Мембранные технологии в фракционировании клеточных экстрактов

История возникновения и развития мембранных технологий. Направления развития мембранной техники и мембранных технологических процессов. Мембранная технология в России. Разновидности мембранной очистки. Мембранные технологии в применении к экстрактам.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 15.05.2015
Размер файла 31,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Астраханский государственный университет»

Реферат

На тему: Мембранные технологии в фракционировании клеточных экстрактов

Выполнил:

Студент 4 курса группы БЛ -41

Назаров Андрей

Проверила: К.Б.Н Почевалова Т.И.

Астрахань 2015

Содержание

1. История возникновения и развития мембранных технологий

2. Основные направления развития мембранной техники и мембранных технологических процессов

3. Мембранная технология в России

4. Разновидности мембранной очистки и принцип работы

5. Мембранные технологии в применении к экстрактам

Список литературы

1. История возникновения и развития мембранной технологии

В настоящее время трудно кратко сформулировать название уходящего столетия - век атомной энергии, век электроники, век компьютеров и т.д. Впрочем, он может быть назван и веком новых технологий и материалов, которые полностью преобразили всю сферу деятельности человека (состояние промышленности, сельского хозяйства, быта, медицины, здравоохранения и др.). В то же время, XX столетие может быть названо веком накопления отходов и загрязнения окружающей среды, ликвидация которых (например, химического оружия), требует огромных средств, что нарушает нормальное развитие мировой цивилизации.

Процессы устойчивого развития общества и государства прямо связаны с решением основных глобальных проблем человечества - безопасностью проживания, обеспечением населения экологически чистыми продуктами питания и питьевой водой, созданием должного баланса между решением социально-экономических проблем и сохранением окружающей среды. Они зафиксированы в решениях Конференции ООН по окружающей среде и устойчивому развитию в Рио де Жанейро (1992 г.) и на Специальной сессии Генеpальной Ассамблеи ООН по вопросам экологии и устойчивого развития в июне 1997 г. Государственная стратегия устойчивого развития Российской Федерации, разработанная в соответствии с Указом Президента, в которой вопросам развития научно-технической сферы уделено серьезное внимание, одобрена Правительством Российской Федерации 11 ноября 1997 г.

Реализованные в последнее время современные технологические процессы получения различных веществ и материалов, а также обработки отходов и сточных вод, как это не покажется странным, увеличивают общий объем отходов. Существующая мировая статистика свидетельствует о том, что в настоящее время только 7-12% исходного сырья преобразуется в конечный продукт, а, примерно, 90% на разных стадиях производства и потребления переходят в отходы, которые в то же время могут быть ценным сырьем, представляющим собой полуфабрикат, переработка которого может быть в несколько раз рентабельней, чем стандартного сырья, конечно, при условии реализации экологически безопасных технологий и получения при этом высококачественных конкурентоспособных продуктов. В этой связи уже сегодня можно сделать предположение, что XXI век будет в значительной степени посвящен созданию экологически безопасных и, самое главное, малозатратных экономически и технологически обоснованных процессов переработки материалов, отходов и получения на их базе полезных и необходимых для общества продуктов.

Одной из первых, если не самой первой среди таких технологических процессов следует отнести мембранные, другие нетрадиционные и комбинированные процессы обработки веществ и материалов. Мембранные методы разделения жидких и газообразных сред уже сегодня заняли прочное место в арсенале промышленных технологических процессов, хотя полное становление и отдача мембранной науки и технологии ожидается в ХХI веке. Существуют области, где мембранная технология вообще не имеет конкурентов. Здесь следует упомянуть аппарат "искусственная почка", создание сверхчистых веществ и зон в микроэлектронике, выделение термолабильных биологически активных веществ и др.

Значение мембранной технологии в последние годы резко возросло прежде всего как технологии, способной навести мост через пропасть, разделяющую промышленность и экологию. Решением Правительственной комиссии по научно-технической политике от 21 июля 1996 г. мембранная технология получила статус критической технологии федерального уровня, также как катализ, молекулярный дизайн, новые материалы, генная инженерия и другие мировые приоритеты. К этому необходимо добавить взаимосвязь или, если так можно выразиться, взаимопроникновение, взаимообеспечение этих технологий, причем, в отличие от ряда других, мембранная технология обслуживает не только все критические технологии федерального уровня в рамках своего приоритетного направления развития науки и техники "Новые материалы и химические продукты", но и еще несколько десятков критических технологий федерального уровня в рамках всех 7, утвержденных Правительством приоритетных направлений развития науки и техники и, в первую очередь, такие как "Экология и рациональное природопользование", "Топливо и энергетика", "Информационные технологии и электроника", являясь одной из крупнейших проблем межотраслевого характера. К этому необходимо добавить полное исключение возможных негативных последствий ее использования, что невозможно гарантировать, например, при неконтролируемой реализации генной инженерии.

Глобальный характер воздействия и влияния мембранной технологии на реализацию других российских и мировых научно-технологических приоритетов в последнее время получил свое дальнейшее подтверждение. Критическая технология федерального уровня "Мембраны" вошла в 17 приоритетных для российской науки направлений, в которых российские ученые опережают мировой уровень, причем, без использования мембранных процессов невозможно обеспечить поддержание необходимого научно-технического уровня в 12 приоритетах. К этому необходимо добавить серьезные возможности мембранных процессов в решении важнейшей задачи современного этапа развития нашего общества - технологического обновления отечественной промышленности, что особенно актуально в период последствий резкого обострения известных кризисных явлений 1998 года.

Жизненная необходимость широкомасштабного внедрения мембранных процессов определяется многими факторами и, прежде всего, их прямым влиянием на обеспечение национальной безопасности, решение наиболее острых социально-экономических проблем м перспективах их практического использования.

Высокий авторитет российских ученых-мембранщиков, общепризнанный мировой уровень фундаментальных и прикладных исследований, высокая степень готовности разработок, близкий срок реализации и непреходящая актуальность являются весомым подтверждением необходимости сосредоточения усилий федеральных органов для принятия мер для интенсификации процессов ее промышленной реализации.

Это нашло подтверждение на состоявшейся 9 октября 1998 года выездной коллегии Миннауки России "О развитии работ по критической технологии федерального уровня "Мембраны" с участием РАН, Минэкономики России, Госстандарта России, высшей школы и ряда российских регионов. Одновременно с 6 по 9 октября с большим успехом прошла очередная российская конференция с зарубежным участием "Мембраны-98", на которой в многочисленных докладах и сообщениях российских и зарубежных ученых еще раз был подтвержден высокий авторитет российской науки в этой важнейшей области знаний. На упомянутой коллегии была принята конкретная программа мер по развитию научных исследований, созданию мощной информационно-аналитической базы, материализации интеллектуальной собственности, подготовки высококвалифицированных кадров, поиску внебюджетных средств для реализации завершенных НИОКР и другим вопросам. Одобренные коллегией Министерства разработанные Научным советом "Мембранные и другие нетрадиционные методы разделения, очистки и концентрирования веществ для их утилизации и переработки" Федеральной целевой научно-технической программы "Исследования и разработки по приоритетным направлениям развития науки и техники гражданского назначения" основные направления развития мембранной техники и мембранных технологических процессов определили те "точки роста", в которых российские ученые могут реально составить конкуренцию как на российском так и на западном рынке.

2. Основные направления развития мембранной техники и мембранных технологических процессов

1. Мембранные процессы очистки сточных вод с выделением ценных компонентов в машиностроении, целлюлозно-бумажной, текстильной и пищевой промышленности, коммунальном хозяйстве и других отраслях.

2. Экологически безопасные и ресурсосберегающие процессы получения ценных нефтепродуктов из природного газа и газового конденсата, отходящих газов нефтепереработки, селективное выделение биогаза при переработке органических отходов,

3. Переработка вторичного пищевого сырья с выделением ценных компонентов (в т.ч. продуктов детского и диэтического питания) из молочной, сырной и творожной сыворотки, кукурузного и картофельного крахмала, рапса, сои и других пищевых продуктов, очистка пищевых масел от фосфолипидов и следов металлов.

4. Катионпроводящие полимерные мембраны для электрохимических генераторов.

5. Мембранные сенсоры и биосенсоры для компактных высокочуствительных систем управления и приборов.

6. Мембранные дозаторы и пролонгаторы лекарственных препаратов с контролируемой скоростью дозировки в ткани и органы, покрытия на раны и ожоги, искусственная поджелудочная железа.

7. Мембранные процессы для бактериологического контроля воды, анализа сыворотки крови, аппараты для плазмофереза и оксигенации крови.

8. Процессы селективного массопереноса с использованием жидких мембран для извлечения и концентрирования химических продуктов из различных сред (мембранная экстракция, пертракция, курьерный механизм).

9. Научные основы получения мембранных катализаторов и мембранных каталитических реакторов, методы исследования проницаемости и дефектности мембранных систем для разделения и концентрирования компонентов. Мембранные реакторы для безотходных процессов получения продуктов при минимальных энергозатратах без сбросов сточных вод и выбросов в атмосферу.

10. Научные основы получения новых классов термически и химически стойких мембранообразующих полимеров с функциональными группами разной природы (ароматических полиамидов, полиимидов, полиамидоимидов, полигетероариленов и др.).

11. Принципы направленного конструирования керамических и композиционных высокотемпературостойких, химически стойких и высокоселективных мембран для микро-, ультра- и нанофильтрации, первапорации и газоразделения.

3. Мембранная технология в России

Мембранные технологии успешно развиваются в России и отечественные ученые прочно занимают одну из лидирующих позиций в этом направлении. Анализ завершенных и выполняемых в рамках приоритетов Миннауки России НИОКР в сопоставлении с наработками фундаментальной науки еще раз подтвердил, что без использования мембранной науки и мембранных процессов реализация многих критических технологий потребует больших материальных и временных затрат. Так, например, из 15 критических технологий федерального уровня, получивших высокий рейтинг по показателям состояния и перспективам развития ("Известия" от 15 августа 1998 г.) мембранные процессы необходимо использовать в 11, а из 21 критической технологии (по результатам экспертного опроса Миннауки России) - 16. Перечисленные факты еще раз подтверждают глобальный и межотраслевой характер мембранных процессов, что дает нам основание говорить о мембранной науке и технологии как авангардном направлении исследований XXI века, реализующим структурообразующие и социальнозначимые технологии и обеспечивающим инновационный характер развития отечественной промышленности.

Наша страна имеет все возможности в кратчайшие сроки не только подойти к решению ряда проблем промышленности, производства продуктов, водоснабжения и др. на основе мембранных технологий, но и выйти на мировой рынок мембранной техники с оригинальными конкурентоспособными разработками.

Российская мембранная наука продолжает занимать ведущие позиции в мире. Благодаря многолетней государственной поддержке уже к концу 80-х годов удалось получить ряд фундаментальных результатов в области физико-химии мембранного разделения, создать производства мембран разных типов, мембранных модулей, установок. Сформировалась отечественная научная школа, теоретические и прикладные работы наших ученых и инженеров получили широкое признание в России и в мире, установились рабочие контакты с зарубежными университетами и фирмами.

За последние три года в области мембранной техники ученые и инженеры трижды удостаивались премии Правительства Российской Федерации в области науки и техники, мембранные аппараты для получения питьевой воды получили серебряную и золотую медали на выставке "Эврика" в Брюсселе. Мембранная продукция и технологии проданы в США, ФРГ, Китай, Аргентину, Австралию, Ю.Корею, Тайвань и другие страны. Серьезным доказательством востребованности ученых-мембранщиков в России является тот факт, что за последние годы ни один из сколько нибудь крупных ученых в этой области не уехал за рубеж.

В России в настоящее время выпускается достаточно широкий ассортимент мембран, мембранных элементов и установок, в т.ч. установки для разделения и очистки жидкостей на базе современных неорганических мембран, аппараты для газоразделения, мембранные системы для отделения плазмы крови, мембраны и мембранные элементы для очистки воды и органических жидкостей, мембраны и мембранная аппаратура для современных методов анализа воды и др. Обращает на себя внимание разработанный и изготовленный в соответствии с заданием тендера Миннауки России передвижной исследовательско-технологический мембранный комплекс. Его использование для отработки новых технологий позволит получать исчерпывающий набор экспериментальных результатов с последующим выбором оптимальных параметров основных стадий процесса и схемы в целом; разработать математические модели, алгоритмы и программы на их основе, которые позволят провести предварительный расчет выбора того или иного процесса (или их комбинации), ускорить выход на оптимальные параметры и сократить ттем самым время на предпроектную проработку. Этот комплекс уже сегодня вызвал серьезный интерес в российских регионах (Саратов, Владимир, Нижний Новгород) и за рубежом (Германия, Нидерланды).

Вместе с тем, в настоящее время объем продаж мембранной продукции составляет около 20% от уровня 1990 г. Достаточно широкий ассортимент выпускаемой конкурентоспособной мембранной продукции свидетельствует о наличии в этой области востребованных промышленностью разработок, а незначительный объем ее продаж говорит о необходимости принятия комплекса мер для резкого расширения объемов производства.

Это не так просто сделать в современных условиях, хотя мощности по выпуску мембранной продукции удалось сохранить. Для решения этого вопроса осуществляется ряд мероприятий, которые позволят достаточно резко ускорить как объем производства, так и выход на российский и мировой рынок этой наукоемкой продукции.

Первое - прогнозная и информационно-аналитическая база. Она создана (ВИНИТИ - ГНЦ РФ "НИФХИ им. Карпова" - ИНХС РАН им. А. В. Топчиева - ЗАО НТЦ "Владипор"), она постоянно обновляется, мы четко знаем, что делается в области мембранной науки и техники в России и в мире и какие наши разработки являются конкурентоспособными. Именно на этой базе Научный совет и Управление разработки и реализации производственных технологий Миннауки России разработали представленные в настоящей статье "Основные направления ... ….", которые нашли свое частичное отражение в комплексных темах в составе подпрограммы "Экологически безопасные и ресурсосберегающие процессы химии и химической технологии". В то же время, в рамках других подпрограмм приоритетного направления развития науки и техники "Новые материалы и химические продукты" реализуются ряд других проектов по мембранной тематике. В этой связи Научный совет направления "Мембранные и другие нетрадиционные методы разделения, очистки и концентрирования веществ для их утилизации и переработки предлагает на базе всех проектов подпрограмм в области химии и новых материалов создать новую подпрограмму "Мембраны и мембранные процессы", куда необходимо также включить ряд проектов и комплексных тем, выполняемых рядом организаций различной формы собственности, в финансировании которых Миннауки не принимает участие. Предлагаемая консолидация средств, объединенная научным советом по новой подпрограмме позволит значительно продвинуться как в области научных разработок, так и в области продаж технологий, оборудования с последующим расширением существующих и созданием новых производств на базе завершенных НИОКР.

Второе - поиск внебюджетных средств для реализации завершенных НИОКР и получения дополнительных источников финансирования научных исследований. Здесь упор делается на регионы через специально создаваемые структуры и программы. Так, в Саратове совместно с Правительством области и Миннауки России разработана и утверждена региональная программа внедрения мембранных технологий, которая будет финансироваться за счет средств областного бюджета и предприятий и которая обеспечит технологическое перевооружение промышленности области с последующим распространением на Нижневолжский регион.

Третье - грамотное использование накопленной интеллектуальной собственности. С этой целью во Владимире образован ЗАО НТЦ "Владипор" - дочернее предприятие АО "Полимерсинтез", куда передана в качестве нематериальных активов вся интелллектуальная собственность области мембран бывшего НПО "Полимерсинтез" - головной организации МНТК "Мембраны". На опытной и научной базе ЗАО НТЦ "Владипор" с ее уникальным комплексом стендов и установок успешно работают организации РАН, ряд ГНЦ РФ и ВУЗов. Консолидация этого мощного интеллектуального и технологического потенциала в области мембранной науки, техники и технологии, позволит при минимальной государственной поддержке занять нам достойное место на мировом рынке мембран и мембранной техники.

Четвертое - международное сотрудничество. Главная задача - полный переход на контрактную систему. Для этого есть серьезные основания, наши ученые и технологи имеют серьезный авторитет за рубежом. Подтверждением этого являются уже заключенные контракты, широкое представительство ведущих мировых ученых на российских мембранных конференциях.

Пятое - серьезное переосмысление соотношения инженеры-исследователи - менеджеры. Этому вопросу ряд институтов сегодня уделяют особое внимание, во Владимире, Саратове и других точках в создаются специальные подразделения. Эта работа будет проводится также совместно с РХТУ им. Д. И. Менделеева.

Шестое - вопросы сертификации и лицензирования разрабатываемой продукции. Для решения этих проблем планируется создание по крайней мере двух сертификационных лабораторий или органов по сертификации мембранной продукции в Москве и Владимире.

Все вышеизложенное, а также наличие уникальной научно-производственной базы в Москве и Владимире, где работают в тесном контакте ученые и технологи Российской академии наук, государственных научных центров Российской Федерации, высших учебных заведений и прикладных институтов дает серьезные основания заявить о возможности в кратчайшие сроки на базе отечественных разработок при определенной помощи государства не только осуществить структурные сдвиги в решении важнейших проблем промышленности, производства продуктов питания, водоснабжения и др., обеспечив страну конкурентоспособной продукцией и технологиями, но и выйти на мировой рынок мембран и мембранных технологий. При всем многообразии фирм-производителей мембранной техники количество фирм-производителей мембран за последние пять лет практически не изменилось, а у нас они есть и они имеют все необходимые предпосылки для занятия своей ниши в этой наукоемкой сфере продуктов и услуг.

Поддержка развития направления государством

Ключевым фактором, определяющим сохранение и поддержание мирового уровня российской мембранной науки и техники является государственная поддержка определенного объема фундаментальных исследований. В соответствии с решением коллегии Министерства от 9 октября 1998 г. группа российских ученых (ИНХС им. А. В. Топчиева, ЗАО НТЦ "Владипор", Институт кристаллографии им. А.В. Шубникова, ГНЦ РФ НИФХИ им. Л.Я. Карпова, ГНЦ РФ РНЦ "Прикладная химия", РХТУ им. Д.И. Менделеева и др.) ознакомились на местах с работами практически всех мембранных научных подразделений страны (Москва, С-Петербург, Владимир, Обнинск, Воронеж, Мытищи, Дубна и др.). На базе полученных предложений научно-исследовательских организаций сформирована Программа фундаментальных и поисковых исследований "Мембраны и мембранные процессы новых поколений для ресурсосберегающих и природоохранных технологий на 1999-2001 гг.

Основная задача предлагаемой программы состоит в разработке мембран новых поколений с целенаправленно формируемой структурой, что позволит при выборе определенных режимов разделения повысить проницаемость и избирательность мембран по целевым компонентам с достижением стабильности функциональных характеристик мембран. При этом предполагается также осуществить широкий поиск новых возможностей мембранных технологий как по разработкам новых мембранных процессов для решения актуальных прикладных проблем, так и по оптимизации технологических схем существующих процессов.

Концептуальная основа данной программы - выход на сильно неравновесные режимы массо- и электромассопереноса через селективные мембранные слои с усилением роли внешних управляющих факторов (градиенты давления, температуры, электрического потенциала; контролируемое изменение состава среды; нестационарность воздействий) в процессах разделения. В этих условиях эффективность разделения в высшей степени оказывается зависящей от особенностей структуры мембран на различных пространственных масштабах, как это имеет место в самых эффективных - биологических мембранах. Такой подход к проблемам мембранного разделения в отличие от традиционных сегодня квазиравновесных подходов открывает принципиально новые возможности для повышения проницаемости и избирательности целевых компонентов при их переносе через мембрану. Для этого прежде всего требуется разработка новых подходов к синтезу мембранных материалов, к формированию мембранных слоев, к их модификациям.

Фактически речь идет о конструировании мембран на молекулярном уровне, о целенаправленном формировании "путей переноса" целевых компонентов (ионов, молекул, коллоидных частиц нанометровых размеров) с учетом всей совокупности определяющих их перемещение факторов - лигандного окружения, сольватных оболочек, действующих сил. В настоящее время эти идеи уже частично реализованы при разработках ряда отечественных мембран (ионообменных, первапорационных) на основе жесткоцепных полимеров. Ведутся исследования по конструированию обратноосмотических, некоторых типов газоразделительных, ультрафильтрационных мембран (трековых, с заряженной поверхностью). По ряду показателей создаваемые мембраны превысят уровень лучших зарубежных мембран соответствующего целевого назначения.

Принципиально новые возможности мембранного разделения могут быть достигнуты при формировании бездефектных мембранных слоев субмикронной толщины. В этом случае, как следует из теоретических результатов наших ученых, могут быть достигнуты аномально высокие значения избирательности переноса по целевым компонентам при общем высоком уровне проницаемости. Фактически речь идет о технике нанометровых масштабов для мембранного разделения, аналогичной наноэлектронике. Трудности практической реализации такой техники очевидны, и требуются значительные средства для постановки таких работ. В предлагаемом проекте программы такие работы планируются лишь в поисковом плане, для выявления возможных принципов новых технологий. При выделении финансирования можно было бы открыть конкурс на проведение таких работ, как и ряда других принципиальных для мембранной технологии пионерских исследований.

Таковыми, например, могут стать работы по использованию указанных выше внешних управляющих воздействий на перенос целевых компонентов, вплоть до реализации их активного переноса. Обычно такая ситуация реализуется при ионном транспорте (при концентрировании ионов в условиях электродиализа). В данной программе проблема ставится шире. Как показано нашими исследователями, в мембранных системах может реализовываться активный перенос и нейтральных, в частности, паровых компонентов (процесс "электропервапорации"). Фундаментальные и поисковые работы в этом направлении также могут привести к новым принципиальным результатам, к открытию новых мембранных процессов.

Впервые в государственную программу по мембранному направлению вводятся разделы по разработке химических мембранных сенсоров. Создание мембранных барьерных слоев на поверхности чувствительных элементов таких устройств позволяет существенно повысить селективность сенсоров и расширить тем самым возможности их эффективного применения в разнообразных производствах, при мониторинге состояния природной среды. В отличие от стандартных подходов к проблеме химических сенсоров в планируемых работах впервые для повышения чувствительности и избирательности сенсоров используются динамические методы анализа ("фликкер-шумовая спектроскопия").

В Программу включен также ряд традиционных для мембранной проблематики работ, в которых процессы переноса анализируются с квазиравновесных позиций. О молекулярном дизайне при синтезе мембран говорить пока сложно, однако все представленные в Программе проекты отвечают самым высоким профессиональным требованиям как по разрабатываемым новым мембранным материалам (полимерным органическим, керамическим и др.) с высокими функциональными показателями (химическая и термическая стойкость, стабильность свойств), так и по идеям интенсификации процессов мембранного разделения, по характеру предлагаемых новых мембранно-каталитических процессов, по разработкам мембранных реакторов и других комбинированных систем.

Выполнение работ в рамках единой программы с совместными обсуждениями, с координацией усилий различных групп ученых позволит не только выработать общие позиции участников по концептуальным основам программы, но и обеспечит высокий научно-технический уровень всех прикладных разработок, создаст условия для их практической реализации.

Решению проблем широкомасштабной реализации мембранной технологии будут способствовать следующие факторы:

- государственная поддержка мембранной науки и технологии, зафиксированная в указах Президента Российской Федерации, постановлениях и распоряжениях Правительства и его Комиссии по научно-технической политике;

- наличие в России квалифицированных исследователей, технологов, техников и рабочих, имеющих большой опыт по разработке, созданию и реализации в промышленности мембран, мембранной техники и технологии;

- высокая конкурентоспособность российских мембран, мембранных элементов и аппаратов, а также наличие их промышленных производств, которые при необходимости могут быть легко расширены;

- высокая степень подготовки для промышленной реализации. К настоящему времени изготовлены и испытаны на реальных средах головные образцы мембранного оборудования для очистки сточных вод, часть которого уже поставляется заказчикам, в т.ч. для регенерации отработанных моющих растворов и смазочно-охлаждающих жидкостей, разделения водомасляных эмульсий, стоков масложиркомбинатов, трюмовых вод судов, балластных вод танкеров, нефтесодержащих вод от очистки акваторий портов и платформ для добычи нефти в море и др. Производительность этих установок находится в диапазоне 150-6000 л. в час. Созданные станции комплексной очистки сточных вод от красителей и ПАВ обеспечивают 95% степень оборотного использования воды при диапазоне производительности от 5 до 50 куб. м.в час. Установки для очистки сточных вод гальванических производств обеспечивают 98% очистку от солей тяжелых металлов с диапазоном производительности от 1 до 25 куб. м. в час;

- утверждение Правительством ряда федеральных целевых программ, в которых значительное место отведено решению экологических и социальных проблем, где мембраны и мембранная технология могут внести существенный вклад в их реализацию ("Возрождение Волги", "Питьевая вода России", "Использование, восстановление и охрана водных ресурсов бассейна реки Оби", "Национальная технологическая база", "Защита окружающей природной среды и населения от диоксинов и диоксиноподобных токсикантов на 1996 -1997 годы" и др.);

- наличие региональных экологических и социальных программ, где уже в настоящее время используется мембранная технология (Москва, Владимир, Саратов, Нижний Новгород и др.).

В то же время, в связи с общим спадом производства, сложностями с оплатой мембранных установок промышленными предприятиями (проще и дешевле эти воды, более или менее разбавляя, сбрасывать), наблюдается резкое падение спроса на мембранную технику, хотя она сейчас в 2-3 и более раз дешевле импортных аналогов при одинаковом качестве. К этому необходимо добавить отсутствие какой-либо регулирующей системы закупки импортных мембран, мембранных элементов и установок; очень часто при наличии высококачественных отечественных аналогов, закупается импортная продукция (иногда по демпинговым ценам), забывая при этом, что расходы на заменяемые узлы и элементы установок через год-два будут сопоставимы с их полной стоимостью. С этим явлением ряд отечественных организаций столкнулись уже в 80-х годах, когда наши автомобильные заводы закупили ультрафильтрационное оборудование для регенерации грунтов после их нанесения на различные окрашиваемые автомобильные детали. Тогда НПО "Полимерсинтез", г. Владимир в соответствии с рядом постановлений Правительства разработал и создал производства ультрафильтрационных элементов, которые с успехом заменили импортные аналоги. Вообще говоря, сколько либо серьёзная реализация мембранной техники и технологий в настоящее время без поддержки государства или регионов в настоящее время проблематична. Там, где органы государственной власти уделяют этому вопросу достаточное внимание, налицо и соответствующий результат. Например, во Владимире при поддержке местной администрации практически во всех детских лечебных учреждениях, родильных домах, ряде клиник и школ установлены мембранные установки для получения высококачественной питьевой воды.

Необходимым и обязательным условием реализации законченных научно-исследовательских работ в области критической технологии федерального уровня "Мембраны" является разработка механизма привлечения на рыночных условиях негосударственных инвестиций, которые совместно с государственным сектором финансирования и поддержки этого направления обеспечат решение федеральных задач промышленной реализации наиболее эффективных научных разработок на рыночных условиях, повышения на этой основе её экономической эффективности и усиление социальной и экологической направленности.

Суммируя концепцию инновационной политики в области реализации критической технологии федерального уровня "Мембраны" необходимо подчеркнуть, что только комплексная реализация фундаментальных, прикладных и производственных проблем в сочетании с грамотной инновационной политикой позволят, в достаточно полном объёме, реализовать мембранные процессы, внеся свой вклад в обеспечение структурной перестройки и восстановления российской экономики. Успешная реализация мембранных проектов позволит поднять материальное положение и престиж ученых и производственников, что будет гарантировать возможность "утечки мозгов" в этом важнейшем направлении мировой науки, где авторитет российских учёных чрезвычайно высок. Ориентация фундаментальных и прикладных исследований на рыночные принципы реализации (с частичной государственной поддержкой) создаст условия для селекции научных учреждений, коллективов и отдельных учёных, что должно привести к структурной перестройке научных учреждений и повышению эффективности всей научной сферы. В конечном счете, на базе предлагаемой концепции должна сформироваться российская модель бизнеса, которая на равных должна конкурировать с американской, европейской и японской моделями. Как только главными условиями для жизненного успеха станут интеллект, квалифицированный труд и облагороженная предпринимательская деятельность, улучшится отношение основных слоёв населения к бизнесу. Реализация научных проектов критической технологии федерального уровня "Мембраны" является важной составной частью решения перечисленных в настоящей статье проблем.

Как уже отмечалось выше, вопросы информационно-аналитического и прогнозного обеспечения реализации критической технологии федерального уровня "Мембраны" определяют все последующие действия в развитии мембранной науки и технологии и последующей реализации мембранных процессов с целью инновационных преобразований в экономике. В этой связи, объявление подписки и выход первого номера Информационно-аналитического бюллетеня "Мембраны" в серии "Критические технологии" трудно переоценить. Выражая искреннюю благодарность Миннауки России за поддержку становления этого издания, уверен, что эта первая "информационная ласточка" в области критических технологий федерального уровня получит свое дальнейшее развитие в деле информационного освещения других критических технологий, а российские ученые и мировое научное сообщество получат еще один, теперь российский печатный орган освещения современного состояния и тенденций развития мембранной науки и технологии этого, повторюсь, авангардного направления развития науки и техники XXI века.

мембранный технология фракционирование экстракт

4. Разновидности мембранной очистки и принцип работы

Мембранные технологии разделяют на два класса: ультрафильтрацию (диаметр пор мембраны - 3…100 нм при перепаде давлений - 0,1…2 МПа) и обратный осмос (диаметр пор менее 3 нм и перепад давлений - 1…25 МПа).

Ультрафильтрация применяется для разделения, концентрирования и фракционирования растворов. При этом исходный раствор разделяется на два продукта - низкомолекулярный фильтрат и высокомолекулярный осадок. В результате ультрафильтрации подвергаются молочные продукты при разделении жира или белка, питательные смеси, кровь, сиропы, экстракты, сточные воды первой и второй категории.

Обратный осмос применяют для опреснения солевых растворов, очистки сточных вод второй категории, концентрирования сиропов.

Фильтрованием называют процесс разделения суспензий через пористую (фильтровальную) перегородку, которая задерживает твердую (дисперсную) фазу и пропускает жидкую (дисперсную) среду (рис. 2).

Процесс фильтрования подразделяют на два вида: поверхностное фильтрование (с образованием слоя осадка) и глубинное фильтрование (с закупориванием пор фильтровальной перегородки). Возможен также промежуточный вид фильтрования - поверхностно-глубинный. Вид фильтрования определяется взаимосвязью между свойствами суспензии и фильтровальной перегородки.

При разделении маловязких суспензий с концентрацией твердой фазы более 1 %, через фильтровальную перегородку с размерами пор меньше размеров частиц имеет место поверхностное фильтрование. Твердые частицы накапливаются на поверхности фильтровальной перегородки и образуют осадок. При дальнейшем разделении суспензий слой осадка начинает играть роль фильтрующего элемента, задерживая частицы твердой фазы и предотвращая закупоривание пор фильтровальной перегородки. При этом над входами в поры перегородки образуются "сводики" из твердых частиц, пропускающие жидкую фазу суспензии, но задерживающие другие твердые частицы. Разделение суспензий поверхностным фильтрованием наиболее целесообразно, так как закупоривание пор фильтровальной перегородки твердыми частицами с соответствующим увеличением ее сопротивления почти не происходит.

При разделении вязких суспензий с небольшой концентрацией мелкодисперсных фракций через фильтровальную перегородку с размерами пор больше размеров частиц, имеет место глубинное фильтрование. Твердые частицы проникают в поры фильтровальной перегородки и задерживаются в них, не образуя осадка. Закупоривание пор твердыми частицами наблюдается уже в начальный период процесса разделения суспензий, что снижает производительность фильтра. Глубинное фильтрование используют только в фильтрах периодического действия. При этом необходима периодическая регенерация или замена фильтровальной перегородки.

С целью интенсификации производственного процесса фильтрования суспензий с концентрацией твердой фазы менее 1 % в фильтрах используют вспомогательные вещества, которые наносят на фильтровальную перегородку. Фильтровальные вспомогательные вещества образуют слой осадка, который препятствует проникновению твердых веществ в поры фильтровальной перегородки.

В качестве фильтрующих материалов применяют зернистые материалы - песок, гравий, а также хлопчатобумажные и шерстяные ткани, ткани из синтетических волокон, картон, пористые полимерные материалы, керамику и т. д. В фильтрах с намывным слоем применяют различные порошкообразные инертные материалы (диатомит, кедельгур, мел, гашеная известь), а также волокнистые материалы (целлюлоза).

Фильтровальные перегородки должны обладать необходимой задерживающией способностью, обеспечивать заданную чистоту фильтрата, не создавать значительного гидравлического сопротивления потоку и иметь высокую механическую прочность.

По целевому назначению процесс фильтрования может быть очистным или продуктовым. Очистное фильтрование применяют для разделения суспензий и очистки растворов от различного рода включений. Целевым продуктом является фильтрат. В пищевой промышленности очистное фильтрование используют при осветлении вина, виноматериалов, молока, пива и других продуктов.

Назначение продуктового фильтрования - выделение из суспензий диспергированных в них продуктов в виде осадка. Целевым продуктом является осадок. Примером такого фильтрования является разделение дрожжевых суспензий.

5. Мембранные технологии в применении к экстрактам

В применении к экстрактам у мембранных технологий есть большое преимущество по отношению к альтернативным методам фильтрации. Мембранная ультрафильтрация и обратный осмос позволяют производить тонкую отчистку животных экстрактов от балластных веществ, шлаков и прочих веществ, присутствующих почти во всех экстрактах, независимо от используемого экстрагента и метода экстракции. Так же эти методы позволяют очищать экстракт избирательно. А так же варьировать размер пор, тем самым производя отбор веществ по размеру их частиц и позволяя работать с очень малыми размерами (от 3х нанометров) тем самым открывая большие перспективы в получении ультраотчищенных экстрактов. Эти методы дешевле, так как в основном используются синтетические полимерные материалы.

Список литературы

1. chem.msu.su

2. wikipedia.org

3. rfbr.ru

4. nioch.nsc.ru

5. tekhnosfera.com

6. studopedia.net

Размещено на Allbest.ru

...

Подобные документы

  • Диализ - процесс, основанный на различии скоростей диффузии веществ через полупроницаемую мембрану, разделяющую концентрированный и разбавленный растворы. Промышленные аппараты для мембранных процессов. Схема устройства и распределения потоков в аппарате.

    курсовая работа [3,8 M], добавлен 02.05.2013

  • Понятие, история возникновения и развития нанотехнологий. Нанотехнологии в строительстве, медицине и сельском хозяйстве. Внедрение мембранных систем очистки воды. Оптическая расшифровка белково-липидно-витаминно-хлорофильного комплекса в растениеводстве.

    реферат [42,2 K], добавлен 13.04.2016

  • Значение химической промышленности для технического прогресса и удовлетворения потребностей населения. Направления развития химической техники и технологии. Проблемы жизнеобеспечения и химическая промышленность. Качество и себестоимость продукции.

    лекция [53,8 K], добавлен 05.04.2009

  • Исследование методов электромембранной технологии: электродиализа и электролиза. Анализ освобождения коллоидных растворов от растворённых в них низкомолекулярных соединений при помощи полупроницаемой мембраны. Обзор морфологии и классификации мембран.

    реферат [418,7 K], добавлен 14.12.2011

  • Мембранные процессы как избирательное извлечение компонентов смеси или их концентрирование при помощи полупроницаемых перегородок. Общая характеристика схемы ректификационной колонны. Рассмотрение основных особенностей массообменных процессов, назначение.

    презентация [1,3 M], добавлен 30.11.2013

  • Методы рецепторного анализа in vitro с использованием тканей, клеточных гомогенизатов или мембранных препаратов. Инкубация в пробирках и ячейковых планшетах. Анализ близкой сцинтилляции, нерадиоактивный близкий анализ. Флуоресцентный рецепторный анализ.

    курсовая работа [323,4 K], добавлен 05.07.2013

  • Предмет и история химической технологии. Процессы и аппараты - важнейший раздел химической технологии. Классификация основных производственных процессов по законам, управляющим их скоростью. Законы химической кинетики. Теория подобия и моделирования.

    презентация [103,9 K], добавлен 10.08.2013

  • Основы процесса коагуляции. Эффективность и экономичность процессов коагуляционной очистки сточных вод и критерии, ее определяющие. Минеральные коагулянты, применяемые для очистки сточных вод. Новые коагулянты, способы их получения и применения.

    курсовая работа [1,2 M], добавлен 27.11.2010

  • Понятие и принципы разработки мембранных технологий, сферы и особенности их практического применения, оценка главных преимуществ и недостатков. Физико-химические свойства мембран. Условия применения полимерных мембран в современном сельском хозяйстве.

    курсовая работа [113,6 K], добавлен 15.11.2014

  • Понятие и виды ионообменных мембран. Рассмотрение основ применения мембранных процессов в области защиты окружающей среды. Проверка гипотезы стерического механизма отравления ионообменных мембран на примере антоциан, входящих в состав виноматериалов.

    дипломная работа [6,6 M], добавлен 17.04.2015

  • Механизмы воздействия ультразвука на химческие реакции. Учет его при разработке и проведении технологических процессов. Технологии, реализуемые с помощью ультразвука. Прецизионная очистка и обезжиривание. Дегазация расплавов и сварка полимеров и металлов.

    реферат [206,0 K], добавлен 20.02.2009

  • Физико-химические основы процесса производства аммиака, особенности его технологии, основные этапы и назначение, объемы на современном этапе. Характеристика исходного сырья. Анализ и оценка технологии очистки конвертированного газа от диоксида углерода.

    курсовая работа [1,1 M], добавлен 23.02.2012

  • Основные классы фосфолипаз, расщепление лизофосфолипидов под действием фосфолипаз. Ферменты, их отличия по молекулярным массам и субъединичному составу. Активация мембранной гуанилатциклазы через ионизированный кальций и оксидантные системы мембран.

    курсовая работа [713,8 K], добавлен 27.05.2010

  • Значение воды для химической промышленности. Подготовка воды для производственных процессов. Каталитические процессы, их классификация. Влияние катализатора на скорость химико-технологических процессов. Материальный баланс печи для сжигания серы.

    контрольная работа [1,1 M], добавлен 18.01.2014

  • История развития производства красителей, методы их получения. Характеристика исходного сырья и получаемого продукта, технология получения сульфанилата натрия. Расчет химико-технологических процессов и оборудования. Разработка узла автоматизации.

    дипломная работа [466,9 K], добавлен 06.11.2012

  • Процессы химической технологии. Разработка схемы химико-технологического процесса. Критерии оптимизации. Топологический метод и ХТС. Понятия и определения теории графов. Параметры технологического режима элементов ХТС. Изучение стохастических процессов.

    лекция [46,2 K], добавлен 18.02.2009

  • Краткая история кафедры химической технологии стекла и ситаллов. Виды стекол, используемые для производства стеклопакетов. Технология получения стекломассы. История создания фирмы "ЭТКОС". "Бахметьевский завод", его история и ассортимент продукции.

    отчет по практике [284,9 K], добавлен 25.04.2015

  • Загрязнение вод нефтепродуктами. Понятие, виды и классификация эмульсий; их устойчивость. Математическая модели и механизм протекания коалесценции. Преимущества применения мембранных методов и ультрафильтрации для удаления нефтепродуктов из сточных вод.

    дипломная работа [2,5 M], добавлен 11.07.2014

  • Мембранные системы водоподготовки. Исследование диффузионной проницаемости анионообменных мембран. Разработка алгоритма расчета электропроводности, концентраций анионов и молекулярной формы ортофосфорной кислоты в тракте с принимающей стороны мембраны.

    курсовая работа [708,1 K], добавлен 18.03.2016

  • Характеристика промышленных способов алкилирования бензола пропиленом. Принципы алкилирования бензола олефинами в химической технологии. Проблемы проектирования технологических установок алкилирования бензола. Описание технологии процесса производства.

    дипломная работа [557,7 K], добавлен 15.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.