Направления современной химии

Основные направления развития химии в современном мире. Компьютерное моделирование молекул и химических реакций. Использование магнитных взаимодействий в спиновой химии. Основные направления исследований в нанохимии. Синтез фуллеренов и нанотрубок.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 14.01.2016
Размер файла 45,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Задачи развития химии

2. Основные направления развития химии в современном мире

2.1 Компьютерное моделирование молекул (молекулярный дизайн) и химических реакций

2.2 Спиновая химия

2.3 Нанохимия

2.4 Фемтохимия

2.5 Синтез фуллеренов и нанотрубок

2.6 Химия одиночной молекулы

Заключение

Список использованной литературы

Введение

Химия - наука социальная. Ее высшая цель - удовлетворять нужды каждого человека и всего общества. Многие надежды человечества обращены к химии. Молекулярная биология, генная инженерия и биотехнология, наука о материалах являются фундаментально химическими науками. Прогресс медицины и охраны здоровья - это проблема химии болезней, лекарств, пищи; нейрофизиология и работа мозга - это, прежде всего нейрохимия, химия нейромедиаторов, химия памяти. Человечество ждет от химии новых материалов с магическими свойствами, новых источников и аккумуляторов энергии, новых чистых и безопасных технологий.

Как фундаментальная наука химия сформировалась в начале XX века, вместе с новой, квантовой механикой. И это бесспорная истина, потому что все объекты химии - атомы, молекулы, ионы, и т.д. - являются квантовыми объектами. Главное, центральное событие в химии - химическая реакция, т.е. перегруппировка атомных ядер и преобразование электронных оболочек, электронных одежд молекул-реагентов в молекулы продуктов - также является квантовым событием. Три главных элемента квантовой механики составили прочный и надёжный физический фундамент химии:

- понятие волновой функции электрона как распределённого в пространстве и времени заряда и спина углового момента);

- принцип Паули, организующий электроны по энергетическим уровням и спиновым состояниям, "рассаживающий" электроны по их собственным орбиталям (волновым функциям);

- уравнение Шредингера как квантовый наследник уравнений классической механики.

В химии (как, впрочем, и во всякой живой науке) постоянно рождаются новые идеи, совершаются крупные прорывы, формируются новые тенденции.

1. Задачи развития химии

1) Изучение веществ, их свойства и прогнозирование использование веществ в народном хозяйстве;

2) Получение различных веществ, необходимых в народном хозяйстве

3) Разработка и использование новых источников энергии;

4) Охрана окружающей среды;

5) Освоение органических и неорганических источников сырья.

2. Основные направления развития химии в современном мире

- компьютерная химия, компьютерное моделирование молекул (молекулярный дизайн) и химических реакций;

- спиновая химия;

- синтез и исследование наноструктур, развитие и применение нанотехнологий;

- синтез полимерных полупроводников;

- химия чрезвычайно быстротекущих реакций (фемтохимия);

- синтез фуллеренов и нанотрубок;

- развитие химии одиночной молекулы;

- развитие электроники на молекулярном уровне;

- создание «молекулярных машин»;

- электровзрывная активация пульпы и растворов;

- создание и развитие «химической медицины», решение проблемы «химического бессмертия».

2.1 Компьютерное моделирование молекул (молекулярный дизайн) и химических реакций

Компьютерное моделирование химических реакций - это сформировавшаяся на стыке теоретической физики, прикладной вычислительной математики и химии область знаний, в которой создана количественная теория строения и основных свойств многоатомных молекул и реакций между ними. Пройдя довольно длительную историю развития, компьютерная химия дала возможность понять, как устроен микромир на молекулярном уровне. Она позволила с достаточно высокой степенью достоверности производить численный прогноз. На основании такого прогноза можно судить, во-первых, о самой возможности существования или иной молекулярной системы как устойчивой совокупности атомов. Во-вторых, об индивидуальных характеристиках таких систем (геометрическое строение, распределение заряда внутри молекулы и др.). В-третьих, о преимущественных направлениях тех или иных химических реакций. Создание мощного программного обеспечения наряду с самим развитием ЭВМ сделало такой прогноз практически доступным широкому кругу исследователей разных направлений.

Основными направлениями компьютерной химии являются:

- создание принципиально новых компьютерных программ поиска и отбор новых эффективных веществ;

- количественный анализ связи структура-активность для широкого спектра ФАВ.

Стало реальным говорить о так называемом инженерном уровне расчетов, когда достоверность прогноза достигает 80-90 процентов. При этом прогноз делается за столь короткий промежуток времени, что испытать массу вариантов можно быстрее, чем провести натурный эксперимент. Соответствующие методы получили столь большое распространение, что составили основу так называемого молекулярного дизайна, или моделирования молекул. Современный исследователь-химик уже не может ограничиться лишь традиционными химическими знаниями, навыками и экспериментами. Параллельно и даже с некоторым опережением должно проводиться моделирование химических систем. Сейчас уже можно смело говорить о двух равноправных сторонах одного и того же исследовательского процесса.

Компьютер реально становится таким же инструментом исследования, как и привычный химический или физико-химический эксперимент. И расчет, и эксперимент, следовательно, может проводить один и тот же человек.

Владение методами компьютерной химии становится, таким образом, необходимым требованием к любому современному специалисту-химику. Более того, современные компьютерные программы обладают высокой сервисностью, поэтому работать с ними может, в принципе, любой школьник-старшеклассник. Основным экспериментальным методом изучения электронных уровней молекулы служит спектроскопия. Например, с помощью ультрафиолетовой, оптической и фотоэлектронной спектроскопии определяют положение уровней энергии слабосвязанных электронов. Энергии наиболее глубоких электронов измеряют, применяя рентгеновскую фотоэлектронную спектроскопию. Исследование энергетического спектра молекул является сравнительно простой и точной процедурой.

В большинстве случаев изучение электронного строения молекул возможно только с использованием мощных современных компьютеров. Возможности современных вычислительных квантово-химических программ очень велики. Рекламный проспект одной из наиболее мощных программ Gaussian'98 приводит пример расчета фрагмента ДНК из 378 атомов, входе которого было установлено ее пространственное строение. Сегодня развитые программные пакеты позволяют даже неискушенному пользователю результаты с использованием современных прецизионных методов расчетов.

Конечным результатом любых расчетов должны быть ответы на вопросы, возникающие в ходе химических исследований. Методы компьютерной химии в ряде случаев позволяют рассчитать многие свойства молекул, что делает их особенно привлекательными в тех случаях, когда экспериментальное исследование затруднено (как в случае короткоживущих состояний) или просто невозможно. Если раньше искусством было само получение результата, то теперь этот процесс стал рутинным, а творческий момент сместился на создание моделей и осмысление их. Поэтому квантово-химические исследования подчас называют тоже "экспериментом", только проведенным на ЭВМ. Круг конкретных химических задач, решаемых методами квантовой химии, очень широк.

Полученные результаты далеко не всегда легко интерпретировать в терминах классической химии. Установление соответствия между экспериментально наблюдаемыми явлениями и данными квантово-химического расчета часто обогащает новыми идеями не только квантовую химию, но и саму химическую науку, создавая новые модели для описания химической связи, строения молекул и их взаимодействия.

2.2 Спиновая химия

Спиновая химия уникальна: она вводит в химию магнитные взаимодействия. Будучи пренебрежимо малыми по энергии, магнитные взаимодействия контролируют химическую реакционную способность и пишут новый, магнитный «сценарий» реакции.

Дизайн молекулярных магнетиков -- одно из новых научных направлений современной химии, связанное с синтезом систем высокой размерности. Сегодня достижения современной химии таковы, что химики могут ставить перед собой сверхзадачу -- синтезировать в мягких условиях готовое изделие, скажем, монокристалл, сразу, как цельный макрообъект, из исходных молекулярных компонентов. При этом становятся равноправно значимыми как внутримолекулярные, так и межмолекулярные взаимодействия и связи. Причем, и это особенно важно, они должны быть не какими-то случайными, а выполняющими определенную функциональную нагрузку. В результате из отдельных молекул должен получиться макрообъект с неким кооперативным свойством, которое присуще природе кристалла, т.е. природе макроансамбля, но никак не отдельно взятой молекуле.

Поскольку в итоге получается многоспиновая молекула (каждая молекула содержит неспаренный электрон (спиновую метку)) -- это можно отнести к спиновой химии. Особенно интересующие нас в данном случае макросвойства, такие как, скажем, магнетизм - свойства физического порядка. В этот момент соединяются в целое интересы химии и физики. Особенность таких соединений в том, что - это материалы будущего, новые компоненты элементной базы будущего, причем совсем не отдаленного. Молекулярные магнетики обладают разнообразным сочетанием физических характеристик, которое для классических магнитных материалов трудно было даже представить.

Сегодня мы научились получать кристаллы молекулярных магнетиков, которые по сравнению с классическими магнитными материалами необычайно легкие, поскольку их плотность в 5-7 раз меньше. При этом они могут быть оптически прозрачными в видимой и инфракрасной областях спектра. И еще одна из особенностей -- они, как правило, диэлектрики, т.е. не требуют каких-то специальных изоляционных покрытий при контакте с электропроводящими устройствами. Они совершенно не токсичны и устойчивы к коррозии. Молекулярные магнетики могут найти приложения в следующих областях: магнитная защита от низкочастотных полей, трансформаторы и генераторы, имеющие малый вес, научное приборостроение, криогенная техника, информационные технологии, медицина, энергетика.

2.3 Нанохимия

Для понятия нанотехнология, пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии - это технологии, оперирующие величинами порядка нанометра. Поэтому переход от «микро» к «нано» - это качественный переход от манипуляции веществом к манипуляции отдельными атомами. Когда речь идет о развитии нанотехнологий, имеются в виду три направления: изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов; разработка и изготовление наномашин; манипуляция отдельными атомами и молекулами и сборка из них макрообъектов. Разработки по этим направлениям ведутся уже давно. В 1981 году был создан туннельный микроскоп, позволяющий переносить отдельные атомы. Туннельный эффект - квантовое явление проникновения микрочастицы из одной классически доступной области движения в другую, отделённую от первой потенциальным барьером. Основой изобретенного микроскопа является очень острая игла, скользящая над исследуемой поверхностью с зазором менее одного нанометра. При этом электроны с острия иглы туннелируют через этот зазор в подложку.

Однако кроме исследования поверхности, создание нового типа микроскопов открыло принципиально новый путь формирования элементов нанометровых размеров. Были получены уникальные результаты по перемещению атомов, их удалению и осаждению в заданную точку, а также локальной стимуляции химических процессов. С тех пор технология была значительно усовершенствована. Сегодня эти достижения используются в повседневной жизни: производство любых лазерных дисков, а тем более производство DVD невозможно без использования нанотехнических методов контроля.

Нанохимия - это синтез нанодисперсных веществ и материалов, регулирование химических превращений тел нанометрового размера, предотвращение химической деградации наноструктур, способы лечения болезней с использованием нанокристаллов.

Ниже перечислены направления исследований в нанохимии:

- разработка методов сборки крупных молекул из атомов с помощью наноманипуляторов;

- изучение внутримолекулярных перегруппировок атомов при механических, электрических и магнитных воздействиях. Синтез наноструктур в потоках сверхкритической жидкости; разработка способов направленной сборки с образованием фрактальных, каркасных, трубчатых и столбчатых наноструктур.

- разработка теории физико-химической эволюции ультрадисперсных веществ и наноструктур; создание способов предотвращения химической деградации наноструктур.

- получение новых нанокатализаторов для химической и нефтехимической промышленности; изучение механизма каталитических реакций на нанокристаллах.

- изучение механизмов нанокристаллизации в пористых средах в акустических полях; синтез наноструктур в биологических тканях; разработка способов лечения болезней путем формирования наноструктур в тканях с патологией.

- исследование явления самоорганизации в коллективах нанокристаллов; поиск новых способов пролонгирования стабилизации наноструктур химическими модификаторами.

- Ожидаемым результатом будет функциональный ряд машин, обеспечивающий:

- методологию изучения внутримолекулярных перегруппировок при локальных воздействиях на молекулы.

- новые катализаторы для химической промышленности и лабораторной практики;

- оксидно-редкоземельные и ванадиевые нанокатализаторы с широким спектром действия.

- методологию предотвращения химической деградации технических наноструктур;

- методики прогноза химической деградации.

- нанолекарства для терапии и хирургии, препараты на основе гидроксиапатита для стоматологии;

- способ лечения онкологических заболеваний путем проведения внутриопухолевой нанокристаллизации и наложения акустического поля.

- методы создания наноструктур путем направленного агрегирования нанокристаллов;

- методики регулирования пространственной организации наноструктур.

- новые химические сенсоры с ультрадисперсной активной фазой; методы увеличения чувствительности сенсоров химическим модифицированием.

2.4 Фемтохимия

Фемтохимия исследует время движения реагирующих систем на потенциальной поверхности и вводит в химию экспериментальную химическую динамику как высшую, элитарную часть химической кинетики.

Освоение лазеров раздвинуло горизонты химии и обеспечило крупный прорыв в фемтохимия; это новая химия, детектирующая химические события в масштабе ультракоротких времён 10-15-10-14 с (1-10 фемтосекунд). Эти времена гораздо меньше периода колебаний атомов в молекулах (10-13-10-11 с). Благодаря такому соотношению времён фемтохимия «видит» саму химическую реакцию - как перемещаются во времени и в пространстве атомы, когда молекулы-реагенты преобразуются в молекулы продуктов.

В частности, фемтохимия занимается изучением переходного состояния химической реакции. Переходное состояние - это область межатомных расстояний, лежащая на пути от реагентов к продуктам, в которой система проходит через такие структуры, которые уже нельзя назвать реагентами, но ещё нельзя считать продуктами. Временная эволюция конфигурации атомов называется динамикой переходного состояния. Так как время пребывания молекулярной системы в переходном состоянии составляет всего порядка 100 фс, то до появления соответствующих инструментов исследователям приходилось восстанавливать его динамку, изучая кинетики реагентов и продуктов. Этих данных оказалось недостаточно для однозначного восстановления последовательности событий. Лишь с открытием в недавнем времени лазеров, изучающих ультракороткие импульсы длительностью 100 фс, появились новые экспериментальные возможности:

при длительности импульса ф = 10-14 с и скорости атома v = 105 см/с детектируются изменения расстояний в молекулярной системе на 0.1 Е, что позволяет с хорошей точностью проследить временную эволюцию конфигурации ядер;

Вследствие когерентности импульса возможно когерентное возбуждение нескольких колебательных или вращательных состояний молекулы с определёнными относительными фазами движения атомов.

Такой тип возбуждённых состояний называется когерентным ядерным волновым пакетом.

При энергии 1 мкДж импульса длительностью ф = 10-14 с, пиковая мощность равна P = 100 МВт, поэтому можно легко осуществлять многофотонные процессы поглощения, получая высоковозбужденные молекулярные системы. Под действием таких импульсов на вещество генерируются импульсы света в широком спектральном диапазоне (суперконтинуум), рентгеновского излучения и электронов.

Этот крупный прорыв в современной химии открыл прямые пути исследования механизмов химических реакций, а значит, пути управления реакциями. Успехи, достигнутые при использовании фемтосекундных импульсов, привели к открытию другой науки - фемтобиологии. Особенности фемтосекундных импульсов позволяют: обеспечивать высокое временное разрешение, образовывать когерентные колебательно-вращательные волновые пакеты, легко осуществлять многофотонные процессы поглощения, воздействовать на поверхность потенциальной энергии (ППЭ) и т.д.

Основные направления этих новых областей исследований - это исследования детальных микроскопических химических и биологических процессов и управление ими на фемтосекундной шкале времени.

2.5 Синтез фуллеренов и нанотрубок

химия молекула фуллерен нанотрубка

Фуллерены и нанотрубки - это обширные классы интереснейших наноструктур. Например, среди фуллеренов, известно множество частиц и изомеров от малых (С20, С28) до гигантских (С240, С1840) с совершенно различными свойствами. Получены многооболочечные фуллерены (углеродные «луковицы»), состоящие из нескольких вложенных друг в друга структур.

Синтезированы фуллереновые полимеры, пленки, кристаллы (фуллериды), дозированные кристаллы (фуллериды) как с собственными структурами, так и повторяющие строение обычных кристаллов. Например, фуллерен С28 имеет ту же валентность, что и атом углерода, и образует устойчивый кристалл со структурой алмаза -- гипералмаз. В последние годы обнаружено много молекул неорганических веществ (оксидов, дихалькогенидов металлов и прочих), по своей структуре подобных фуллеренам.

Из нанотрубок получают очень интересные материалы, например уникальной прочности нанобумагу: это плотные пленки из переплетенных, подобно растительным волокнам, жгутов нанотрубок. Недавно китайские специалисты научились прясть нанотрубки и получать таким образом углеродные нитки. Если вспомнить, что прочность нанотрубок в 50-100 раз больше, чем у стали, то становится понятно, что подобные изобретения человечеству весьма пригодятся. Найдены вполне реальные области применения нанотрубок -- например, в плоских дисплеях (фирма «Motorola»), которые превосходят плазменные и жидкокристаллические аналоги, и в нановесах, позволяющих взвесить объекты массой около 20 фемто-грамм (1 фг =10-15 г) - в частности, вирусы.

2.6 Химия одиночной молекулы

Сегодня ученые могут увидеть и распознать одну молекулу и даже манипулировать ей. Новое знание позволяет, например, увидеть поверхностные комплексы, катализирующие многие процессы. А главное, что можно уже не только увидеть, но и манипулировать молекулами, и моделировать из них разные наноструктуры.

Основное в химии одиночных молекул - аналитические методы. Сканирующий электронный микроскоп (СТМ) был создан в 1982 году, и тогда же во многих научных центрах начали активно развиваться методы, с помощью которых можно наблюдать за отдельными молекулами. Хотя теоретически все было подсчитано и предсказано, понадобилось почти 20 лет, чтобы получить первый колебательный спектр одной адсорбированной частицы.

Заключение

Химия оказалась в центре важных и сложных физических процессов. Химические реакции происходят не только в окружающем нас мире, но и в тканях, клетках, сосудах человеческого тела. Ученые ХХ века обнаружили, что именно химия помогает человеку различать запахи и цвета, позволяет быстро откликаться на едва уловимые перемены, происходящие в природе. Зрительный пигмент родопсин улавливает световые лучи, и мы видим многообразие красок вокруг. Пахучие травы и растения рассылают во все стороны летучие органические молекулы, попадающие на чувствительные центры в органах обоняния живых существ, передовая тончайшие запахи природы.

В ответ на любое внешнее раздражение мозг человека посылает по нервным волокнам сигнал тревоги или радости, действия или успокоения.

Бурные химические процессы протекают внутри далеких звезд и в термоядерных реакторах, созданных учеными. Непрерывно идет химическое взаимодействие атомов и молекул в растениях и в недрах Земли, на поверхностях водных просторов и в толще горных хребтов. Природа много доверила химии и не ошиблась: химия оказалась ее верным союзником и трудолюбивым помощником.

Не может существовать и развиваться без химии ни одна из областей современных естественных наук.

Впереди у химии - радости совершений, и трудности преодолений.

Химия к ним готова. В этой далекий, интересный поход она отправляется вместе с лучшим другом - неуемной, беспокойной, ищущей человеческой мыслью.

Список использованной литературы

1) Сверлова Л.И Концепции современного естествознания: учебное пособие для студентов вузов, издание 2-е. Хабаровск: РИЦ ХГАЭП, 2010. 269 с.

2) Горелова А.А Концепции современного естествознания: Учеб. пособие для студ. высш.учеб.заведений. М.: Гуманит. изд. центр ВЛАДОС, 2003. 512 с.: ил.

3) Концепции современного естествознания [Текст]: учебник для бакалавров: для студентов гуманитар. фак и системы доп. образования/под общ. ред С.А. Лебедева. 3-е издание, испр и доп. М.: Юрайт, 2013. 363 с.

4) Горбачев В.В. Концепции современного естествознания: интернет-тестирование базовых знаний: учеб. пособие/ В.В. Горбачев, Н.П. Калашников, Н.М. Кожевников/ Спб.; Краснодар: Лань, 2010. 205 с.

5) http://knowledge.allbest.ru/chemistry/3c0a65625a3ad68a4c53b88421306c27.

Размещено на Allbest.ru

...

Подобные документы

  • Общие тенденции развития современной химии. Основные направления развития химии в ХХI. Компьютерное моделирование молекул (молекулярный дизайн) и химических реакций. Спиновая химия. Нанохимия. Фемтохимия. Синтез фуллеренов и нанотрубок.

    курсовая работа [37,4 K], добавлен 05.06.2005

  • Основные этапы развития химии. Алхимия как феномен средневековой культуры. Возникновение и развитие научной химии. Истоки химии. Лавуазье: революция в химии. Победа атомно-молекулярного учения. Зарождение современной химии и ее проблемы в XXI веке.

    реферат [24,8 K], добавлен 20.11.2006

  • Философские аспекты моделирования как метода познания окружающего мира. Гносеологическая специфика моделей. Классификация моделей и виды моделирования. Моделирование молекул, химических процессов и реакций. Основные этапы моделирования в химии.

    реферат [70,7 K], добавлен 04.09.2010

  • Краткий обзор концептуальных направлений развития современной химии. Исследование структуры химических соединений. Эффективные и неэффективные столкновения реагирующих частиц. Химическая промышленность и важнейшие экологические проблемы современной химии.

    реферат [45,8 K], добавлен 27.08.2012

  • Истоки и развитие химии, ее связь с религией и алхимией. Важнейшие особенности современной химии. Основные структурные уровни химии и ее разделы. Основные принципы и законы химии. Химическая связь и химическая кинетика. Учение о химических процессах.

    реферат [25,9 K], добавлен 30.10.2009

  • Основные функции химии. Свойства моющих и чистящих средств. Использование химии в здравоохранении и образовании. Обеспечение роста производства, продление сроков сохранности сельхозпродукции и повышение эффективности животноводства при помощи химии.

    презентация [14,3 M], добавлен 20.12.2009

  • Вклад Ломоносова в развитие химии как науки: обоснование закона сохранения массы вещества, исследование природы газового состояния, изучение явления кристаллизации. Основные направления развития физической химии во второй половине XVIII-XX веках.

    реферат [28,1 K], добавлен 26.08.2014

  • История развития микроволновой химии. Разработка специализированных микроволновых печей, предназначенных для осуществления химических реакций. Взаимодействие микроволнового излучения с веществами, его использование для проведения химических анализов.

    курсовая работа [410,0 K], добавлен 13.11.2011

  • Роль химии в развитии естественнонаучных знаний. Проблема вовлечения новых химических элементов в производство материалов. Пределы структурной органической химии. Ферменты в биохимии и биоорганической химии. Кинетика химических реакций, катализ.

    учебное пособие [58,3 K], добавлен 11.11.2009

  • Вещества и их взаимные превращения являются предметом изучения химии. Химия – наука о веществах и законах, которым подчиняются их превращения. Задачи современной неорганической химии – изучение строения, свойств и химических реакций веществ и соединений.

    лекция [21,5 K], добавлен 26.02.2009

  • Адамантан-родоначальник гомологического ряда семейства углеводородов алмазоподобного строения диамантана, триамантана. Возникновение и развитие на основе химии адамантана одной из областей современной органической химии-химии органических полиэдранов.

    курсовая работа [259,0 K], добавлен 08.10.2008

  • Новые направления развития химии полимеров, синтез полимеров с заданными свойствами. Образование упорядоченных микроструктур в сополимерах блочной и статистической структуры. Результаты экспериментальных исследований, перспектива промышленного применения.

    реферат [33,3 K], добавлен 03.04.2011

  • Теоретическая основа аналитической химии. Спектральные методы анализа. Взаимосвязь аналитической химии с науками и отраслями промышленности. Значение аналитической химии. Применение точных методов химического анализа. Комплексные соединения металлов.

    реферат [14,9 K], добавлен 24.07.2008

  • Происхождение термина "химия". Основные периоды развития химической науки. Типы наивысшего развития алхимии. Период зарождения научной химии. Открытие основных законов химии. Системный подход в химии. Современный период развития химической науки.

    реферат [30,3 K], добавлен 11.03.2009

  • Химия как наука о веществах, их строении, свойствах и превращениях. Основные понятия химии. Химическая связь как взаимодействие двух атомов, осуществляемое путем обмена электронами. Сущность химических реакций, реакции окисления и восстановления.

    реферат [95,3 K], добавлен 05.03.2012

  • Пути познания и классификация современных наук, взаимосвязь химии и физики. Строение и свойства вещества как общие вопросы химической науки. Особенности многообразия химических структур и теория квантовой химии. Смеси, эквивалент и количество вещества.

    лекция [759,9 K], добавлен 18.10.2013

  • Зарождение химии в Древнем Египте. Учение Аристотеля об атомах как идейная основа эпохи алхимии. Развитие химии на Руси. Вклад Ломоносова, Бутлерова и Менделеева в развитие этой науки. Периодический закон химических элементов как стройная научная теория.

    презентация [1,8 M], добавлен 04.10.2013

  • Специфика аналитической химии сточных вод, подготовительные работы при анализе. Методы концентрирования: адсорбция, выпаривание, вымораживание, выделение летучих веществ испарением. Основные проблемы и направления развития аналитической химии сточных вод.

    реферат [171,6 K], добавлен 08.12.2012

  • Управление химическими процессами, особенности анализа и идентификации структуры сложных молекул. Образование земных и внеземных веществ, получение новых химических элементов. Современные синтетические материалы. Важнейшие открытия в химии XXI века.

    контрольная работа [57,8 K], добавлен 06.01.2011

  • Графическое представление молекул и их свойств - теория графов в химии. Методы расчета топологических индексов. Кодирование химической информации. Оценка реакционной способности молекул. Анализ связи между топологией молекулы и свойствами соединения.

    реферат [313,2 K], добавлен 09.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.