Полиэтилен и полипропилен

Сущность, понятие и значение полиэтилена, история разработки производства материала. Характеристика и отличительные черты технологии производства полиэтилена, описание и специфика свойств полиэтилена высокой и низкой плотности, его применение и получение.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 21.05.2015
Размер файла 17,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Полиэтилен (-СН2-СН2-)n -- один из простейших полимеров. Его молекулярная масса колеблется от 20 тыс. до 3 млн. в зависимости от способа получения. Полиэтилен с низкой молекулярной массой и разветвленной структурой получают радикальной полимеризацией этилена при высоком давлении (120-150 МПа) в присутствии кислорода или органических пероксидов. Если процесс полимеризации проходит при низком давлении в присутствии металлоорганических катализаторов, то получается полиэтилен с высокой молекулярной массой и строго линейной структурой. Этот процесс протекает по ионному механизму.

Полиэтилен -- прозрачный термопластичный материал, обладающий высокой химической стойкостью, плохо проводящий тепло и электричество. Его применяют для изоляции электрических проводов, изготовления прозрачных пленок и бытовых предметов, а также для производства труб различного диаметра.

В зависимости от параметров полимеризации и применяемых катализаторов получают полиэтилен разных типов, существенно отличающихся по своим свойствам.

Впервые промышленная технология производства полиэтилена была разработана в Англии в 1933 г. В настоящее время этот вид полимерного материала применяется в мире наиболее широко.

В зависимости от технологии производства, различают полиэтилен высокого (ПЭВД, ПВД), среднего (ПЭСД) и низкого (ПЭНП, LDPE) давления (обратите внимание: полиэтилен низкого давления и полиэтилен высокой плотности (ПЭВП) - это одно и то же, это два разных определения одного и того же типа полиэтилена; точно так же, как полиэтилен высокого давления - это то же самое, что и полиэтилен низкой плотности(ПЭНП)).

В промышленности полиэтилен высокого давления получают полимеризацией этилена в трубчатом реакторе или в автоклаве. Для получения полиэтилена низкого давления используются три основные технологии: реакция проводится в суспензии, реакция проводится в растворе, осуществление газофазной полимеризации.

Свойства

Химические свойства: Полиэтилен обладает низкой паро и газопроницаемостью. Химическая стойкость зависит от молекулярной массы и плотности. Полиэтилен не реагирует со щелочами любой концентрации, с растворами любых солей, карбоновыми, концентрированной соляной и плавиковой кислотами. Устойчивый к кислотам, щелокам, растворителям, алкоголю, бензину, воде, овощным сокам, маслу. Он разрушается 50%-ной HNO3, а также жидкими и газообразными Cl2 и F2. Бром и иод через полиэтилен диффундируют. Полиэтилен не растворим в органических растворителях и ограниченно набухает в них.

Физические свойства: эластичный, жесткий - до мягкого, в зависимости от веса изделия устойчивый к низким температурам до -70°С, ударостойкий, не ломающийся, с хорошими диэлектрическими свойствами, с небольшой поглотительной способностью. физиологически нейтральный, без запаха. Полиэтилен низкой плотности (0,92 - 0,94 г/см3) - мягкий; полиэтилен высокой плотности (0,941 - 0,96 г/см3) -- твердый, очень жесткий.

Эксплуатационные свойства: полиэтилен стоек при нагревании в вакууме и атмосфере инертного газа; деструктируется при нагревании на воздухе уже при 800С. Под действием солнечной радиации, особенно УФ лучей, подвергается фотостарению (в качестве светостабилизаторов используется сажа, производные бензофенонов). Полиэтилен практически безвреден; из него не выделяются в окружающую среду опасные для здоровья человека вещества.

Полиэтилен (ПЭ) [-CH2-CH2-]n существует в двух модификациях, отличающихся по структуре, а значит, и по свойствам. Обе модификации получаются из этилена CH2=CH2. В одной из форм мономеры связаны в линейные цепи с СП обычно 5000 и более; в другой - разветвления из 4-6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150° С) и давлениях (до 20 атм).

Линейные полиэтилены образуют области кристалличности, которые сильно влияют на физические свойства образцов. Этот тип полиэтилена обычно называют полиэтиленом высокой плотности; он представляет собой очень твердый, прочный и жесткий термопласт, широко применяемый для литьевого и выдувного формования емкостей, используемых в домашнем хозяйстве и промышленности. Полиэтилен высокой плотности прочнее полиэтилена низкой плотности.

СВОЙСТВА ПОЛИЭТИЛЕНА ВЫСОКОЙ ПЛОТНОСТИ

СП от 1000 до 50 000

Тпл 129-135° С

Тст ок. -60° С

Плотность 0,95-0,96 г/см3

Кристалличность высокая

Растворимость растворим в ароматических углеводородах только при температурах выше 120° С

Разветвленные полиэтилены первоначально получали нагреванием этилена (со следами кислорода в качестве инициатора) до температур порядка 200° С при очень высоких давлениях (свыше 1500 атм). Разветвления уменьшают способность полиэтилена к кристаллизации, в результате эта разновидность полиэтилена имеет следующие свойства:

СВОЙСТВА ПОЛИЭТИЛЕНА НИЗКОЙ ПЛОТНОСТИ

СП от 800 до 80 000

Тпл 108-115° С

Тст ниже -60° С

Плотность 0,92-0,94 г/см3

Кристалличность низкая

Растворимость растворим в ароматических углеводородах только при температурах выше 80°С

Этот полиэтилен обычно называют полиэтиленом низкой плотности. Разработаны методы получения полиэтилена низкой плотности при низком давлении и умеренных температурах сополимеризацией этилена с другим олефином, например бутиленом CH2=CH-CH2-CH3. Там, где в цепь встраивается бутиленовая единица, образуется короткая боковая цепь:

В этом случае упаковка цепей не может быть столь же плотной, как для «чистого» полиэтилена. Полиэтилен низкой плотности представляет собой прочный, очень гибкий и слегка упругий термопласт, несколько более мягкий, легче формуемый и выдавливаемый, чем полиэтилен высокой плотности; полиэтилен низкой плотности находит широкое применение в производстве покрытий, упаковочных материалов и изделий, изготовляемых методом литьевого формования.

Полиэтилен - один из наиболее полезных и важных пластических материалов. Детали электронных устройств, покрытие картонных молочных пакетов, упаковочные пленки и игрушки - вот далеко не полный перечень того, что делают из полиэтилена.

Применение полиэтилена

Полиэтилен - наиболее широко использующийся полимер. Технология переработки полиэтилена сравнительно проста, он перерабатывается всеми способами переработки пластмасс. Для переработки полиэтилена не требуется применения узкоспециализированного оборудования, как например, для переработки ПВХ. Современной промышленностью выпускаются сотни марок красителей и концентратов пигментов для окрашивания изделий из полиэтилена (которые подходят также для других типов полиолефинов).

При использовании экструзии получают полиэтиленовые трубы (существует специальные марки - трубный PE63, PE80, PE100), полиэтиленовые кабели, пленки, листовой полиэтилен для упаковки и строительства, а также самые разнообразные полиэтиленовые пленки для нужд всех отраслей промышленности. Применяя литье под давлением и термо-вакуумное формование для изготовления изделий, получают разнообразные упаковочные материалы из полиэтилена. Упаковка из полиэтилена - бурно развивающийся сегмент сегодняшнего рынка пластиковых изделий. Кроме того, достаточно крупными потребителями полиэтилена в России являются компании, призводящии товары бытового назначения, канцтовары, игрушки. Полиэтилен перерабатывается также экструзионно-выдувным и ротационным способами для получения разного рода емкостей, сосудов и тары.

Различные специальные виды полиэтилена, такие как сшитый полиэтилен, вспененный полиэтилен, хлорсульфированный полиэтилен, сверхвысокомолекулярный полиэтилен, успешно применяются для создания специальных стройматериалов. ПЭ не является конструкционным материалом, но армированный полиэтилен используется в изделиях конструкционного назначения. Широко распространена также сварка изделий из полиэтилена, который может свариваться всеми основными способами: контактная, горячим газом, присадочным прутком, трением и т.д.

Отдельный сегмент современного рынка - рециклинг полиэтилена. Многие компании в России и мире специализируются на покупке полиэтиленовых отходов с дальнейшей переработкой и продажей или использованием вторичного полиэтилена. Как правило, для этого применяется технология экструдирования очищенных отходов и последующим дроблением и получением вторичного гранулированного материала пригодного для изготовления изделий.

Получение полиэтилена

Сырьем для полиэтилена служит газ этилен. Полиэтилен синтезируют путем полимеризации этилена при высоком и низком давлениях. Как правило, полиэтилен выпускают в виде гранул диаметром 2-5 миллиметров (намного реже порошка). ПЭ относится к классу полиолефинов. Существует два основных класса полиэтиленов: Полиэтилен Низкой Плотности (Высокого Давления) LDPE и Полиэтилен Высокой Плотности (Низкого Давления) HDPE. Кроме того, существует несколько подклассов полиэтилена. полиэтилен плотность производственный полипропилен

Полиэтилен, получаемый при высоком давлении, называют полиэтиленом высокого давления (ПЭВД, ПВД) или низкой плотности (ПЭНП, LDPE). В промышленности полиэтилен высокого давления получают полимеризацией этилена в трубчатом реакторе или в автоклаве. Подробнее рассмотрим получение в трубчатом реакторе. Процесс при высоком давлении протекает по радикальному механизму под действием О2, пероксидов (бензоила, лаурила) или их смесей. При производстве полиэтилена в трубчатом реакторе этилен, смешанный с инициатором, сжатый компрессором до 25 МПа и нагретый до 700С, поступает сначала в первую зону реактора, где подогревается сначала до 1800С, а затем во вторую, где полимеризуется при 190-300 град. С и давлении 130-250 МПа. Среднее время пребывания этилена в реакторе 70-100 сек, степень превращения 18-20% в зависимости от количества и типа инициатора. Из полиэтилена удаляют непрореагировавший Этилен, расплав охлаждают до 180-1900С и гранулируют. Гранулы, охлажденные водой до 60-70 град. С, подсушивают теплым воздухом и упаковывают в мешки. Товарный полиэтилен ВД выпускают окрашенным и неокрашенным, в гранулах.

Полиэтилен, получаемый при низком давлении, называют полиэтиленом низкого давления (ПЭНД, ПНД) или высокой плотности (ПЭВП, HDPE). Используются три основные технологии получения полиэтилена низкого давления: реакция проводится в суспензии, реакция проводится в растворе, осуществление газофазной полимеризации. Рассмотрим процесс получения LDPE в растворе. Процесс получения полиэтилена в растворе (чаще в гексане) проводят при 160-2500С, давлении 3,4-5,3 МПа, время контакта с катализатором 10-15 мин (катализатор - CrO3 на силикагеле, Ti-Mg или др.). Полиэтилен из раствора выделяют удалением растворителя последовательно в испарителе, сепараторе и вакуумной камере гранулятора. Гранулы полиэтилена пропаривают водяным паром при температуре, превышающей температуру плавления полиэтилена (в воду переходят низкомолекулярные фракции полиэтилена и нейтрализуются остатки катализатора). Товарный полиэтилен НД выпускают окрашенным и неокрашенным, в гранулах и иногда в порошке.

Технология производства полипропилена

В упрощенном виде технологическая схема производства полипропилена выглядит следующим образом:

Исходным сырьем для производства полипропилена является пропилен (газ). Пропилен выделяют путем крекинга (переработки) нефти. Выделенная пропиленовая фракция, содержащая около 80% пропилена, подвергается дополнительной переработке, в результате чего получают пропилен 98-99%-ной концентрации. С помощью дополнительной переработки (очистки от влаги, кислорода, оксидов углерода и др. примесей) получают пропилен высокой степени чистоты. Далее проводится полимеризация пропиленового газо-жидкого (сжиженного) мономера в присутствии катализаторов: циглераната и др., а в последние годы на основе металоцена (комплексное металлоорганическое соединение). Полимеризация под собой подразумевает реакцию, при которой из молекул одного и того же вещества (пропиленового мономера) получается соединение, имеющее тот же состав, но более высокий молекулярный вес. Следующим этапом после полимеризации идет отделение полипропилена на центрифуге, после чего полипропилен отмывают от остатков катализатора спиртом или смесью воды со спиртом. И, полученный порошкообразный полипропилен сушат. Поскольку в промышленности полипропилен обычно не используется в виде порошка, то его гранулируют (расплавляют в гранулы) путем смешивания со стабилизаторами, красителями. Получение гранулята (полипропилена в гранулах) является заключительным звеном в технологической схеме производства полипропилена.

Размещено на Allbest.ru

...

Подобные документы

  • Полиэтилен - высокомолекулярное соединение, полимер этилена; белый твёрдый продукт, устойчивый к действию масел, ацетона, бензина и других растворителей. Сфера применения полиэтилена. Области применения полиэтиленовых труб и их основные преимущества.

    реферат [32,0 K], добавлен 27.10.2010

  • Проведение исследования исходных реакторных порошков сверхвысокомолекулярного полиэтилена различных марок. Изучение основ влияния растворителя на тепловые свойства полимера. Исследование физико-механических свойств волокон, их сравнительный анализ.

    дипломная работа [4,1 M], добавлен 11.04.2015

  • Характеристика сырья и вспомогательных материалов, производимой продукции. Номенклатура выпускаемых предприятием труб. Загрузка полиэтилена. Экструзия трубной заготовки. Режимы экструзии в зависимости от марки полиэтилена. Калибрование и охлаждение трубы.

    отчет по практике [339,2 K], добавлен 05.04.2009

  • Изучение особенностей структуры полиэтилена, возникающей в ориентированных бикомпонентных пленках и волокнах в результате отжига в изометрических условиях. Сравнение рентгенограмм исходных и отожженных пленок. Кристаллизация расплавленного полиэтилена.

    статья [1,3 M], добавлен 22.02.2010

  • Понятие полимерных нанокомпозитов. Разработка способов получения и изучение сорбционных свойств композитов на основе смесей порошков нанодисперсного полиэтилена низкой плотности, целлюлозы, активированного углеродного волокна и активированного угля.

    дипломная работа [762,4 K], добавлен 18.12.2012

  • Полиэтилен, его свойства, строение, механизм получения при высоком давлении. Физико-химические и кинетические закономерности полимеризации этилена. Влияние основных параметров на данный процесс. Описание технологической схемы производства полиэтилена.

    реферат [397,9 K], добавлен 16.05.2012

  • Методика использования отходов сельскохозяйственного производства для наполнения полиэтилена, цена производства, преимущества его использования в экологическом и экономическом плане. Обоснование изменения физико-химических характеристик материала.

    статья [578,4 K], добавлен 26.07.2009

  • Материалы, используемые для производства термоусадочных пленок. Методики получения полимерных композиций. Методы исследования технологических и эксплуатационных свойств полимерных композиций. Рентгенографический анализ и измерения вязкости расплава.

    курсовая работа [1,3 M], добавлен 20.07.2015

  • Структура, физические и химические свойства полиэтилена - термопластичного полимера. Сырье для его производства, области применения. Технология переработки и утилизация изделий из него. Способы полимеризации этилена при среднем, низком и высоком давлении.

    реферат [3,1 M], добавлен 01.03.2014

  • Исследование свойств заливочных гидрогелей. Базальтопластики на основе полиэтилена и полипропилена. Синтез водорастворимых производных фуллерена с60. Структура и свойства никелевых сплавов, модифицированных органическими добавками.

    краткое изложение [673,2 K], добавлен 05.04.2009

  • Изучение основных закономерностей процесса окисления (старения) полимеров. Влияние валентности металла оксида на изменения эффективности фенольного антиоксиданта ирганокса и аминного антиоксиданта неозона. Процесс окисления ингибированного полиэтилена.

    дипломная работа [424,1 K], добавлен 21.04.2013

  • Изучение характера ориентации кристаллитов в пленке ПЭ и в композициях после их деформирования и отжига. Экструзионная гомогенизация в червячно-осциллирующем смесителе. Механические и релаксационные свойства композиций. Характер их деформационных кривых.

    реферат [451,5 K], добавлен 18.03.2010

  • Сущность феномена радиоактивности, история его открытия и изучения, современные знания, их значение и применение в различных сферах. Виды радиоактивных излучений, их характеристика и отличительные черты. Порядок и этапы альфа-, бета-, гамма-распада.

    курсовая работа [221,4 K], добавлен 10.05.2009

  • Пожарная опасность выхода горючих веществ из нормально работающих технологических аппаратов. Полимеризация этилена и пропилена методом низкого давления с использованием в качестве катализатора слабого раствора триэтилаллюминия в бензине и циклогексане.

    курсовая работа [43,9 K], добавлен 06.01.2014

  • Пространственно-затрудненные фенолы: свойства, направления применения. Механизм термоокислительной деструкции полиолефинов, механизм и основные этапы ее ингибирования. Методы определения устойчивости полимеров. Методика приготовления композиций.

    курсовая работа [926,0 K], добавлен 08.03.2014

  • История развития производства и потребления эпоксидных связующих. Получение смол путем полимеризации и отверждения. Применение эпоксидных смол в качестве эпоксидного клея, для ремонта бетона, железобетонных конструкций, фундаментов и для их усиления.

    презентация [497,1 K], добавлен 15.09.2012

  • Молекулярное строение полимерного вещества (химическая структура), т. е. его состав и способ соединения атомов в молекуле. Предельный случай упорядочения кристаллических полимеров. Схема расположения кристаллографических осей в кристалле полиэтилена.

    контрольная работа [26,4 K], добавлен 02.09.2014

  • Полиэтилен как продукт полимеризации этилена. История его открытия, строение, химические, физические, эксплуатационные и экологические свойства. Основные способы переработки пластика. Примеры продукции, которые изготавливаются из данного полимера.

    презентация [137,7 K], добавлен 22.11.2016

  • Акриламид: физические и химические свойства, растворимость. Получение и определение, токсичность акриламида. Особенности применения акриламида и производных. Применение и получение полимеров акриламида. Характеристика химических свойств полиакриламида.

    курсовая работа [258,0 K], добавлен 19.06.2010

  • Рибофлавин как витамин, который не синтезируется организмом человека. Теоретические основы производства рибофлавина (витамина B2). Основные и вспомогательные процессы на всех стадиях производства. Разработка и описание технологической схемы производства.

    курсовая работа [932,4 K], добавлен 10.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.