбции от концентрации, давления и температуры. Изотерма, изобара, изопикна, изостера адсорбции. Поверхностно-активные и поверхностно-инактивные вещества. Уравнения адсорбционного равновесия.
реферат [78,3 K], добавлен 22.01.2009Основные понятия процесса адсорбции, особенности ее физического и химического видов. Характеристика промышленных адсорбентов и их свойства. Наиболее распространенные теоретические уравнения изотерм адсорбции. Оборудование, реализующее процесс адсорбции.
курсовая работа [1,4 M], добавлен 05.10.2011Распространение в природе поверхностно-активных полимеров. Способы конструирования ПАВ. Полимеры с гидрофильной основной цепью и гидрофобными боковыми цепями. Уникальные свойства высокомолекулярных поверхностно-активных веществ.
реферат [1,6 M], добавлен 16.09.2009Общий анализ взаимодействия поверхностно-активных веществ (ПАВ) с полимерами. Особенности дифильности белков. Относительная вязкость растворов желатина в зависимости от концентрации добавленного додецилсульфата натрия. Роль взаимодействий белков с ПАВ.
реферат [709,8 K], добавлен 17.09.2009Поверхностное натяжение как результат асимметрии сил когезии на поверхности. Связь адсорбции поверхностно-активных веществ на границе жидкость-воздух с критическим параметром упаковки. Применение теории регулярных растворов к поверхностному натяжению.
реферат [1,1 M], добавлен 17.09.2009Адсорбция поверхностно-активных веществ на межфазных границах. Агрегирование ПАВ в растворе. Нефтехимия и химия растительных масел как источников сырья для получения ПАВ. Классификация ПАВ, их воздействие на окружающую среду, дерматологическое действие.
курсовая работа [1,9 M], добавлен 04.09.2009Классификация процесса адсорбции: основные определения и понятия. Общая характеристика ряда промышленных адсорбентов и их свойства. Теории адсорбции. Оборудование, реализующее этот процесс. Особенности протекания различных видов химической адсорбции.
курсовая работа [1,4 M], добавлен 15.11.2011Характеристика поверхностно-активных веществ, особенности их структуры, сущность синтеза олигомеров высшего порядка. Димерные и лабильные ПAB, циклические и ациклические ацетали, эфиры бетаина. Значение и перспективы ПАВ с разрушаемыми связями.
контрольная работа [987,3 K], добавлен 16.09.2009Характеристика адсорбционных методов. Расчет изотермы адсорбции молекулярно-растворенных органических веществ на активных углях. Методы выбора и контроля адсорбентов для очистки воды. Влияние ионизации и ассоциации молекул в растворе на их адсорбцию.
курсовая работа [2,0 M], добавлен 17.08.2009Изучение теории и составляющих факторов реакции адсорбции полимеров. Гелеобразование геллана. Методика определения количества адсорбированных полимеров на поверхности кернов. Влияние предварительной активации поверхности на кинетику адсорбции полимера.
курсовая работа [6,6 M], добавлен 04.01.2011Изучение основных видов адсорбции. Факторы, влияющие на скорость адсорбции газов и паров. Изотерма адсорбции. Уравнение Фрейндлиха и Ленгмюра. Особенности адсорбции из растворов. Правило Ребиндера, Панета-Фаянса-Пескова. Понятие и виды хроматографии.
презентация [161,4 K], добавлен 28.11.2013Изотерма адсорбции паров дихлорэтана на активном угле. Диаметр и высота адсорбера. Коэффициент внутренней массопередачи. Продолжительность адсорбции, выходная кривая. Построение профиля концентрации в слое адсорбента. Вспомогательные стадии цикла.
курсовая работа [225,1 K], добавлен 10.06.2014Исследование кинетики адсорбции поверхностно-активных веществ на границе с газом или жидкостью, измерение динамического поверхностного натяжения водных растворов алкилсульфатов натрия, эффект появления максимума на изотерме поверхностного натяжения.
дипломная работа [2,2 M], добавлен 01.02.2012Характеристика поверхностно-активных веществ: определение термина, строение, классификация, области применения. Стабилизация стеарат-ионами жировой частицы в воде. Моющие вещества, растворы и препараты, применяемые для очистки железнодорожного транспорта.
контрольная работа [61,2 K], добавлен 07.12.2011Индуцированное полимерами агрегирование поверхностно-активного вещества (ПАВ). Притяжение между полимером и ПАВ: влияние природы обоих компонентов. Аналогия между взаимодействием поверхностно-активного вещества с поверхностно-активными полимерами.
контрольная работа [1,2 M], добавлен 16.09.2009Методы определения удельной поверхности порошков. Продолжительность просасывания определенного объема воздуха через слой порошкообразного материала. Пневматический поверхностемер Т-3. Порядок определения удельной поверхности поверхностемером ПСХ-2.
презентация [413,3 K], добавлен 13.03.2016Дисперсные системы и гомогенные растворы. Характерные свойства и особенности суспензий. Тонкие и грубые суспензии. Диспергационные и конденсационные методы получения. Суспензии из поверхностно-лиофильных и поверхностно-лиофобных нерастворимых веществ.
презентация [529,4 K], добавлен 26.12.2016Растекание жидкостей по поверхностям. Концепция критического поверхностного натяжения твердых тел. Роль поверхностно-активных веществ: улучшение, ухудшение смачивания и растекания. Краевой угол капли жидкости на плоской поверхности твердого тела.
реферат [530,9 K], добавлен 17.09.2009Характеристика самоорганизации поверхностно-активных веществ в растворе. Критическая концентрация мицеллообразования, классификация систем, формируемых дифильными веществами. Влияние температуры и растворенных веществ на KKM. Модель фазового разделения.
контрольная работа [2,6 M], добавлен 04.09.2009