Об аминокислотах
Обоснование необходимого запаса белков в организме человека. Механизмы циркуляции аминокислот в крови. Оценка способности синтезироваться рассматриваемых структурных химических единиц в организме. Незаменимые аминокислоты, основанные на радикалах.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 19.11.2015 |
Размер файла | 259,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
РЕФЕРАТ
Об аминокислотах
Ростов-на-Дону, 2015 год
Содержание
Введение
1. Белковый обмен
2. Незаменимые аминокислоты
3. Классификация незаменимых аминокислот, основанная на химическом строении радикала
Заключение
Используемые источники
Введение
Клетки нашего тела, как и любого живого организма, в основном состоят из протеинов - белков. Потому и необходимо запас белков в организме постоянно пополнять. Вот только не все белки являются ценными, а ценность белка зависит от того, насколько он богат незаменимыми аминокислотами. Ведь именно из аминокислот, образующихся в результате расщепления белков из пищевых продуктов, и синтезируются в человеческом организме белки. Что такое аминокислоты? Это структурные химические единицы, которые образуют белки.
1. Белковый обмен
Белки в организме также являются источником энергии. Они содержатся главным образом в мышцах и их количество составляет в организме здорового человека массой 70 кг. около 6000 г., что соответствует 24000 ккал. Циркуляция их в крови в виде аминокислот незначительна и составляет всего 6 г., или 24 ккал. Белки - необходимый компонент любой ткани организма - поступают в организм с пищей и в желудочно-кишечном тракте после воздействия на них ферментов (пепсина, трипсина) гидролизуются до небольших пептидов и аминокислот, которые затем всасываются в кровь и лимфу. В организме человека для синтеза пуринов, пиримидинов, порфиринов используются только аминокислоты, поэтому все поступающие с пищей белки должны быть диссоциированы в различных ферментативных реакциях до отдельных аминокислот.
Некоторые аминокислоты могут синтезироваться в организме, поэтому называются заменимыми: аланин, аспарагиновая кислота, цистеин, глутаминовая кислота, глицин, пролин, серин, тирозин, аспарагин, глутамин? другие же не могут быть синтезированы и называются незаменимыми: лейцин, изолейцин, валин, лизин, метионин, фенилаланин, триптофан, треонин, гистидин, аргинин (гистидин и аргинин синтезируются в организме взрослого человека).
В зависимости от путей катаболизма различают глюкогенные, кетогенные и смешанные аминокислоты. Кетогенной аминокислотой является лейцин, который распадается на ацетоуксусную кислоту и ацетил-КоА, вызывающие повышение уровня кетоновых тел в крови.
Изолейцин, лизин, фенилаланин и тирозин - глюкогенные и кетогенные аминокислоты. Фенилаланин и тирозин распадаются на фурамат и ацетоацетат, которые могут быть использованы в процессах глюконеогенеза. К глюкогенным аминокислотам относятся аланин, аргинин, аспарагиновая кислота, цистеин, глутаминовая кислота, глицин, гистидин, гидроксипролин, метионин, серин, треонин, триптофан, валин. Продукты распада этих аминокислот участвуют в процессах глюконеогенеза. Количество аминокислот в сыворотке крови поддерживается постоянно на определенном уровне за счет поступления их из желудочно-кишечного тракта и депо, которыми являются печень и мышцы. В мышцах содержится более 50% общего количества свободных аминокислот организма.
Наиболее мобильны из них аланин и глутамин, составляющие более 50% всех аминокислот, высвобождающихся из мышц. Аланин синтезируется в мышцах путем трансаминирования пирувата. Глутамин поступает в почки, где отщепляющийся азот используется для образования аммиака.
Аланин же задерживается печенью, где быстро конвертируется в глюкозу через образование пирувата. Последний процесс получил название цикла аланина и наряду с циклом лактата (цикл Кори) имеет большое значение в процессах глюконеогенеза.
Синтез белка - сложный процесс, происходящий постоянно. Информация о структуре любого белка данного организма хранится в хромосомах в виде генетического кода.
При поступлении сигнала о необходимости синтеза определенного белка с участка ДНК, на котором закодирована структура данного белка, при участии фермента РНК-полимеразы начинает образовываться мРНК. Процесс образования РНК называется "транскрипция". Если молекула ДНК относительно стабильна, то период полураспада мРНК составляет 2-80 ч. (время, необходимое для синтеза белка).
Образовавшаяся мРНК покидает ядро и направляется к рибосомам, где и осуществляется синтез белка. На рибосомах локализуются рибосомальная РНК (рРНК) и транспортная РНК (тРНК), которые вместе участвуют в процессе считывания информации, заложенной в мРНК, и"сборки" нового белка. Обычно рРНК и метионил-тРНК присоединяются к специальной точке мРНК, и с этого момента начинается их движение вдоль молекулы мРНК, во время которого "считываются" триплетные кодоны и начинается "сборка" полипептидной цепи нового белка. Аминокислоты могут использоваться рибосомами лишь после их взаимодействия с соответствующими ферментами, число которых по всей вероятности соответствует количеству аминокислот. Незаменимые аминокислоты не синтезируются клетками животных и человека и поступают в организм в составе белков пищи. Для человека незаменимые аминокислоты: валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин и в некоторых случаях аргинин. Для разных животных набор незаменимых аминокислот неодинаков. Отсутствие или недостаток незаменимых аминокислот приводит к остановке роста, падению массы, нарушениям обмена веществ, при острой недостаточности - к гибели организма.
2. Незаменимые аминокислоты
Рисунок 1. - Формула валина:
Валин необходим для метаболизма в мышцах, восстановления поврежденных тканей и для поддержания нормального обмена азота в организме. Он может быть использован мышцами в качестве источника энергии. Чрезмерно высокий уровень валина может привести к таким симптомам, как парестезии. Валин содержится в следующих пищевых продуктах: зерновые, мясо, грибы, молочные продукты, арахис. Прием валина в виде пищевых добавок следует сбалансировать с приемом других разветвленных аминокислот - L-лейцина и L-изолейцина.
Рисунок 2. - Формула лейцина:
Лейцин - незаменимая аминокислота. Она защищает мышечные ткани и является источником энергии, а также способствует восстановлению костей, кожи, мышц.
Лейцин несколько понижает уровень сахара в крови и стимулирует выделение гормона роста.
К пищевым источникам лейцина относятся: бурый рис, бобы, мясо, орехи, соевая и пшеничная мука.
Биологически активные пищевые добавки, содержащие лейцин, применяются в комплексе с валином и изолейцином.
Рисунок 3. - Формула изолейцина:
Изолейцин - одна из незаменимых аминокислот, необходимых для синтеза гемоглобина. Также стабилизирует и регулирует уровень сахара в крови и процессы энергообеспечения.
Метаболизм изолейцина происходит в мышечной ткани. Изолейцин очень нужен спортсменам, так как увеличивает выносливость и способствует восстановлению мышечной ткани. К пищевым источникам изолейцина относятся: миндаль, кешью, куриное мясо, яйца, рыба, чечевица, печень, мясо, рожь, большинство семян, соевые белки.
Рисунок 4. - Формула треонина:
Треонин - это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме. Она важна для синтеза коллагена и эластина, помогает работе печени и участвует в обмене жиров. Треонин находится в сердце, центральной нервной системе, скелетной мускулатуре и препятствует отложению жиров в печени. Эта аминокислота стимулирует иммунитет.
Рисунок 5. - Формула метионина:
Метионин - незаменимая аминокислота, помогающая переработке жиров, предотвращая их отложение в печени и в стенках артерий. Эта аминокислота способствует пищеварению, защищает от воздействия радиации, полезна при остеопорозе и химической аллергии.
Метионин применяют в комплексной терапии ревматоидного артрита и токсикоза беременности.
Пищевые источники метионина: бобовые, яйца, чеснок, чечевица, мясо, лук, соевые бобы, семена и йогурт.
Рисунок 6. - Формула фенилаланина:
Фенилаланин в организме может превращаться в другую аминокислоту - тирозин, которая, в свою очередь, используется в синтезе двух основных нейромедиаторов: допамина и норэпинефрина. Поэтому эта аминокислота влияет на настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит. Фенилаланин используют в лечении артрита, депрессии, болей при менструации, мигрени, ожирения.
Биологически активные пищевые добавки, содержащие фенилаланин, не дают беременным женщинам, лицам с диабетом, высоким артериальным давлением, фенилкетонурией.
Рисунок 7. - Формула триптофана:
Триптофан - это незаменимая аминокислота, необходимая для продукции ниацина. Он используется для синтеза в головном мозге серотонина, одного из важнейших нейромедиаторов. Триптофан применяют при бессоннице, депрессии и для стабилизации настроения. Он используется при заболеваниях сердца, для контроля за массой тела, уменьшения аппетита, а также для увеличения выброса гормона роста. Триптофан снижает вредное воздействие никотина. К пищевым источникам триптофана относятся: бурый рис, деревенский сыр, мясо, арахис и соевый белок.
Рисунок 8. - Формула лизина:
Лизин - это незаменимая аминокислота, входящая в состав практически любых белков. Он необходим для нормального формирования костей и роста детей, способствует усвоению кальция и поддержанию нормального обмена азота у взрослых. Лизин участвует в синтезе антител, гормонов, ферментов, формировании коллагена и восстановлении тканей. Его применяют в восстановительный период после операций и спортивных травм. Прием добавок, содержащих лизин в комбинации с витамином С и биофлавоноидами, рекомендуется при вирусных заболеваниях.
Рисунок 9. - Формула аргинина:
Аргинин замедлят рост опухолей, в том числе раковых, за счет стимуляции иммунной системы организма. Его также применяют при заболеваниях печени (циррозе и жировой дистрофии), он способствует дезинтоксикационным процессам в печени (прежде всего обезвреживанию аммиака). Семенная жидкость содержит аргинин, его иногда применяют в комплексной терапии бесплодия у мужчин. В соединительной ткани и в коже также находится большое количество аргинина, поэтому он эффективен при различных травмах. Аргинин - важный компонент обмена веществ в мышечной ткани. Аргинин помогает снизить вес.
3. Классификация незаменимых аминокислот, основанная на химическом строении радикала
Алифатические аминокислоты не несут в боковых цепях гетероатомов (азота (N), кислорода (О), серы (S)). Из незаменимых аминокислот к этой группе относятся:
- валин;
- лейцин;
- изолейцин.
Гидроксиаминокислоты характеризуются присутствием гидроксильной (ОН) группы в составе боковых цепей. Из незаменимых аминокислот к этой группе относятся: треонин.
Аминокислоты с катинирующими группами. Эти аминокислоты в составе боковых цепей содержат группировки способные заряжаться положительно, образуя катионы.
Это:
- лизин;
- аргинин.
Серосодержащие аминокислоты в своем составе содержат серу (S): метионин.
Ароматические аминокислоты характеризуются присутствием циклической, ароматической группировкой:
- фенилаланин; аминокислота химический радикал
- триптофан.
Заключение
Аминокислоты имеют огромное значение для работы организма. Пищевые добавки могут быть полезны, но иногда их прием ведет к побочным эффектам, а потому обязательно проконсультируйтесь с квалифицированным специалистом перед началом приема препаратов аминокислот. Это очень важно, поскольку скрытые проблемы со здоровьем могут обостриться на фоне приема аминокислот.
Кроме того, часть этих аминокислот образуется в организме, и многие аминокислоты поступают с продуктами питания, а потому важно определить, действительно ли необходим дополнительный приток этих нутриентов. Следует отметить, что аминокислоты продаются без рецепта и в целом считаются безопасными.
Используемые источники
1. Анисимов А.А. «Основы биохимии». Москва. Высшая школа. 1987 г., 250 с.
2. Смирнов М.И. «Витамины». Москва. 1987 г., 365 с.
3. В.И.Смоляр «Рациональное питание», 1991 г., 410 с.
4. Якубке Х.Д., Ешкайт Х. Аминокислоты. Пептиды. Белки. М.: Мир, 1985 г., 456 с.
5. Химическая энциклопедия. М: Большая российская энциклопедия, 1988-1998 г., Т. 1-5.
Размещено на Allbest.ru
...Подобные документы
Белки – высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Наследственная информация сосредоточена в молекуле ДНК. С помощью белков реализуется генетическая информация. Классификация аминокислот.
реферат [21,6 K], добавлен 17.01.2009Строение РНК, ее синтез и роль в передаче наследственности. Формула незаменимых аминокислот; структура холестерина, его источники и функции в организме. Распад и всасывание углеводов в желудочно-кишечном тракте; ферменты. Витамин В3; строение жиров.
контрольная работа [1,1 M], добавлен 01.06.2012Физико-химические свойства аминокислот. Получение аминокислот в ходе гидролиза белков или как результат химических реакций. Ряд веществ, способных выполнять некоторые биологические функции аминокислот. Способность аминокислоты к поликонденсации.
презентация [454,9 K], добавлен 22.05.2012Электрохимические методы анализа веществ. Общие физико-химические свойства аминокислот и белков, их функции в клетках живых организмов. Использование методов полярографии и амперометрии в исследовании кинетики химических процессов в аминокислотах.
курсовая работа [2,5 M], добавлен 18.07.2014Пути внедрения ферментативных методов синтеза в химическое производство. Способ определения содержания аминокислот триптофана и цистеина в составе белков. Специфика строения и состава структурных белков биологической мембраны. Характеристика видов РНК.
контрольная работа [522,0 K], добавлен 18.05.2011Определение белков и их составных частей – аминокислот. Структура и функции белков в организме. Роль в обеспечении воспроизводства основных структурных элементов органов и тканей, а также образовании таких веществ, как, например, ферментов и гормонов.
курсовая работа [735,6 K], добавлен 16.12.2014Общие пути обмена аминокислот. Значение и функции белков в организме. Нормы белка и его биологическая ценность. Источники и пути использования аминокислот. Азотистый баланс. Панкреатический сок. Переваривание сложных белков. Понятие трансаминирования.
презентация [6,6 M], добавлен 05.10.2011Характеристика необходимых алифатических и ароматических аминокислот, которые не могут быть синтезированы в организме человека. Пищевые источники валина, изолейцина, лейцина, лизина, метионина, трионина, триптофана и аргинина. Их роль в организме.
презентация [789,3 K], добавлен 10.10.2016Характеристика белков как высокомолекулярных соединений, их структура и образование, физико–химические свойства. Ферменты переваривания белков в пищеварительном тракте. Всасывание продуктов распада белков и использование аминокислот в тканях организма.
реферат [66,2 K], добавлен 22.06.2010Строение и уровни укладки белковых молекул, конформация. Характеристика функций белков в организме: структурная, каталитическая, двигательная, транспортная, питательная, защитная, рецепторная, регуляторная. Строение, свойства, виды и реакции аминокислот.
реферат [1,0 M], добавлен 11.03.2009Аминокислоты (аминокарбоновые кислоты) - органические соединения, в молекуле которых содержатся карбоксильные, а также аминные группы. Открытие аминокислот в составе белков. Оптическая изомерия. D-аминокислоты в живых организмах. Карбоксильная группа.
презентация [1,1 M], добавлен 23.05.2012Химические свойства металлов, их присутствие в организме человека. Роль в организме макроэлементов (калия, натрия, кальция, магния) и микроэлементов. Содержание макро- и микроэлементов в продуктах питания. Последствия дисбаланса определенных элементов.
презентация [2,2 M], добавлен 13.03.2013Содержание и биологическая роль химических элементов в организме человека. Биогенные элементы – металлы и неметаллы, входящие в состав организма человека. Элементы-органогены: углерод, кислород, водород, азот, фосфор, сера. Основные причины их дефицита.
реферат [362,5 K], добавлен 11.10.2011Аминокислоты, входящие в состав пептидов и белков. Моноаминодикарбоновые кислоты и их амиды. Энантиомерия аминокислот, образование солей. Мезомерия и строение пептидной связи. Методы выделения и анализа белков. Электрофорез в полиакриламидном геле.
презентация [351,2 K], добавлен 16.12.2013Основные химические элементы, распространенные в организме человека, характерные признаки и симптомы недостатка некоторых из них. Общее описание свойств йода, его открытие и значение в организме. Порядок определения его недостатка и механизм восполнения.
презентация [770,1 K], добавлен 27.12.2010Биохимические свойства аминокислот - органических соединений, в молекулах которых один или несколько атомов водорода углеродной цепи замещены на группу -NH2. Аминокислоты как пищевая добавка. Аминокислотные препараты. Биологическая роль аминокислот.
презентация [3,0 M], добавлен 27.02.2017Физиологическая роль бериллия в организме человека, его синергисты и антагонисты. Роль магния в организме человека для обеспечения протекания различных жизненных процессов. Нейтрализация избыточной кислотности организма. Значение стронция для человека.
реферат [30,1 K], добавлен 09.05.2014Основные химические элементы, входящие в состав белков. Белки - полимеры, мономерами которых являются аминокислоты. Строение аминокислот, уровни организации белковых молекул. Структуры белка, основные свойства белков. Денатурация белка и ее виды.
презентация [1,7 M], добавлен 15.01.2011Общая формула и характеристика аминокислот как производных кислот. Протеиногенные кислоты, входящие в состав белков. Классификация аминокислот по взаимному расположению и количеству функциональных групп. Физические и химические свойства аминокислот.
презентация [1,7 M], добавлен 22.01.2012Аминокислоты – азотсодержащие органические соединения. Способы их получения. Физические и химические свойства. Изомерия и номенклатура. Аминокислоты необходимы для синтеза белков в живых организмах. Применение в медицине и для синтеза некоторых волокон.
презентация [38,3 K], добавлен 21.04.2011