Синтез этилацетата по реакции Тищенко

Физико-химические характеристики этилацетата, получение и применение в промышленности. Проведение расчёта материального и теплового баланса реакции Тищенко. Исследование процесса этерификации. Схемы установок по синтезу этилацетата из ацетальдегида.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 16.11.2015
Размер файла 586,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

СОДЕРЖАНИЕ

Введение

1. Теоретическая часть

1.1 Физико-химические характеристики этилацетата

1.2 Применение этилацетата

1.2.1 Лабораторное применение

1.3 Требования безопасности

2. Технологическая часть

2.1 Синтез этилацетата в лаборатории

2.2 Производство этилацетата в промышленности

2.3 Получение этилацетата по реакции Тищенко

Заключение

Список использованных источников

ВВЕДЕНИЕ

Этилацетат находит широкое применение в различных областях промышленности, в основном, в качестве растворителя и экстрагента.

Существующие промышленные методы получения этилацетата основаны на этерификации уксусной кислоты этиловым спиртом.

В связи с тем, что этиловый спирт является продуктом синтеза, замена его на этилен в этом процессе несомненно может иметь практический интерес.

Из-за специфических свойств его применяют в целом множестве областей индустрии, также растет потребность в многотоннажном производстве этилацетата.

Промышленное получение этилацетата включает несколько методов:

1. методом «реакции Тищенко»,

2. методом этерификации кислоты уксусной спиртом этиловым, при наличии ускорителя реакции, в роли которого могут выступать кислота серная, паратолуолсульфокислота или смолы (ионообменные),

3. методом окисления (жидкофазного) н-бутана кислородом (воздухом) при получении уксусной кислоты (как побочный продукт получается этилацетат),

4. методом алкилирования кислоты уксусной этиленом.

Как растворитель, являясь активным растворителем нитро- и этилцеллюлозы, широко используется в производстве лакокрасочных материалов и чернил для печатающих машин.

Также он входит в композиции растворителей нитроглифталевих, перхлорвиниловых и эпоксидних эмалей, разных смазочных масел, восков, полиэфирных лаков, красок, кремниорганических лаков и эмалей.

В данной курсовой работе будут рассмотрены три основных метода получения ацетальдегида, а именно: синтез в лабораторных условиях, синтез в промышленности и производство по реакции Тищенко.

Цель курсовой работы: ознакомиться с методом синтеза этилацетата по реакции Тищенко, провести расчёт материального и теплового баланса и изучить принципиальные схемы аппаратов данного производства.

1. Теоретическая часть

1.1 Физико-химические характеристики этилацетата

Этилацетат CH3C(O)OC2H5, этиловый эфир уксусной кислоты - бесцветная, прозрачная, горючая жидкость с приятным запахом.

Смешивается в любых соотношениях с бензолом, толуолом, хлороформом, диэтиловым эфиром, этанолом и рядом других органических растворителей.

Ограниченно растворим в воде (до 12% по массе). В этилацетате, в свою очередь, растворяется до 9.7 массовых процентов воды.

Этилацетат образует азеотропные смеси с водой (Tкип=70.4°C, 8.2% воды по массе), этиловым спиртом (71.8°C и 30.8%), метанолом (62.25°C и 44.0%), изопропиловым спиртом (75.3°C и 21.0%), циклогексаном (72.8°C и 54.0%), четыреххлористым углеродом (74.7°C и 57.0%)

Этилацетат является умеренно полярным растворителем. Хорошо растворяет эфиры целлюлозы, смоляные масляные лаки, жиры, воски. Его химические свойства типичны для сложных эфиров. Легко гидролизуется до этанола и уксусной кислоты в щелочной среде.

В кислой среде может быть переэтерифицирован.

Таблица 1.1

Физико-химические характеристики этилацетата ГОСТ 8981-78.

Наименование показателя

Этилацетат

А

Б

высший сорт

1-й сорт

Внешний вид

Прозрачная жидкость без механических примесей

Цветность, единицы Халена, не более

5

10

10

Плотность при 20 0С, г/см3

0,898-0,900

0,897-0,900

0,890-0,900

Массовая доля основного вещества, %

не менее 99

не менее 98

91±1

Массовая доля кислот в пересчете на уксусную кислоту, %, не более

0,004

0,008

0,01

Массовая доля нелетучего остатка, %, не более

0,001

0,003

0,007

Температурные пределы перегонки при давлении 101,3 кПа 93% (по объему)продукта должны отгоняться в пределахтемператур, 0С

75-78

74-79

70-80

Массовая доля воды, % не более

0,1

0,2

1

Массовая доля альдегидов в перерасчете на уксусный альдегид, % не более

0,05

не маркируется

-

Обладает сравнительно низкой токсичностью. Его пары раздражают слизистые оболочки глаз и дыхательных путей, при воздействии на кожу возможно развитие экземы и дерматита [2].

Этиловый спирт (этанол) С2Н5ОН -- бесцветней жидкость, легко испаряющаяся (температура кипения 64,7 ?С, температура плавления -97,8 ?С, оптическая плотность 0,7930) . Спирт, содержащий 4--5 % воды, называют ректификатом, а содержащий только доли процента воды -- абсолютным спиртом.

Альдегид (муравьиный) - газ с весьма резким запахом. Другие низшие альдегиды - жидкости, хорошо растворимые в воде. Альдегиды обладают удушливым запахом, который при многократном разведении становится приятным, напоминая запах плодов. Альдегиды кипят при более низкой температуре, чем спирты с тем же числом углеродных атомов. В то же время температура кипения альдегидов выше, чем у соответствующих по молекулярной массе углеводородов, что связано с высокой полярностью альдегидов.

Альдегиды характеризуются высокой реакционной способностью. Большая часть их реакций обусловлена наличием карбонильной группы. Атом углерода в карбонильной группе находится в состоянии sp2 -гибридизации. Физические свойства некоторых альдегидов представлены в таблице 1.2.

Таблица 1.2

Физические свойства некоторых альдегидов

Название

Формула

t°кип., °C

t°пл., °C

d420

Муравьиный альдегид

O II H-C I H

-92,0

-21,0

0,815 (при 20°С)

Уксусный альдегид

O II CH3-C I H

-123,5

21,0

0,780

1.2 Применение этилацетата

Этилацетат широко используется как растворитель, из-за низкой стоимости и малой токсичности, а также приемлемого запаха. В частности, как растворитель нитратов целлюлозы, ацетилцеллюлозы, жиров, восков, для чистки печатных плат, в смеси со спиртом -- растворитель в производстве искусственной кожи. Годовое мировое производство в 1986 году составляло 450--500 тысяч тонн. ацетальдегид этилацетат этерификация

Как растворитель, являясь активным растворителем нитро- и этилцеллюлозы, широко используется в производстве лакокрасочных материалов и чернил для печатающих машин. Также он входит в композиции растворителей нитроглифталевих, перхлорвиниловых и эпоксидних эмалей, разных смазочных масел, восков, полиэфирных лаков, красок, кремниорганических лаков и эмалей. На эти цели расходуется до 30% всего производимого этилацетата.

На стадии упаковывания различных товаров гибкими упаковочными материалами - как растворитель пленок и чернил при нанесении надписей и изображений трафаретным способом. Как реагент и как реакционная среда в производстве фармацевтических препаратов (метоксазол, гидрокортизон, рифампицин и т.д.).

Один из самых популярных ядов, применяемых в энтомологических морилках для умерщвления насекомых. Насекомые после умерщвления в его парах гораздо мягче и податливее в препарировании, чем после умерщвления в парах хлороформа.

Как компонент (пищевая добавка E1504) фруктовой эссенции, которую добавляют в прохладительные напитки, ликеры и кондитерские изделия.

1.2.1 Лабораторное применение

Этилацетат часто используется для экстракции, а также для колоночной и тонкослойной хроматографии. Редко в качестве растворителя для проведения реакций из-за склонности к гидролизу и переэтерефикации. Для получения ацетоуксусного эфира

2CH3COOC2H5 + Na > CH3COCH2COOC2H5 + CH3CO2Na

1.3 Требования безопасности

Этилацетат технический по степени воздействия на организм человека относится к числу малоопасных веществ (4 класс опасности). Пары этилацетата раздражают слизистые оболочки глаз и дыхательных путей. При действии на кожу вызывают дерматиты и экземы. ПДК в воздухе рабочей зоны 200 мг/м3.Этилацетат технический является легковоспламеняющейся жидкостью и образует в смеси с воздухом взрывоопасную смесь категории ПА, группы Т2 по ГОСТ 12.1.011. ЛД50 для крыс составляет 11.3 г/кг, показывая низкую токсичность.

Пары этилацетата раздражают слизистые оболочки глаз и дыхательных путей, при действии на кожу вызывают дерматиты и экземы. ПДК в воздухе рабочей зоны 200 мг/м3. ПДК в атмосферном воздухе населенных мест 0.1 мг/м3[3].Температура вспышки -- 2 °C, температура самовоспламенения -- 400 °C, концентрационные пределы взрыва паров в воздухе 2,1-16,8 % (по объему).Безопасность при транспортировке. В соответстви с ДОПОГ (ADR) класс опасности 3, код по реестру ООН 1173.

2. Технологическая часть

2.1 Синтез этилацетата в лаборатории

Рисунок 2.1 - Схема прибора для получения этилацетата

Синтез осуществляют в приборе, изображенном на рисунке 2.1. В колбу Вюрца емкостью 100мл, снабженную капельной воронкой и соединительную с нисходящим холодильником, вливают 2,5 мл этилового спирта и затем осторожно при перемешивании приливают 1,5 мл концентрированной серной кислоты. Колбу закрывают пробкой, в которую вставлена капельная воронка. И нагревают на масляной (или металлической) бане до 140° С ( термометр погружен в баню).

В колбу из капельной воронки постепенно приливают смесь из 2 мл этилового спирта и 4,5 мл ледяной уксусной кислоты. Приливание следует вести с такой же скоростью, с какой отгоняется образующий эфир. По окончании реакции (после прекращения отгона эфира) погон переносят в делительную воронку и взбалтывают с концентрированным раствором соды для удаления уксусной кислоты.

Отделяют верхний эфирный слой и встряхивают его с насыщенным раствором хлористого кальция (для удаления спирта, который дает с хлористым кальцием кристаллическое молекулярное соединение СаCl2 * C2H5OH, нерастворимое в уксусноэтиловом эфире).

Отделив эфир, сушат его прокаленным хлористым кальцием и перегоняют на водяной бане из колбы с дефлегматором. При температуре 71-75° С будет отгоняться смесь спирта и этилацетата, при 75-78° С переходит практически чистый уксусноэтиловый эфир. Выход составляет 20 г (65 % теоретического) [4].

2.2 Производство этилацетата в промышленности

Рассмотрим технологическую схему непрерывного производства этилацетата, изображенную на рисунке 2.2.

Из напорного бака 1 исходная смесь реагентов, содержащая уксусную кислоту, этанол и серную кислоту в качестве катализатора, непрерывно поступает на реакцию через расходомер. Она вначале проходит теплообменник 2, в котором нагревается за счет паров, выходящих из реакционной колонны, и затем поступает на верхнюю тарелку эфиризатора 4. Благодаря обогреву куба колонны острым паром, образующийся этилацетат вместе с парами спирта и воды отгоняется из колонны, а жидкость при движении вниз по тарелкам обогащается водой. Время пребывания реакционной массы в эфиризаторе и соотношение исходных реагентов подбирают такими, чтобы кубовая жидкость содержала только небольшое количество непрореагировавшей уксусной кислоты (в ней остается также вся уксусная кислота). Эту жидкость выводят из куба, и после нейтрализации выводят в канализацию.

Рисунок 2.2 - Технологическая схема производства этилацетата

1 - напорный бак; 2 - теплообменник; 3 - конденсатор; 4 - эфиризатор; 5, 10 - ректификационные колонны; 6, 9 - конденсаторы-дефлегматоры; 7 - смеситель; 8 - сепаратор; 11 - холодильник; 12 - сборник; 13 - кипятильники.

Пары, выходящие с верха реактора, содержат 70% спирта и 20% эфира. Они направляются на охлаждение и конденсацию вначале в теплообменник 2, где нагревают смесь исходных реагентов, а затем в конденсатор 3. Конденсат из аппарата 2 и часть конденсата из аппарата 3 возвращают на верхнюю тарелку реактора 4. Остальное его количество попадает в ректификационную колонну 5, предназначенную для отделения азеотропной смеси от водного спирта. Куб колонны 5 обогревается при помощи кипятильника 13, а флегму создают в аппарате 6, из которого часть конденсата возвращают на орошение.

Кубовая жидкость колонны 5 состоит из спирта (большая часть) и воды. Она отводится из колонны и поступает на одну из нижних тарелок эфиризатора 4, чтобы обеспечить достаточное количество спирта в нижней части этой колонны и добиться более полной конверсии уксусной кислоты.

Пары из колонны 5 конденсируются в аппарате 6, откуда часть конденсата идет на орошение, а остальное количество поступает в смеситель 7, где разбавляется примерно равным объемом воды (без этого, конденсат не расслоится, так как вода довольно хорошо растворима в смеси эфира со спиртом). Образовавшаяся эмульсия разделяется в сепараторе 8 непрерывного действия на два слоя - верхний, содержащий эфир с растворенным в нем спиртом и водой, и нижний, представляющий собой водный раствор спирта и эфира. Нижний слой возвращают на одну из средних тарелок колонны 5. Эфир-сырец из сепаратора 8 направляют на очистку от воды и спирта. Ее проводят в ректификационной колонне 10 путем отгонки низкокипящей тройной азеотропной смеси эфира, спирта и воды. Часть этой смеси после конденсатора 9 идет на орошение колонны 10, а остальное количество возвращается в смеситель 7. Этилацетат отводят из куба колонны 10 и после охлаждения в холодильнике 11 направляют в сборник 12. Некоторые эфиры получают по технологии, существенно отличающейся от описанной [5].

2.3 Получение этилацетата по реакции Тищенко

Реакция Тищенко, дающая возможность синтезировать сложные эфиры из альдегидов, является разновидностью реакции Канниццаро. При реакции Тищенко две молекулы альдегида конденсируются в отсутствие воды под каталитическим влиянием алкоголята алюминия с образованием соответствующего сложного эфира:

Этот процесс используют для производства этилацетата из ацетальде- гида. Катализатор состоит в основном из этилата алюминия, некоторого количества хлористого алюминия и небольших добавок окиси или этилата цинка. Конденсацию проводят при 0°, медленно прибавляя ацетальдегид к смеси этилацетата и этилового спирта. После этого реакционную смесь выдерживают до тех пор, пока конверсия альдегида не достигнет 98%. Продукты реакции перегоняют.

Первая фракция представляет собой непрореагировавший альдегид и некоторое количество смеси этилацетата и этилового спирта. Эту фракцию возвращают в реактор. Вторая фракция содержит 75% этилацетата и 25% этанола. Ее применяют для приготовления катализатора. Третья фракция является чистым этилацетатом. Общий выход этилацетата из ацетальдегида равен 97--98% .

Этот метод можно использовать для получения симметричных сложных эфиров из высших альдегидов.

С этим процессом отчасти сходен синтез сложных эфиров из спиртов, который проводят под давлением при 220° в присутствии меди или хромита меди . Этиловый спирт в этих условиях превращается с высоким выходом в этилацетат [6]. Реакция идет, по-видимому, с промежуточным образованием ацетальдегида:

ЗАКЛЮЧЕНИЕ

В данной курсовой работе всесторонне изучены несколько различных способов синтеза этилацетата, а именно получение данного сложного эфира как в лабораторных условиях, так и в промышленности.

В теоретической части был рассмотрен процесс этерификации, были изучены физико-химические свойства этилацетата, а также области его применения в различных сфера быта и промышленности.

В технологической части изучены принципиальные схемы установок, на которых осуществляется синтез этилацетата, рассмотрены механизмы работы с установками по синтезу целевого продукта. Изучен метод синтеза этилацетата из ацетальдегида в присутствии каталитической системы Al-Zn по реакции Тищенко.

В расчетной части были рассчитаны стандартные тепловые коэффициенты для всех протекающих реакций, составлен материальный и тепловой баланс сложного химического процесса.

Список ИСПОЛЬЗОВАННЫХ Источников

[1] Тутурин Н. Н.,. Этерификация // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.). -- СПб., 1890--1907

[2] И. Л. Кнунянц, Химическая энциклопедия, М.:1998, стр. 494

[3] X.Беккер, Г.Домшке, Э.Фангхенель, Органикум, М.:«Мир», 1992

[4] Г. В. Голодников, Т. В. Мандельштам, Практикум по органическому синтезу, Л.:«Ленинград», ун-та, 1976, стр. 376

[5] Н. Н. Лебедев, Химия и технология основного органического и нефтехимического синтеза, М.:«Химия», 1988, стр. 592

[6] Р. Гольдштейн, Химическая переработка нефти, М.:«Издательство иностранной литературы», 1961

Размещено на Allbest.ru

...

Подобные документы

  • Свойства и применение ацетальдегида, методы получения. Электронная структура реагентов и продуктов реакции, термодинамический анализ, исходные данные для расчёта. Получение ацетальдегида, анализ факторов, влияющих на протекание реакции окисления этилена.

    дипломная работа [1,6 M], добавлен 08.12.2010

  • Обзор возможных методов получения изобутилена. Анализ основной реакции: физические и химические свойства реагентов, их электронная структура. Особенности кинетики и механизма данной реакции. Выбор типа реактора и расчеты материального и теплового баланса.

    дипломная работа [548,2 K], добавлен 11.05.2011

  • Свойства изоамилацетата. Практическое применение в качестве растворителя в различных отраслях промышленности. Методика синтеза (уксусная кислота и уксуснокислый натрий). Реакция этерификации и гидролиз сложных эфиров. Механизм реакции этерификации.

    курсовая работа [634,2 K], добавлен 17.01.2009

  • Обзор методов получения глюкозы. Анализ основной реакции: физические, химические свойства и электронная структура целлюлозы, глюкозы и воды. Механизм и кинетическая модель реакции, расчет материального и теплового баланса, расчет объема реактора.

    дипломная работа [2,7 M], добавлен 14.05.2011

  • Определение плотности и динамического коэффициента вязкости для этилацетата. Расчет местных сопротивлений на участках трубопровода, линейной скорости потока жидкости, значений критерия Рейнольдса и коэффициентов трения для каждого из его участков.

    контрольная работа [74,7 K], добавлен 19.03.2013

  • Структура и химические свойства кетонов, стадии их енолизации и схема реакции нуклеофильного присоединения. Возможные побочные эффекты при синтезе диметилэтилкарбинола. Расчет количества исходных веществ, характеристики продуктов реакции и ход синтеза.

    курсовая работа [826,5 K], добавлен 09.06.2012

  • Понятие и предмет изучения химической кинетики. Скорость химической реакции и факторы, влияющие на нее, методы измерения и значение для различных сфер промышленности. Катализаторы и ингибиторы, различие в их воздействии на химические реакции, применение.

    научная работа [93,4 K], добавлен 25.05.2009

  • Процесс произведения нитробензола и составление материального баланса нитратора. Определение расхода реагентов и объёма реактора идеального смешения непрерывного действия при проведении реакции второго порядка. Расчет теплового эффекта химической реакции.

    контрольная работа [247,6 K], добавлен 02.02.2011

  • Характеристика магния: химические свойства, изотопы в природе. Соли магния: бромид, гидроксид, иодид, сульфид, хлорид, цитрат, английская соль; их получение и применение. Синтез нитрата магния по реакции концентрированной азотной кислоты с оксидом магния.

    курсовая работа [74,6 K], добавлен 29.05.2016

  • Химические свойства и получение в промышленности изопропилового спирта, его применение. Расчет теоретического и практического материального баланса, термодинамический анализ реакций. Расчет изменения энтропии, константы равновесия, теплоты сгорания.

    курсовая работа [265,6 K], добавлен 08.03.2011

  • Окислительно-восстановительные реакции. Колебательные химические реакции, история их открытия. Исследования концентрационных колебаний до открытия реакции Б.П. Белоусова. Математическая модель А.Лоткой. Изучение механизма колебательных реакций.

    курсовая работа [35,4 K], добавлен 01.02.2008

  • Способы получения сложных эфиров. Основные продукты и области применения эфиров. Условия проведения реакции этерификации органических кислот со спиртами. Катализаторы процесса. Особенности технологического оформления реакционного узла этерификации.

    реферат [440,1 K], добавлен 27.02.2009

  • Протекание химической реакции в газовой среде. Значение термодинамической константы равновесия. Расчет теплового эффекта; ЭДС гальванического элемента. Определение массы йода; состава равновесных фаз. Адсорбция растворенного органического вещества.

    контрольная работа [747,3 K], добавлен 10.09.2013

  • Основные способы получения аминопиридинов: реакции Чичибабина, Кенигса и Гренье, метод восстановления N-оксидов, синтез с помощью перегруппировки Курциуса. Реакции синтеза 1-пиридин-4-пиридиния хлорида, 4-аминопиридина и 4-аминопиридина гидрохлорида.

    реферат [180,9 K], добавлен 09.11.2013

  • Обоснование схемы движения материальных потоков, определение количественного состава продуктов, замер температуры и расчет теплового эффекта в зоне реакции по окислению аммиака. Изменение энергии Гиббса и анализ материально-теплового баланса процесса.

    контрольная работа [28,0 K], добавлен 22.11.2012

  • Открытие сложных эфиров первооткрывателем, русским академиком Тищенко Вячеславом Евгеньевичем. Структурная изомерия. Общая формула сложных эфиров, их классификация и состав, применение и получение. Липиды (жиры), их свойства. Состав пчелиного воска.

    презентация [1,6 M], добавлен 19.05.2014

  • Методы получения и характеристика основных свойств сульфата алюминия. Физико-химические характеристики основных стадий в технологической схеме процесса по производству сульфата алюминия. Расчет теплового и материального баланса производства алюминия.

    курсовая работа [1,6 M], добавлен 25.02.2014

  • Общая характеристика ртути, свойства соединений, ее получение и применение. Отравление ртутью и ее соединениями. Тиоцианат (роданид) ртути: история получения, характерные реакции и воздействие на живые организмы. Практическое получение тиоцианата ртути.

    курсовая работа [78,6 K], добавлен 28.05.2009

  • Характеристика исходного сырья и готового продукта, требования к ним. Физико-химические основы производства, общее описание технологической схемы. Составление материального и теплового баланса печного отделения (для сжигания серы, котла-утилизатора).

    курсовая работа [348,9 K], добавлен 21.02.2016

  • Физико-химические основы процесса метанирования, применение катализаторов и промышленные схемы. Программа расчета адиабатического коэффициента для выбора типа реактора, определение зависимости производительности от давления и начальной концентрации.

    курсовая работа [1008,4 K], добавлен 09.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.