Ртуть и ее соединения в окружающей среде

Ртуть и экологические проблемы. Технические требования, санитарные правила, нормативы. Ртутьсодержащие отходы потребления и их утилизация. Важнейшие свойства ртути. Демеркуризация объектов городской среды. Добыча, производство и использование ртути.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 19.10.2015
Размер файла 661,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации ФГАОУ ВПО

«УрФУ имени первого Президента России Б.Н. Ельцина»

Кафедра Химической технологии топлива и промышленной экологии

Курсовая работа

по дисциплине: «Химия окружающей среды»

Ртуть и ее соединения в окружающей среде

Студентка гр. Х-220702

К.Ю. Долгова

Преподаватель

Н.М. Рыжкова

Екатеринбург, 2014г

Введение

Цель: Изучить основные свойства ртути и ее воздействие на окружающую среду.

Актуальность: Ртутное загрязнение имеет серьезные последствия для здоровья и окружающей среды на местном, национальном, региональном и глобальном уровнях. Бороться с этими последствиями на каждом из указанных уровней следует различными способами, уделяя внимание как предложению ртути, так и спросу на нее.

Задачи:

- провести литературный обзор;

- изучить основные свойства ртути;

- изучить основные источники распространения ртути в природе;

-выявить причины загрязнения окружающей среды;

Ртуть - удивительный химический элемент. Это очевидно хотя бы по тому, что ртуть - единственный металл, находящийся в жидком состоянии в условиях, которые мы обычно называемым нормальными. В таких условиях ртуть способна испаряться и формировать ртутную атмосферу. Именно эти свойства определили особое положение ртути в нашей жизни. Ртуть оказала человечеству огромные услуги. Много веков она находит применение в самых разнообразных сферах человеческой деятельности - от киноварной краски до атомного реактора. На использовании различных свойств ртути были созданы самостоятельные отрасли промышленности, в том числе, добыча золота методом амальгамации, производство газоразрядных ртутных ламп, химических источников тока, хлора и каустической соды. Ртуть применяется в медицине, фармацевтике, стоматологии. Она служила теплоносителем в одном из первых реакторов на быстрых нейтронах.

Ртуть причастна к научным открытиями и техническим достижениям: изобретение Торричелли ртутного барометра, Амантоном и Фаренгейтом ртутного термометра, опыты Паскаля по изучению атмосферного давления, открытие сверхпроводимости Камерлинг-Оннесом, получившего в 1913 г. Нобелевскую премию, знаменитый опыт Майкельсона-Морли, доказавший отсутствие эфирного ветра при движении Земли, эксперименты Дж. Франка и Г. Герца, подтвердившие теорию строения атома Н. Бора, создание вакуум-насоса Ленгмюром и другое. Пары ртути были первым проявителем в фотографическом деле, который использовался Даггером. Особое значение ртуть имела для развития аналитической химии и открытия многих химических элементов и их соединений. Нобелевской премии был удостоен чешский химик Я. Гейровский, создавший полярографический метод химического анализа, где ртуть играет далеко не последнюю роль.

Однако ртуть может быть не только полезной, но и вредной для всего живого. В малых количествах она всегда присутствует в окружающей нас среде. При определенных условиях, особенно в результате промышленной и бытовой деятельности людей, ее концентрации в среде обитания могут заметно возрастать, что способно оказать негативное воздействие на наше самочувствие и состояние здоровья. Одна из самых известных экологических трагедий 20 столетия - болезнь Минамата - вызвана загрязнением окружающей среды ртутью.

1. Из глубины веков

Ртуть и ее соединения известны человеку с глубокой древности. Уже тогда было установлено, что при перегонке самородной ртути, в большинстве случаев являющейся амальгамой, получается остаток в виде королька золота или серебра. На основании этого делался вывод, что ртуть при нагревании превращается в благородные металлы, и она есть не что иное, как argentum vivum («живое серебро»). Средневековая алхимическая мысль даже дошла до изречения: Maro tingerem, si Mercurius esset (если бы море состояло из ртути, я превратил бы его в золото)! Долгое время золото было своеобразным «маяком» для человеческой цивилизации. «Золото, - писал Христофор Колумб, - это совершенство. Золото создает сокровища, и тот, кто владеет им, может совершить все, что пожелает, и способен даже вводить человеческие души в рай!». И нужно сказать, что ртуть сыграла огромную практическую роль в этих устремлениях человека: в течение многих веков амальгамация была основным способом получения благородных металлов, на что истрачены десятки, может быть, сотни тысяч тонн ртути. Самая известная «золотая лихорадка» последних лет, охватившая бассейн Амазонки, по-прежнему поглощает огромные количества «живого серебра», также как и много лет назад, отравляя огромные территории.

Многие произведения живописи, прикладного искусства, архитектуры прошлого не мыслимы без участия ртути - киноварные краски в иконописи и живописи, техника огневого золочения, златотканое шитье, золотые купола русских церквей и соборов, наконец, известное всем слово «миниатюра» (от лат. «minium» - сурик, киноварь). Мы обнаруживаем киноварную краску на древнерусских иконах, на фресках Софийского собора в Киеве, Благовещенского и Успенского соборов в Московском Кремле. Рубенс на своих картинах усиливал колорит обнаженного тела с помощью больших количеств киновари. Старинные научные трактаты на тибетском и монгольском языках, санскрите, манускрипты на пальмовых листьях, серебряных и золотых пластинах, шелковых тканях написаны смесью измельченных в порошок киновари, золота, серебра, жемчуга и бирюзы

1.1 Важнейшие свойства ртути

Ртуть (Hg) - химический элемент II группы периодической системы элементов Д. И. Менделеева; атомный номер 80, относительная атомная масса 200,59; в состав природной ртути входят 7 стабильных изотопов с массовыми числами: 196 (распространенность 0,146%), 198 (10,02%), 199 (16,84%), 200 (23,13%), 201 (13,22%), 202 (29,80%) и 204 (6,85%). Природная ртуть характеризуется относительно устойчивым изотопным соотношением. Тем не менее в ней в небольших количествах присутствуют радиоактивные изотопы. Искусственно получено более 20 короткоживущих изотопов, из которых практическое значение имеют (метки в медицине, в аналитике, в технологических процессах) 203Hg (период полураспада 46,6 дня) и 197Hg (64,1 ч). Ртуть в обычных условиях представляет собой блестящий, серебристо-белый тяжелый жидкий металл. Удельный вес ее при 20оС 13,54616 г/см3; температура плавления = -38,89оС, кипения 357,25оС. При замерзании (-38,89оС) она становится твердой и легко поддается ковке.

При действии на ртутные пары вольтовой дуги, электрической искры и рентгеновских лучей наблюдаются явления люминесценции, флюоресценции и фосфоресценции. В вакуумной трубке между ртутными электродами при электрических разрядах получается свечение, богатое ультрафиолетовыми лучами, что используется в технике при конструировании ртутных ламп. Это же явление легло в основу спектрального метода определения малых количеств ртути в различных объектах. Ртуть характеризуется очень низкой удельной теплоемкостью. Это ее свойство находило применение в ртутно-паросиловых установках. Еще одно замечательное свойство ртути связано с тем, что при растворении в ней металлов образуются амальгамы - металлические системы, одним из компонентов которых является ртуть. Они не отличаются от обычных сплавов, хотя при избытке ртути представляют собой полужидкие смеси. Соединения, получающиеся в результате амальгамирования, легко разлагаются ниже температуры их плавления с выделением избытка ртути, что нашло широкое применение при извлечении золота и серебра из руд. Амальгамированию подвержены металлы, смачиваемые ртутью. Стали, легированные углеродом, кремнием, хромом, никелем, молибденом и ниобием, не амальгамируются.

Ртуть -- малоактивный металл. Она не растворяется в растворах кислот, не обладающих окислительными свойствами, но растворяется в царской водке:

и азотной кислоте:

Также с трудом растворяется в серной кислоте при нагревании, с образованием сульфата ртути:

При растворении избытка ртути в азотной кислоте на холоде образуется нитрат Hg2(NO3)2.

При нагревании до 300 °C ртуть вступает в реакцию с кислородом:

При этом образуется оксид ртути(II) красного цвета. Эта реакция обратима: при нагревании выше 340 °C оксид разлагается до простых веществ.

Реакция разложения оксида ртути исторически является одним из первых способов получения кислорода.

При нагревании ртути с серой образуется сульфид ртути(II):

Ртуть также реагирует с галогенами (причём на холоде -- медленно).

Ртуть можно окислить также щелочным раствором перманганата калия:

и различными хлорсодержащими отбеливателями. Эти реакции используют для удаления металлической ртути

HgO образует две модификации -- желтую и красную, отличающиеся размерами кристаллов. Красная модификация образуется при добавлении к раствору соли Hg2+ щелочи:

Hg(NO3)2 + 2NaOH = HgOЇ + 2NaNO3 + H2O.

Желтая форма химически более активна, при нагревании краснеет. Красная форма при нагревании чернеет, но приобретает прежний цвет при охлаждении.

На воздухе ртуть при комнатной температуре не окисляется. При нагреве до температур, близких к температуре кипения (300-350оС), она соединяется с кислородом воздуха, образуя красный оксид двухвалентной ртути HgO, который при дальнейшем нагревании (до 400оС и выше) снова распадается на ртуть и кислород. Желтый оксид ртути HgO получается при добавлении щелочей к водному раствору соли Hg(II). Существует и оксид ртути черного цвета (Hg2O), нестойкое соединение, в котором степень окисления ее равна +1. В соляной и разбавленной серной кислотах и в щелочах ртуть не растворяется. Но она легко растворяется в азотной кислоте и в царской водке, а при нагревании - в концентрированной серной кислоте. Металлическая ртуть способна растворяться в органических растворителях, а также в воде, особенно при отсутствии свободного кислорода. Растворимость ее в воде зависит также от рН раствора. Минимальная растворимость наблюдается при рН=8, с увеличением кислотности или щелочности воды она увеличивается. В присутствии кислорода ртуть в воде окисляется до ионной формы Hg2+ (создавая концентрации до 40 мкг/л).

Метилртутные соединения в значительных количествах образуются в окружающей среде в результате химического и биологического метилирования неорганических производных двухвалентной ртути Нg2+ . Метилирование может протекать как в аэробной, так и в анаэробной среде, однако максимальные скорости наблюдаются в окислительной анаэробной зоне, в области редокс-потенциалов от-100 до +150 мВ, в которой наиболее широко распространены различные микроорганизмы .

Метилирование может происходить в почве и донных отложениях, но лучше всего биотическое и абиотическое метилирование протекает в водных экосистемах, в которых ртуть примерно на 85% присутствует в виде метилртути. Основными факторами, способствующими метилированию ртути, являются: общая концентрация неорганической ртути, значение рН, температура, редокс-потенциал,природа присутствующих микроорганизмов, содержание сульфидов (последние в значительной мере способствуют образованию в экосистемах диметилртути). В качестве химических метилирующих агентов в окружающей среде могут выступать йодистый метил, диметилсульфид, триметилсульфониевый катион и метил-кобаламин.

В живых организмах, в том числе и в организме человека, основным метилирующим агентом является одна из незаменимых аминокислот - метионин СH3SCH2CH2CH(NH2)COOH [14].

В морских анаэробных условиях, в частности, в отложениях отмерших водорослей, ртуть может присоединять водород и превращаться в летучие гидриды.

1.2 Соединения ртути

Соединения ртути применяют как средство защиты растений от милдью (ложная мучнистая роса), а также от плесени, гниения.

Хлорид ртути(I) Hg2Cl2 (каломель) - тяжелый белый порошок без вкуса, без запаха, нерастворим в воде, медленно разлагается на свету. Он реагирует с гидроксидом аммония, образуя свободную ртуть в виде высокодисперсного черного порошка. Каломель используется как слабительное, диуретик, антисептик. В промышленности ее используют для производства бенгальских огней и художественного фарфора. В научных лабораториях часто применяется каломельный электрод. Иодид ртути(I) Hg2I2 - светложелтый порошок, темнеющий на свету в результате разложения и выделения высокодисперсной ртути, - используют как антисептик и лекарство. Нитрат ртути(I) Hg2(NO3)2 образует бесцветные кристаллы, растворимые в очень разбавленной азотной кислоте; его применяют как едкое вещество и антисептик, а также для чернения латуни. Сульфат ртути(I) Hg2SO4 - светложелтый порошок, который становится серым на свету. Он плохо растворим в воде. Его применяют в технологии аккумуляторов и электролитических ячеек.

Хлорид ртути(II) HgCl2 (сулема, или дихлорид ртути) получают в виде бесцветных кристаллов или белого порошка, который заметно летуч при 100° C и полностью испаряется при 300° C. Он растворим в воде и образует кислые растворы в результате гидролиза и слабой ионизации. Сулема сильно ядовита, является эффективным антисептиком и протравой и применяется для обеззараживания одежды. Ее водные растворы 1:1000 или 1:5000 используют для обеззараживания и промывания ран и лечения кожных болезней. В промышленности сулему используют для консервации древесины и анатомических образцов, а также для бальзамирования, дезинфекции, дубления, крашения дерева, в гальваностегии и деполяризации сухих батарей и для многих других целей. Иодид ртути(II) HgI2 - яркокрасный ядовитый порошок - применяют как протраву и лекарство. Нитрат ртути(II) Hg(NO3)2 - белый кристаллический, растворимый в воде порошок, - применяют в медицине, производстве фетровых шляп, для синтеза фульмината ртути (гремучей ртути) Hg(CNO)2 - инициирующего ВВ для капсюлей-детонаторов и капсюлей-воспламенителей в снарядах, гранатах и торпедах. Тиоцианат ртути(II) Hg(CNS)2 - белый порошок без запаха, при нагревании во много раз увеличивается в объеме, что используют для демонстрации опыта «фараонова змея»; соединение в порошке и в парах ядовито. Ртуть образует много комплексных соединений. Например, щелочной раствор тетраиодомеркурата калия K2[HgI4] (реактив Несслера) используют для количественного определения аммиака, в присутствии которого образуется бурый осадок NH2Hg2I3. Этот метод позволяет обнаруживать до 10-8 долей аммиака в воде. Амидохлорид ртути HgNH2Cl (белый аморфный порошок), получается при добавлении гидроксида аммония к хлориду ртути(II); при нагревании не плавится, а испаряется в режиме слабокрасного нагрева. Это соединение используют для лечения кожных сыпей и раздражений (белая ртутная мазь).

2. Токсичность ртути (как ртуть влияет на здоровье человека)

ртуть утилизация демеркуризация городской

В организме среднего человека (массой тела 70 кг) содержится примерно 13 мг ртути, однако она, по-видимому, не выполняет никакой физиологической роли. По крайней мере, жизненная необходимость этого металла для человека и других организмов не доказана. В последнее время в научной литературе стали появляться сообщения о том, что ртуть обладает определенным биотическим эффектом и оказывает стимулирующее действие на процессы жизнедеятельности (в количествах, соответствующих физиологическим, т. е. нормальным для человека, концентрациям). Есть сведения о присутствии ртути в ядерной фракции живых клеток и о значении этого металла в реализации информации, заложенной в ДНК, и ее передаче при помощи транспортных РНК. Говоря проще, полное удаление ртути из организма, видимо, нежелательно, и те самые 13 мг, «заложенные» в нас природой, должны всегда содержаться в человеке (что, кстати, вполне согласуется с упомянутым выше законом Кларка-Вернадского о всеобщем рассеянии элементов). В то же время, надежно установлено, что ртуть (в дозах, превышающих физиологическую потребность, что, к сожалению, легко достигается) токсична для всех форм жизни, причем практически в любом своем состоянии, за редким исключением. Так, проглотить металлическую ртуть сравнительно не опасно, и она выводится через желудочно-кишечный тракт. Но экспериментировать категорически не рекомендуется, а если такое случилось, то надо немедленно обратиться к врачу! Прием внутрь 1 г ртутной соли смертелен. В пересчете на «чистую» ртуть для этого достаточно 150-300 мг; вредные эффекты проявляются при дозе «чистой» ртути в 0,4 мг.

С точки зрения патологии человека, ртуть отличается чрезвычайно широким спектром и большим разнообразием проявлений токсического действия в зависимости от свойств веществ, в виде которых она поступает в организм (пары металлической ртути, неорганические или органические соединения), путей поступления и дозы. Она оказывает негативное влияние на взрослых и на детей, на мужчин и на женщин. Основные пути воздействия ртути на человека связаны с воздухом (дыхание), с пищевыми продуктами, питьевой водой. Возможны и другие, случайные, но нередкие в обыденной жизни пути воздействия: через кожу, при купании в загрязненном водоеме, при поедании детьми загрязненной почвы, штукатурки и т. п. Особое значение имеет профессиональное воздействие, которое значимо в тех отраслях промышленности, где ртуть используется в технологических процессах. Выведение с мочой и калом - два основных пути выделения ртути из организма. Меньшее значение имеют испарения из легких, пот, слюноотделение, кормление молоком. Она теряется и в результате попадания в плаценту и через нее в плод.

Ртуть принадлежит к числу тиоловых ядов, блокирующих сульфгидрильные группы белковых соединений и этим нарушающих белковый обмен и ферментативную деятельность организма. Особенно сильно она поражает нервную и выделительную системы. При воздействии ртути возможны острые (проявляются быстро и резко, обычно при больших дозах) и хронические (влияние малых доз ртути в течение относительно длительного времени) отравления.

Хроническое отравление ртутью приводит к нарушению нервной системы и характеризуется наличием астеновегетативного синдрома с отчетливым ртутным тремором (дрожанием рук, языка, век, даже ног и всего тела), неустойчивым пульсом, тахикардией, возбужденным состоянием, психическими нарушениями, гингивитом. Развиваются апатия, эмоциональная неустойчивость (ртутная неврастения), головные боли, головокружения, бессонница, возникает состояние повышенной психической возбудимости (ртутный эретизм), нарушается память. Вдыхание паров ртути при сильном воздействии сопровождается симптомами острого бронхита, бронхиолита и пневмонии. Наблюдаются изменения в крови и повышенное выделение ртути с мочой. Многие симптомы отравления парами ртути исчезают при прекращении воздействия и принятии соответствующих мер, но трудно достичь полного устранения психических нарушений.

Сейчас установлено, что наряду с общетоксическим действием (отравлениями) ртуть и ее соединения вызывают гонадотоксический (воздействие на половые железы), эмбриотоксический (воздействие на зародыши), тератогенный (пороки развития и уродства) и мутагенный (возникновение наследственных изменений) эффекты. Есть сведения о возможной канцерогенности неорганической ртути.

3. Технические требования, санитарные правила, нормативы

В России составы, условия приемки, анализа, транспортировки и хранения ртути и ее соединений определяются государственными стандартами (ГОСТ 4658-73; ГОСТ 4519-48; ГОСТ 3203-68 и др.) и международным стандартом ИСО 1560-75. Наиболее широко используется ртуть, поставляемая по ГОСТ 4658-73 (см. таблицу), который распространяется на металл, предназначенный для производства полупроводниковых материалов, для использования в вакуумтехнике, электротехнике, электронике, приборостроении, фармацевтической, химической и металлургической промышленности.

Работы с металлической ртутью необходимо проводить в специально оборудованных помещениях, оснащенных приточно-вытяжной вентиляцией и вытяжными шкафами. Скорость воздуха в рабочем проеме вытяжных шкафов должна быть не менее 1 м/с, а температура воздуха в помещении - не выше 40оС. Категорически запрещается хранение и прием пищи, а также курение в помещениях, где имеет место выделение паров ртути и ее соединений. Все работы необходимо выполнять в спецодежде индивидуального пользования: белом халате с длинными рукавами, специальных перчатках и головном уборе. С металлической ртутью нужно работать в очках. При работе в атмосфере с содержанием паров ртути в 5 и более раз превышающими гигиенические нормативы следует пользоваться противортутными респираторами и противогазами, снабженных поглощающими ртутные пары элементами и фильтрами. По окончании работы необходимо принять душ, вымыть лицо с мылом, руки - с мылом и щеткой, рот и зубы прополоскать слабым растром марганцовокислого калия или 2%-ным раствором поваренной соли. При остром отравлении ртутью пострадавшему следует промыть желудок водой с 20-30 г активированного угля или с взбитым яичным белком, после чего дать молоко, слабительное. В любом случае пострадавшего необходимо доставить в медицинское учреждение.

Обычно суточное поступление ртути (с воздухом, пищей, водой) в организм человека составляет менее 20 мкг, что, видимо, является «нормальной» дозой. Более высокие уровни отмечаются в тех местах, где население употребляет в пищу много рыбы. В районах с высоким местным загрязнением суточное поступление ртути может превышать 300 мкг, и именно такие уровни привели к вспышкам отравления метилртутью в Ираке и Японии. По рекомендациям ВОЗ (Всемирной организации здравоохранения) в организм человека не должно попадать с пищей более 3,3 мкг метилртути на 1 кг массы тела за неделю. Средние контрольные (допустимые) значения общей ртути индикаторных средах человека, согласно ВОЗ, следующие: цельная кровь - 8 мкг/л; волосы - 2 мкг/г; моча - 4 мкг/л; плацента - 10 мкг/г сырой массы.

ПДК ртути в некоторых пищевых продуктах (на естественную массу)

Продукты ПДК, мг/кг

Молоко, кисломолочные изделия, фруктовые и овощные соки 0,005

Масло сливочное, мясо и птицы свежие и мороженые 0,03

Внутренние органы и продукты их переработки 0,1

Почки 0,2

Яйца 0,02

Рыба свежая охлажденная: 0,6

Пресноводная хищная 0,3

Пресноводная нехищная

Морская 0,4

Хлеб, зерно, фрукты 0,01

Овощи 0,02

4. Распространенность ртути в природе

Ртуть -редкий элемент. Ее средние содержания в земной коре и основных типах горных пород оцениваются в 0,03-0,09 мг/кг, т. е. в 1 кг породы содержится 0,03-0,09 мг ртути, или 0,000003-0,000009 % от общей массы (для сравнения - одна ртутная лампа в зависимости от конструкции может содержать от 20 до 560 мг ртути, или от 0,01 до 0,50% от массы). Масса ртути, сосредоточенная в поверхностном слое земной коры мощностью в 1 км, составляет 100 000 000 000 т (сто миллиардов тонн), из которых в ее собственных месторождениях находится только 0,02%. Оставшаяся часть ртути существует в состоянии крайнего рассеяния, по преимуществу в горных породах (в водах Мирового океана рассеяно 41,1 млн. т ртути, что определяет невысокую среднюю концентрацию ртути в его водах - 0,03 мкг/л). Именно эта рассеянная ртуть создает природный геохимический фон, на который накладывается ртутное загрязнение, обусловленное деятельностью человека и приводящее к формированию в окружающей среде зон техногенного загрязнения.

Известно более 100 ртутных и ртутьсодержащих минералов. Как мы уже знаем, основным минералом, определяющим промышленную значимость ртутных месторождений, является киноварь. Самородная ртуть, метациннабарит, ливингстонит и ртутьсодержащие блеклые руды имеют резко подчиненное значение и добываются попутно с киноварью. Теоретический состав киновари: ртуть 86,2%, сера 13,8%. Но в ней часто обнаруживается примесь 15-20 элементов: кремния, алюминия, магния, меди, цинка, мышьяка, сурьмы, серебра и др.

Всего в мире обнаружено около 5000 ртутных месторождений, рудных участков и рудопроявлений, получивших самостоятельное название; из них в разное время разрабатывались около 500. Но за всю историю ртутной промышленности подавляющая часть ртути (более 80%) получена на 8 месторождениях: Альмаден (Испания), Идрия (Словения), Монте-Амиата (Италия), Уанкавелика (Перу), Нью-Альмаден и Нью-Идрия (США), Никитовка (Украина), Хайдаркан (Киргизия). В промышленности для получения металлической ртути используют два варианта технологии ее извлечения из руд: окислительно-дистилляционный обжиг с выделением ртути из газовой фазы и комбинированный способ, включающий предварительное обогащение и последующую пирометаллургическую переработку концентрата. Количество ртути, которое поступило в среду обитания в ходе других видов человеческой деятельности (при добыче различных полезных ископаемых, выплавке металлов, производстве цемента, сжигании ископаемого топлива и т. д.), также велико.

Ртуть концентрируется не только в ртутных минералах, рудах и вмещающих их горных породах. Согласно закону Кларка-Вернадского о всеобщем рассеянии химических элементов, в тех или иных количествах ртуть обнаруживается во всех объектах и компонентах окружающей среды, в том числе в метеоритах и образцах лунного грунта. Вероятность нахождения ртути в объектах среды обитания определяется чувствительностью используемого анализа, поэтому часто встречающееся выражение «ртуть не обнаружена» свидетельствует только лишь о том, что данный аналитический метод не достаточен для обнаружения этого металла. В повышенных концентрациях ртуть содержится в рудах многих других полезных ископаемых (полиметаллических, медных, железных и др.). Установлено накопление ртути в бокситах, некоторых глинах, горючих сланцах, известняках и доломитах, в углях, природном газе, нефти.

Современные данные свидетельствуют о высоком содержании ртути в мантии (второй от поверхности, после земной коры, оболочки Земли), в результате дегазации которой, а также естественного процесса испарения ртути из земной коры (горных пород, почв, вод), наблюдается явление, получившее название «ртутного дыхания Земли. Поставка ртути в окружающую среду в результате ртутного дыхания Земли (природная эмиссия) составляет около 3000 т в год. Поставка ртути в атмосферу, обусловленная промышленной деятельностью человека (техногенная эмиссия), оценивается в 3600-4500 т в год.

Распределение и миграция ртути в окружающей среде осуществляются в виде круговорота двух типов. Во-первых, глобального круговорота, включающего циркуляцию паров ртути в атмосфере (от наземных источников в Мировой океан и наоборот). Во-вторых, локального круговорота, основанного на процессах метилирования неорганической ртути, поступающей главным образом из техногенных источников. Многие этапы локального круговорота еще недостаточно ясны, но полагают, что он включает циркуляцию в среде обитания диметилртути. Именно с круговоротом второго типа чаще всего связано формирование опасных с экологических позиций ситуаций.

Поступающие в окружающую среду из природных и техногенных источников ртуть и ее соединения подвергаются в ней различным преобразованиям. Неорганические формы ртути (элементарная ртуть Hgo и неорганический ион Hg2+) претерпевают преобразования в результате окислительно-восстановительных процессов. Пары ртути окисляются в воде в присутствии кислорода неорганическую двухвалентную ртуть (Hg2+), чему в значительной мере способствуют присутствующие в водной среде органические вещества, которых особенно много в зонах загрязнения. В свою очередь, ионная ртуть, поступая или образуясь в воде, способна формировать комплексные соединения с органическим веществом. Значение имеет взаимодействие ртути с серой (сульфид-ионом), приводящее к образованию (в безкислородных условиях) устойчивого сульфида ртути HgS, который, однако, в присутствии кислорода может окисляться в растворимые соли - сульфит и сульфат ртути, что обусловливает участие металла в последующих химических реакциях. Наряду с окислением паров ртути образование Hg2+ может происходить при разрушении ртутьорганических соединений.

Неорганическая ртуть Hg2+ претерпевает два важных вида превращений в окружающей среде. Первый - это восстановление с образованием паров ртути. Этот процесс, являющийся ключевым в глобальном круговороте ртути, изучен плохо. Известно, что некоторые бактерии способны осуществлять это преобразование. Второй важной реакцией, которой подвергается Hg2+ в природе, является ее превращение в метил - и диметилпроизводные и их последующие взаимопревращения друг в друга.

Типичные природные (фоновые) концентрации паров ртути в приземном слое атмосферном воздухе обычно составляют 10-15 нг/м3 при колебаниях от 0,5-1 до 20-25 нг/м3. Видимо, именно такие содержания практически безопасны для живых организмов. В зонах загрязнения возрастают в десятки и сотни раз, а в производственных или загрязненных ртутью помещениях могут достигать экстремально высоких значений (до 1-5 мг/м3). Главной формой ртути в атмосфере являются пары металла (Hgo), меньшее значение имеют ионная форма, органические и неорганические (хлориды, йодиды) соединения. Она также связывается с аэрозолями. В зонах загрязнения концентрации ртути в дождевой воде достигают 0,3-0,5 мкг/л и даже более (при фоне обычно не больше 0,1 мкг/л). В городах наблюдается увеличение количества ртути, переносимой с аэрозолями и атмосферной пылью.

Фоновые уровни ртути в природных почвах зависят от их типа, но в большинстве случаев находятся в пределах 0,01-0,1 мг/кг. Нижние пределы характерны для песчаных почв, верхние - для почв, богатых органическим веществом. Содержания, превышающие эти величины, связаны с влиянием загрязнения. В почвах ртуть активно аккумулируется гумусом, глинистыми частицами, может мигрировать вниз по почвенному профилю и поступать в грунтовые воды, поглощаться растительностью, в том числе сельскохозяйственной, а также выделяться в виде паров и в составе пыли в атмосферу. При сильном загрязнении почв концентрации ртути в воздухе могут достигать опасных для человека величин.

В поверхностных водах ртуть мигрирует в двух основных фазовых состояниях - в растворе вод (растворенные формы) и в составе взвеси (взвешенные формы). В свою очередь, в растворе вод она может находиться в виде двухвалентного иона, гидроксида ртути, комплексных соединений (с хлором, органическим веществом и др.). Наиболее высокими концентрациями ртути характеризуются техногенные силы, активно накапливающиеся в реках и водоемах, куда поступают сточные воды промышленности. Уровни содержания ртути в них достигают 100-300 мг/кг и больше (при фоне до 0,1 мг/кг). Известны случаи, когда количество ртути, поступившей со сточными водами и накопившееся в таких илах, составляло десятки и сотни тонн.

Упрощенная схема превращений ртути в воде:

5. Антропогенный круговорот: круговорот ксенобиотиков (ртути, свинца, хрома)

Человечество является частью природы и может существовать только в постоянном взаимодействии с ней.

Существуют сходства и противоречия между естественным и антропогенным круговоротом веществ и энергии, совершающихся в биосфере.

Естественный (биогеохимический) круговорот жизни имеет следующие особенности:

- использование солнечной энергии в качестве источника жизни и все ее проявления на основе термодинамических законов;

- он осуществляется безотходно, т.е. все продукты его жизнедеятельности, минерализуются и снова включаются в следующий цикл круговорота веществ. При этом за пределы биосферы удаляется отработанная, обесцененная тепловая энергия. При биогеохимическом круговороте веществ образуются отходы, т.е. запасы в виде каменного угля, нефти, газа и других минеральных ресурсов. В отличие от безотходного естественного круговорота антропогенный круговорот сопровождается увеличивающимися с каждым годом отходами.

В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, т. к. с вулканическими газами в воздух поступают нужные элементы (например, азот).

Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах ее развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии.

Огромную роль на биогеохимический круговорот оказывает человек, но в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила - разрушительная по отношению к биосфере. В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается.

Антропогенный круговорот не ограничивается энергией солнечного света, улавливаемой зелеными растениями планеты. Человечество использует энергию топлива, гидро- и атомных станций.

Можно утверждать, что антропогенная деятельность на современном этапе представляет собой огромную разрушительную для биосферы силу.

Биосфера обладает особенным свойством - значительной устойчивостью по отношению к загрязняющим веществам. Эта устойчивость основана на естественной способности различных компонентов природной среды к самоочищению и самовосстановлению. Но не безгранично. Возможный глобальный кризис вызвал необходимость построения математической модели биосферы как единого целого (система «Гея») с целью получения информации о возможном состоянии биосферы.

Ксенобиотик - чужеродное для живых организмов вещество, появляющееся в результате антропогенной деятельности (пестициды, препараты бытовой химии и другие загрязнители), способное вызывать нарушение биотических процессов, в т.ч. заболевание или гибель организма. Такие загрязнители не подвергаются биодеградации, а аккумулируются в трофических цепях.

Ртуть - весьма редкий элемент. Она рассеяна в земной коре и только в немногих минералах, таких как киноварь, содержится в концентрированном виде. Ртуть участвует в круговороте вещества в биосфере, мигрируя в газообразном состоянии и в водных растворах.

Размещено на http://www.allbest.ru/

В атмосферу она поступает из гидросферы при испарении, при выделении из киновари, с вулканическими газами и газами из термальных источников. Часть газообразной ртути в атмосфере переходит в твердую фазу и удаляется из воздушной среды. Выпавшая ртуть поглощается почвами, особенно глинистыми, водой и горными породами. В горючих полезных ископаемых - нефти и каменном угле - ртути содержится до 1 мг/кг. В водной массе океанов примерно 1,6 млрд. т, в донных осадках - 500 млрд.т, в планктоне - 2 млн.т. Речными водами ежегодно с суши выносится около 40 тыс.т, что в 10 раз меньше, чем поступает в атмосферу при испарении (400 тыс.т). На поверхность суши ежегодно выпадает около 100 тыс.т.

Ртуть из естественного компонента природной среды превратилась в один из наиболее опасных для здоровья человека техногенных выбросов в биосферу. Она широко применяется в металлургии, в химической, электротехнической, электронной, целлюлозно-бумажной и фармацевтической промышленности и используется для производства взрывчатых веществ, лаков и красок, а также в медицине. Промышленные стоки и атмосферные выбросы, наряду с ртутными рудниками, заводами по производству ртути и теплоэнергетическими предприятиями (ТЭЦ и котельные), использующими уголь, нефть и нефтепродукты, являются основными источниками загрязнения биосферы этим токсичным компонентом. Кроме того, ртуть входит в состав ртутьорганических пестицидов, используемых в сельском хозяйстве для протравливания семян и защиты культур от вредителей. В организм человека попадает с продуктами питания (яйца, протравленное зерно, мясо животных и птиц, молоко, рыба).

Ртуть в воде и донных отложениях рек. Установлено, что около 80 % ртути, поступающей в природные водоемы, находится в растворенной форме, что в конечном итоге способствует ее распространению на большие расстояния вместе с потоками воды. Чистый элемент не токсичен.

Ртуть содержится в воде придонного ила чаще в относительно безвредных концентрациях. Неорганические соединения ртути превращаются в токсичные органические соединения ртути, такие как метилртуть CH3Hg и этилртуть C2H5Hg, благодаря бактериям, живущим в детритах и осадках, в донном иле озер и рек, в слизи, покрывающей тела рыб, а также в слизи рыбьего желудка. Эти соединения легко растворимы, подвижны и очень ядовиты. Химической основой агрессивного действия ртути является ее сродство с серой, в частности с сероводородной группой в белках. Эти молекулы связываются с хромосомами и клетками головного мозга. Рыбы и моллюски могут накапливать их до концентраций опасных для человека, употребляющего их в пищу, вызывая болезнь "Минамата".

Металлическая ртуть и ее неорганические соединения действуют, в основном, на печень, почки и кишечный тракт, однако в обычных условиях сравнительно быстро выводятся из организма и опасное для организма человека количество не успевает накопиться. Метилртуть и другие алкильные соединения ртути являются гораздо более опасными, т. к. происходит кумуляция - токсин поступает в организм быстрее, чем выводится из организма, действуя на центральную нервную систему.

Донные отложения являются важной характеристикой водных экосистем. Аккумулируя тяжелые металлы, радионуклиды „y высокотоксичные органические вещества, донные отложения, с одной стороны, способствуют самоочищению водных сред, а с другой - представляют собой постоянный источник вторичного загрязнения водоемов. Донные отложения - перспективный объект анализа, отражающий многолетнюю картину загрязнения (особенно в малопроточных водоемах). Причем накопление неорганической ртути в донных отложениях наблюдается особенно в устьях рек. Может возникнуть напряженная ситуация, когда адсорбционная способность отложений (ила, осадков) будет исчерпана. Когда будет достигнута адсорбционная емкость, тяжелые металлы, в т.ч. ртуть начнут поступать в воду.

Известно, что в морских анаэробных условиях в отложениях отмерших водорослей ртуть присоединяет водород и переходит в летучие соединения.

При участии микроорганизмов может метилироваться в две стадии металлическая ртуть:

Hg > CH2Hg+ > (CH3)2 Hg

Метилртуть в окружающей среде появляется практически только при метилировании неорганической ртути.

Биологический период полувыведения ртути велик, он составляет для большинства тканей организма человека 70-80 дней.

Известно, что в начале пищевой цепочки происходит загрязнение ртутью крупных рыб, например меч-рыбы, тунца. Не безинтересно при этом отметить, что в еще большей степени, чем в рыбах, ртуть накапливается (аккумулируется) в устрицах.

Ртуть попадает в организм человека при дыхании, с пищей и через кожу по следующей схеме:

Во-первых, происходит транформация ртути. Этот элемент встречается в природе в нескольких формах.

Металлическая ртуть, применяемая в термометрах, и ее неорганические соли (например, хлорид) выводятся из организма сравнительно быстро.

Гораздо более ядовиты алкильные соединения ртути, в частности метил- и этилртуть. Эти соединения очень медленно выводятся из организма за сутки всего лишь около 1% общего количества. Хотя большая часть ртути, попадающей в природные воды, содержится там в виде неорганических соединений, в рыбе она всегда оказывается в форме гораздо ядовитой метилртути. Бактерии в донном иле озер и рек, в слизи, покрывающей тела рыб, а также в слизи рыбьего желудка способны превращать неорганические соединения ртути в метилртуть.

Во-вторых, избирательное накопление, или биологическое накопление (концентрирование), повышает содержание ртути в рыбе и моллюсках до уровней во много раз выше, чем в воде залива. Рыбы и моллюски, обитающие в реке, накапливают метилртуть до концентраций, опасных для человека, использующего их в пищу.

99 % мирового улова рыбы содержит ртуть в количестве не более 0,5 мг/кг, а 95% - ниже 0,3 мг/кг. Почти вся ртуть в рыбе находится в виде метилртути.

Учитывая разную токсичность ртутных соединений для человека в пищевых продуктах необходимо определять неорганическую (общую) и органически связанную ртуть. У нас определяется только общее содержание ртути. По медико-биологическим требованиям содержание ртути в пресноводной хищной рыбе допускается 0,6 мг/кг, в морской - 0,4 мг/кг, в пресноводной не хищной только 0,3 мг/кг, а в тунцовых до 0,7 мг/кг. В продуктах детского питания содержание ртути не должно превышать 0,02 мг/кг в мясных консервах, 0,15 мг/кг в рыбных консервах, в остальных - 0,01 мг/кг.

6. Добыча, производство и использование ртути

Месторождения ртути известны более чем в 40 странах мира. Мировые ресурсы ртути оцениваются в 715 тыс. т, количественно учтенные запасы - в 324 тыс. т., из которых 26% сосредоточено в Испании, по 13% в Киргизии и России, 8% - в Украине, примерно по 5-6,5% - в Словакии, Словении, Китае, Алжире, Марокко, Турции. Обеспеченность запасами ртути максимального уровня ее потребления, достигнутого в 1990-е годы, составляет для мира около 80 лет. С начала 1970-х гг. из-за экологических факторов конъюнктура рынка ртути стала заметно ухудшаться. Если в начале 1970-х гг. мировое производство первичной ртути (добыча на рудниках и плавка) оценивалось на уровне 10000 т в год, то к концу 1980-х гг. оно уменьшились более чем в два раза. Это сопровождалось снижением цен на ртуть: с 11-12 тыс. долларов США за 1 т в 1980-1982 гг. до 4-5 тыс. долларов в 1994-1996 гг.

В конце 1990-х гг. добыча и производство первичной ртути осуществлялись в 11 странах, из которых 27% приходилось на Испанию, 19% на Китай, 15% - на Киргизию, 15% - на Алжир. Мировое производство ртути в 1990-е гг. колебалось в пределах 2,3-2,8 тыс. т/год. Качественное состояние минерально-сырьевой базы ртутной промышленности сейчас оценивается как неудовлетворительное. Дело в том, что в большинстве стран содержания ртути в рудах не превышают 0,55%, что при сложившемся уровне цен не обеспечивает их рентабельную отработку. Это, с одной стороны, отчасти явилось причиной закрытия многих рудников, в том числе в России, Украине, Словении, Турции. С другой стороны, наряду с экологическими причинами, способствует развитию производства попутной и вторичной ртути. Например, в США с 1991 г. ртуть выпускается только как попутный продукт, получаемый при производстве золота. Попутная ртуть извлекается также из руд цветных металлов на месторождениях Финляндии, Италии, Норвегии, Словакии, Марокко. Мировой выпуск ртути из этих источников составляет порядка 400-500 т в год. Попутное получение ртути осуществляется даже из природного газа в Нидерландах и Германии. Развивается получение вторичной ртути из отходов производства и потребления.

Тем не менее, несмотря на снижение производства первичной ртути, объем международной торговли ртутью (экспорт+импорт), в первой половине 1990-х гг. медленно увеличивался и составил в 1995 г. 8,5 тыс. т. Спрос на ртуть удовлетворялся за счет имевшихся в ряде стран складских и стратегических запасов ртути. Сейчас ртуть экспортируют 28 стран, из которых лишь в 8 производится первичный металл. Наиболее значимыми экспортерами ртути являлись Гонконг (перепродажа ртути), Испания, США, Россия и Алжир. Некоторые страны продают вторичную ртуть (Нидерланды, США) или реализовывают складские запасы (Россия, США). В последние годы США отказались от продаж ртути из своих стратегических запасов. Импортируют ртуть 52 страны. Крупнейшими импортерами в 1990-х гг. являлись Гонконг, Китай, Индия, Испания, Нидерланды. Значительную часть испанского импорта составляла ртуть из российских складских запасов: компания Альмаден закупала ее, рафинировала и перепродавала. В 1990-х гг. наблюдалась ситуация, когда предложение ртути заметно отставало от ее спроса.

Эксперты считают, что в ближайшие годы не произойдет резкого изменения конъюнктуры рынка ртути. В ряде отраслей ее применение будет медленно сокращаться. Однако в некоторых производствах, в силу различных причин, например, в приборостроении, электротехнике, оборонной промышленности потребление ртути, видимо, останется на прежнем уровне. Химическая промышленность ряда стран, связанная с производством хлора, каустика, ацетальдегида, винилхлорида ртутным способом, также будет оставаться важным потребителем этого металла. Такие предприятия есть и в России.

В свое время СССР был одним из ведущих в мире производителей первичной ртути (Никитовка в Украине, Хайдаркан в Киргизии и другие, менее крупные месторождения). Например, в 1970-е гг. только в Никитовке выпускалось до 1 тыс. т ртути в год. В 1970-80-е гг. в России - на Сев. Кавказе, Алтае, Чукотке - действовало 4-5 небольших рудников, которые сейчас закрыты. Производственными мощностями, не обеспеченными в настоящее время достаточно качественной сырьевой базой, располагают ТОО «Краснодарский рудник» на Сахалинском месторождении и Акташское предприятие в Алтайском крае на одноименном месторождении. В России известно 24 месторождения ртути. Самые крупные из них - Тамватнейское и Западнопалянское - расположены на Чукотке. Их освоение требует крупных капиталовложений.

В 1980-х гг. в СССР ежегодно использовалось примерно 1250 т ртути в год, из которых около 39 т применялось в светотехнической промышленности. Потребление ртути в России в конце 1980-х гг. составляло 500 т в год; в начале 1990-х гг. было примерно таким же - 400-500 т/год, а к концу 20 в. сократилось до 250-300 т в год. Эксперты считают, что, при должной организации производства, Россия в существенной мере способна обеспечить себя попутной и вторичной ртутью, что позволит также решить многие экологические проблемы.

Ртуть всегда находила широкое применение в различных сферах практической, научной и культурной деятельности человека. К началу 1980-х гг. было известно свыше тысячи разнообразных областей ее применения. Вот основные из них, в которых ртуть и ее соединения в той или иной мере используются и сейчас:

1) химическая промышленность - производство хлора и каустика, ацетальдегида, хлорвинила, полиуретанов, антракинола, ртутьорганических пестицидов, красок;

2) электротехническая промышленность - производство различных ламп, реле, сухих батарей, переключателей, выпрямителей, игнитронов и др.;

3) радиотехническая промышленность и приборостроение - производство контрольно-измерительных приборов (термометры, барометры, манометры, полярографы, электрометры), радио - и телеаппаратуры;

4) медицина и фармацевтическая промышленность - изготовление глазных и кожных мазей, веществ бактерицидного действия, производство витамина В12, изготовление зубных пломб (амальгамы серебра и меди);

5) сельское хозяйство (ядохимикаты, антисептики); в) машиностроение и вакуумная техника - производство вакуумных насосов и др.;

6) военное дело - изготовление детонаторов, управляемых снарядов;

7) металлургия - получение сверхчистых металлов, точное литье, амальгамирование благородных металлов; 8) горное дело (гремучая ртуть);

9) лабораторная практика и аналитическая химия. В энергетике ртуть использовалась как рабочее тело в мощных бинарных установках промышленного типа, где для генерации электроэнергии на первых ступенях применялись ртутно-паровые турбины, а также в ядерных реакторах для отвода тепла. Элементарную ртуть используют в процессах разделения изотопов лития. Ртутью иногда легируют другие металлы. Небольшие ее добавки увеличивают твердость сплава свинца со щелочноземельными металлами. Ее даже использовали при паянии. Цианид ртути применяли в производстве антисептического мыла.

7. Ртуть и экологические проблемы

На кораблях Магеллана, отправившихся в знаменитое путешествие, среди товаров присутствовало 20 кинталей (1 кинталь = 46 кг) металлической ртути и 30 кинталей киновари. На островах Пряностей за 55 фунтов киновари или за 55 фунтов ртути испанцы получали один бахар (от 200 до 240 кг) гвоздики. Это был первый случай столь дальней техногенной, т. е. обусловленной деятельностью человека, миграции этого металла. Через четыре столетия техногенная миграция ртути станет для человечества глобальной проблемой.

7.1 Загрязнение окружающей среды ртутью

Ртуть является одним из самых опасных загрязняющих окружающую среду металлов. Практически во всех странах она входит в «черные списки» химических веществ, подлежащих особому экологическому и гигиеническому контролю. Ртутьсодержащие отходы по степени токсичности относятся к I классу опасности, представляя собой, по образному выражению, химическую бомбу замедленного действия. Ртуть уже отметилась несколькими экологическими трагедиями, наиболее известными из которых являются массовые заболевания и гибель людей в Японии в районе Минаматы и в Ираке.

В городке Минамата располагались химические заводы, являющиеся филиалом крупного концерна «Тиссо». Один из них производил винилхлорид, другой - ацетальдегид, причем в качестве катализатора использовалась ртуть. Сточные воды заводов сбрасывались в залив Минамата. Они содержали ртуть, не только неорганическую, но и метилртуть, образующуюся в ходе технологических процессов. Всего в залив поступило более 300 т ртути, подавляющая часть которой накопилась в донных отложениях. Ртуть накапливалась в воде и донных отложениях, включалась в морскую пищевую цепь, концентрируясь в моллюсках и рыбе. В водной среде начинали активизироваться процессы метилирования неорганической ртути, что еще больше увеличивало опасность. Большинство жителей города и окрестных деревень существовала за счет морского промысла, а морепродукты были их основной пищей. Так метилртуть попадала в организм людей (и животных), вызывая страшные отравления, вплоть до смертельных исходов.

Вспышка массового отравления ртутью в Ираке произошла зимой 1971-1972 гг. Здесь семенное зерно, обработанное метилртутным фунгицидом, было использовано для приготовления домашнего хлеба в сельских местностях по всей стране. Уже в конце декабря 1971 г. в больницу были доставлены первые пострадавшие. Общее число госпитализированных превысило 6000, причем большинство из них поступило в январе 1972 г. В больницах было зарегистрировано более 400 смертельных случаев, обусловленных отравлением метилртутью.

События в Японии и в Ираке инициировали развитие многочисленных исследований по изучению ртутного загрязнения во многих странах. Было установлено, что ртуть поступает в среду обитания не только с выбросами, стоками и твердыми отходами производств, использующих ее в технологических циклах. Она в повышенных концентрациях присутствует в выбросах, сточных водах и отходах многих видов производственной и бытовой деятельности. Ртуть поступает в окружающую среду при сжигании угля, мазута и других нефтепродуктов. Например, поступление ртути в атмосферу при сжигании ископаемого топлива в России оценивается от 10-15 до 60-70 т в год. Существенным источником загрязнения среды обитания ртутью являются предприятия металлургии и цементной промышленности. В свое время в сельском хозяйстве использовались ртутьсодержащие ядохимикаты (прежде всего, гранозан). Ртуть - типичный компонент различных промышленных и бытовых отходов. В районе свалок в окружающей среде всегда отмечаются ее повышенные уровни.

...

Подобные документы

  • Ртуть - элемент таблицы периодической системы химических элементов Менделеева. Физические и химические свойства. Соединения ртути. Нахождение в природе. Месторождения, получение, применение. Токсикология, гигиеническое нормирование концентраций ртути.

    реферат [63,3 K], добавлен 19.05.2015

  • Легко растворимые и диссоциирующие соли ртути как ее наиболее опасные соединения. специфические биохимические реакции при отравлении парами ртути, окисляющие ее и превращающие в растворимые ядовитые соединения. Использование ртути в различных технологиях.

    реферат [23,1 K], добавлен 20.03.2009

  • Общая характеристика и история открытия ртути. Распространенность и формы нахождения элемента побочной подгруппы в природе. Сущность амальгамов как твердых или жидких растворов. Конфигурация внешних электронных оболочек атома. Ядовитость соединений ртути.

    реферат [45,7 K], добавлен 14.04.2015

  • Общая характеристика ртути, свойства соединений, ее получение и применение. Отравление ртутью и ее соединениями. Тиоцианат (роданид) ртути: история получения, характерные реакции и воздействие на живые организмы. Практическое получение тиоцианата ртути.

    курсовая работа [78,6 K], добавлен 28.05.2009

  • Рассмотрение ртути как химического элемента. Механизм попадания ртути в пищевые продукты. Предельно допустимые концентрации ртути в продуктах питания. Характеристика инверсионно-вольтамперометрического метода. Определение концентрации ртути в рыбе.

    курсовая работа [64,0 K], добавлен 06.05.2019

  • Обоснование схемы флотации. Свойства пирротина (магнитного пирита), киновари, гипса и повеллита. Флотируемость основных минералов, входящих в состав полезных ископаемых. Расчёт качественно-количественной схемы обогащения ртути по повеллиту и киновари.

    курсовая работа [44,1 K], добавлен 20.01.2011

  • Ртуть и ее соединения. Получение тетрайодомеркурата калия и диоксида серы. Комплексные соединения переходных элементов, их особенности и роль в науке и биохимических процессах. Синтез тетрайодомеркурата меди и его свойства. Соединения серебра и золота.

    курсовая работа [80,5 K], добавлен 11.12.2014

  • Изучение электрохимического производства хлора, щелочи и гипохлората натрия, которое относится к числу крупнотоннажных электрохимических производств. Особенности электролиза с ртутным катодом. Извлечение ртути из растворов производства хлора и щелочи.

    контрольная работа [440,6 K], добавлен 11.10.2010

  • Актуальность совершенствования методов анализа содержания ртути в водных объектах. Описание используемых приборов-анализаторов. Оценка необходимости выявления бактерий в воде. Рассмотрение метода исследования объектов с использованием глюкуронидов.

    презентация [2,6 M], добавлен 10.10.2015

  • Электронные термы двухатомной молекулы. Переходы между электронно-колебательно-вращательными уровнями, правила отбора. Спектр поглощения йода при увеличении спектрального разрешения. Основные типы многокристальных сборок. Таблица спектральных линий ртути.

    контрольная работа [1,0 M], добавлен 08.07.2012

  • Положение цинка, фосфата кадмия и ртути в периодической системе Д.И. Менделеева. Распространение их в природе, физические и химические свойства. Получение фосфорнокислого цинка. Синтезирование и изучение окислительно-восстановительных свойств цинка.

    курсовая работа [25,6 K], добавлен 12.10.2014

  • Золото - один из семи металлов древности. Состав серебряных предметов в Египте и других странах Западной Азии. Медь - один из первых металлов, которые человек стал применять для технических целей. Применение ртути для изготовления пилюлей бессмертия.

    презентация [686,7 K], добавлен 23.11.2010

  • Характерные особенности и химические свойства d-элементов периодической системы. Виды их существования в организмах. Биологическая роль хрома, молибдена, вольфрама, марганца, железа, меди, серебра, золота, цинка, кадмия и ртути. Их применение в медицине.

    лекция [1,7 M], добавлен 02.12.2012

  • Происхождение, методы получения и физико-химические свойства висмута - химического элемента V группы периодической системы Д.И. Менделеева. Содержание в земной коре и в воде, добыча и производство. Применение в промышленности, машиностроении и в медицине.

    курсовая работа [161,6 K], добавлен 01.05.2011

  • Физические и химические свойства тяжелых металлов и их соединений, используемых в промышленном производстве и являющихся источником загрязнения окружающй среды: хром, марганец, никель, кадмий, цинк, вольфрам, ртуть, олово, свинец, сурьма, молибден.

    реферат [48,0 K], добавлен 13.03.2010

  • Химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов). Свойства и важнейшие характеристики, получение, применение. Поверхностно-активные вещества: молекулярное строение и получение, свойства и применение.

    реферат [28,7 K], добавлен 05.02.2008

  • Физико-химические свойства германия и его соединений. Его электродные потенциалы в водных растворах. Электроосаждение германия и его сплавов. Получение гидрида германия. Электрохимическое поведение соединений германия. Растворимость германия в ртути.

    дипломная работа [53,0 K], добавлен 15.04.2008

  • Физико-химические свойства и области применения триэтиленгликоля. Технические требования и требования безопасности при работе с ним. Упаковка, маркировка, транспортирование и хранение. Изучение схемы получения диэтиленгликолей гидратацией этиленоксида.

    реферат [514,1 K], добавлен 09.10.2013

  • Серная кислота: физико-химические свойства, применение, основные способы получения. Характеристика исходного сырья. Производство серной кислоты из железного колчедана. Материальный и тепловой баланс. Охрана окружающей среды, связанная с производством.

    курсовая работа [2,2 M], добавлен 24.10.2013

  • Общие сведения об элементе. Его применение, физические и химические свойства. Ниобий в свободном состоянии, его соединения с галогенами, карбидами и нитридами. Оксиды металла и их соли. Добыча ниобия на территории России. Страны лидеры в его производстве.

    реферат [136,6 K], добавлен 17.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.