Производство нитратной кислоты

Характеристика сырья, химическая и функциональная схема производства азотной кислоты. Химическое равновесие, скорость и катализаторы процесса производства азотной кислоты. Выбор типа промышленного реактора и экологические проблемы производства.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 18.02.2016
Размер файла 284,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Общая характеристика производства

1.1 Сырье, характеристика сырья

1.2 Продукт, характеристика и применение

1.3 Химическая схема производства

1.4 Функциональная схема производства

2. Теоретические основы заданного процесса производства

2.1 Химическое равновесие заданного процесса

2.2 Скорость этого процесса

2.3 Катализаторы этого же процесса

3. Технологическая схема производства, ее описание

4. Выбор типа промышленного реактора

4.1 Эскиз реактора

4.2 Описание конструкции реактора

5. Экологические проблемы заданного производства и пути их решения

Выводы

Литература

азотный кислота химический катализатор

Введение

Азотная кислота по объему производства занимает среди других кислот второе место после серной кислоты. Все возрастающий объем производства HNO3 объясняется огромным значением азотной кислоты и ее солей для народного хозяйства.

Азотная кислота является одним из исходных продуктов для получения большинства азотсодержащих веществ. До 70-80% ее количества расходуется на получение минеральных удобрений. Одновременно азотная кислота применяется при получении взрывчатых веществ почти всех видов, нитратов и ряда других технических солей; в промышленности органического синтеза; в ракетной технике, как окислитель в различных процессах и во многих других отраслях народного хозяйства.

Промышленностью вырабатывается неконцентрированная (до 60-62% HNO3) и концентрированная (98-99% HNO3) кислота. В небольших объемах выпускается реактивная и азотная кислота особой чистоты. В производстве взрывчатых веществ нитрованием толуола, уротропина, ксилола, нафталина и других органических продуктов применяют концентрированную азотную кислоту. Для получения удобрений потребляется, как правило, разбавленная азотная кислота.

Основными производителями азотной кислоты являются США, Франция, ФРГ, Италия, Испания, и Англия. На долю этих стран в 70-х годах приходилось свыше 75% всей выработанной тогда кислоты. К 80-м годам производство азотной кислоты в капиталистических странах стабилизировалось. Сейчас рост производства происходит за счет совершенствования и обновления технологии, а также организации выпуска азотной кислоты в развивающихся странах.

Все промышленные способы получения азотной кислоты основаны на контактном окислении аммиака кислородом воздуха с последующей переработкой оксидов азота в кислоту путем поглощения их водой. Главными стадиями производства неконцентрированной азотной кислоты являются очистка сырья, каталитическое окисление аммиака, утилизация тепла, вывод из нитрозного газа реакционной воды, доокисление окиси азота в высшие окислы, абсорбция их водой или разбавленной азотной кислотой, очистка газовых выбросов.

К современным тенденциям развития технологии производства азотной кислоты относятся: обеспечение наибольшей надежности конструкций аппаратуры и машинных агрегатов; повышение степени кислой абсорбции, а также степени использования тепла химических реакций и к. п. д. энергии сжатых газов; увеличение скорости процесса на всех его этапах, снижение вредных выбросов в атмосферу.

Кроме того существенное влияние на экономику производства оказывает мощность применяемых установок, повышение которой приводит к снижению затрат на строительство азотно-кислотных систем. Повышение мощности установок вызывает необходимость повышения давления (в особенности на стадии абсорбции).

Важной проблемой развития производства азотной кислоты является повышение ее концентрации, что позволяет упростить методы получения аммиачной селитры и других азотных удобрений.

Существенное снижение себестоимости азотной кислоты может быть достигнуто при уменьшении потерь платинового катализатора. С этой целью проводятся испытания эффективных фильтров для улавливания платиновой пыли, испытываются катализаторы с повышенным содержанием Pd и Rh, внедряются в производство комбинированные катализаторы.

1. Общая характеристика производства

1.1 Сырье, характеристика сырья

Основным сырьем для производства неконцентрированной азотной кислоты в настоящее время являются аммиак, воздух и вода. Вспомогательными материальными и энергетическими ресурсами являются катализаторы окисления аммиака и очистки выхлопных газов, природный газ, пар и электроэнергия.

Аммиак. В обычных условиях представляет собой бесцветный газ с резким запахом, хорошо растворим в воде и других растворителях, образует геми- и моногидраты. Поворотным этапом в развитии производства синтетического аммиака явилось применение главенствующего сейчас в промышленности метода получения водорода конверсией метана, содержащегося в природном газе, в попутных нефтяных газах и продуктах нефтепереработки.

Содержание примесей в жидком аммиаке регламентируется ГОСТ 6221-82. Наиболее типичными примесями являются вода, смазочные масла, катализаторная пыль, окалина, карбонат аммония, растворенные газы (водород, азот, метан). При нарушении ГОСТ содержащиеся в аммиаке примеси могут попасть в аммиачно-воздушную смесь и снизить выход оксида азота (II), а водород и метан могут изменить пределы взрываемости АВС.

Воздух. Для технических расчетов принимают, что сухой воздух содержит [%, об]: N2 - 78,1, О2 - 21,0, Ar2 - 0,9; Н2 О - 0,1-2,8.

В воздухе могут присутствовать также следы SO2, NH3, CO2. В районе промышленных площадок воздух загрязнен пылью различного происхождения, а также разнообразными компонентами неорганизованных газовых выбросов (SO2, SO3, H2S, С2H2, Cl2 и др.). Количество пыли в воздухе составляет 0,5-1,0 мг/м3.

Вода. Используется в производстве азотной кислоты для орошения абсорбционной колонны, для выработки пара при утилизации тепла в котлах-утилизаторах, для охлаждения реакционных аппаратов. Для абсорбции оксидов азота используют чаще всего паровой конденсат и химически очищенную воду. В некоторых схемах разрешено применять конденсат сокового пара аммиачной селитры. В любом случае вода, используемая для орошения колонн, не должна содержать свободного аммиака и твердых взвесей, содержание хлорид - иона должно быть не более 2 мг/л, масла не более 1мг/л, NH4NO3 - не более 0,5 г/л. Химически очищенная вода для котлов-утилизаторов должна соответствовать требованиям ГОСТ 20995-75.

Техническая вода, предназначенная для отвода тепла в теплообменниках и охлаждения оборудования (оборотная вода), должна соответствовать следующим требованиям:

Жесткость карбонатная, мэкв/кг не более 3,6 Содержание взвешенных веществ, мг/кг не более 50 Значение pH 6,5-8,5.

Кислород. Применяется преимущественно в производстве концентрированной азотной кислоты по методу прямого синтеза. В отдельных случаях используется для обогащения АВС при получении неконцентрированной азотной кислоты.

Характеристика оксидов азота.

Оксид азота NO - газ при нормальных условиях, обладает парамагнитными свойствами. Образуется при каталитическом окислении аммиака и является промежуточным соединением в технологии азотной кислоты.

Оксид азота NO2 существует в виде коричнево-красного соединения и его бесцветного димера- тетраоксида диазота N2O4. При взаимодействии с водой оксид азота (IV) образует азотную и азотистую кислоты, со щелочами - смесь нитратов и нитритов. Он хорошо поглощается серной кислотой с образованием нитрозилсерной кислоты, обладает высокой растворимостью в концентрированной азотной кислоте.

1.2 Продукт, характеристика и применение

Готовым продуктом является неконцентрированная азотная кислота с массовой долей кислоты не менее 58-60 %.

Производимая азотная кислота должна соответствовать требованиям регламента, что выше показателей ОСТ 113-03-270-90.

Химическая формула азотной кислоты - HNO3

Относительная атомная (молекулярная) масса - 63.016.

Температура кипения азотной кислоты с массовой долей HNO3 60 % - плюс 120.06 ° C при давлении 101.325 кПа.

Температура кристаллизации (застывания) - минус 21.5 ° С.

Плотность - 1366.7 кг/м3 при температуре 29 ° С.

Давление паров над водным раствором азотной кислоты с массовой долей HNO3 60 % - 112 Па при 20 ° С.

Удельная теплоемкость - 2.7Ч 103 Дж/ (кг Ч К) при 20 oС.

Динамическая вязкость - 2.024 Ч 10-3 Па Ч с при 20 oС.

Азотная кислота не горюча. Является сильным окислителем.

С водой азотная кислота смешивается во всех соотношениях с выделением большого количества тепла.

Основными потребителями азотной кислоты являются производства минеральных удобрений (аммиачная селитра, азофоска).

Азотная кислота является одним из исходных продуктов для получения большинства азотсодержащих веществ. До 70-80% ее количества расходуется на получение минеральных удобрений. Одновременно азотная кислота применяется при получении взрывчатых веществ почти всех видов, нитратов и ряда других технических солей; в промышленности органического синтеза; в ракетной технике, как окислитель в различных процессах и во многих других отраслях народного хозяйства.

Так же азотную кислоту применяют в:

- сельском хозяйстве (аммиачная селитра, комплексные минеральные удобрения);

- производстве взрывчатых веществ;

- производстве красителей и иных химикатов;

- производстве ракетного топлива (оксиды азота и азотная кислота);

- производстве искусственного шелка;

- производстве лекарственных препаратов;

- производстве серной кислоты.

1.3 Химическая схема производства

Процесс производства разбавленной азотной кислоты складывается из трех стадий:

конверсия аммиака с целью получения оксида азота

4NH3 + 5O2 = 4NO + 6H2 O

окисление оксида азота до диоксида

2NO + O2 = 2NO

абсорбция оксидов азота водой

4NO2 + O2 + 2H2 O = 4HNO3

Физико-химические основы процесса конверсии аммиака

Окисление аммиака кислородом воздухом без катализатора возможно только до N2.

На катализаторе между аммиаком и кислородом протекают следующие реакции:

4NH3 + 5O2 = 4NO + 6H2 O; H = - 946кДж

4NH3 + 3O2 = 2N2 + 6H1 OH = - 1328кДж

Реакции окисления аммиака сопровождаются значительной убылью свободной энергии, протекают с большой скоростью, практически необратимо. Теплоты, выделяющейся во время реакции, вполне достаточно, чтобы процесс шел автотермично.

Каталитическое окисление аммиака - многостадийный гетерогенно-каталитический процесс, протекающий во внешне диффузионной области и лимитируемый диффузией аммиака к поверхности катализатора.

Катализаторы, применяемые для окисления аммиака, должны обладать избирательными свойствами, т.е. ускорять только одну реакцию. Наиболее активным и селективным катализатором является платина. Она также имеет низкую температуру зажигания ~ 200 °С, хорошую пластичность, тягучесть. Но ее недостаток - это быстрое разрушение при высоких температурах при воздействии больших скоростных потоков реагентов и катализаторных ядов. Это приводит к потерям дорогостоящего катализатора и выхода оксида азота, что явилось причиной использования сплавов платины с другими металлами. Наибольшее распространение получили следующие катализаторы (ГОСТ 3193-59): Pt + 4% Pd + 3,5% Rh - для работы при атмосферном давлении и Pt + 7,5% Rh - при повышенном давлении. Катализаторы изготавливают в виде сеток. Такая форма удобна в эксплуатации и связана с минимальными затратами металла.

Катализаторы весьма чувствительны к ряду примесей, содержащихся в аммиаке и воздухе, особенно к соединениям фтора и серы. Примеси заметно снижают селективность катализатора. Для поддержания стабильной степени конверсии необходима тщательная очистка АВС и от механических примесей, особенно от оксидов железа и пыли железного катализатора синтеза аммиака. Срок службы до 14 месяцев при атмосферном давлении и до 9 при повышенном.

Температура оказывает наибольшее влияние на выход оксида азота (II). При повышении температуры выход NO растет, причем существует оптимальная температура (для чистой платины 900 - 920 °С), при которой достигается максимальный выход. Большое значение имеет температура зажигания катализатора, которая зависит в основном от его состава. На платине реакция начинается при 195 °С. Выход достигает значения 96% на чистой платине и 99% на сплавах. Проведение процесса при высоких температурах помимо увеличения выхода монооксида азота имеет и другие преимущества: растет скорость реакции окисления аммиака и уменьшается время контактирования. Но при повышении температуры увеличиваются потери дорогостоящей платины, т.е. ухудшаются экономические показатели процесса.

С ростом давления наблюдается снижение выхода оксида азота (II). Вместе с тем использование высокого давления позволяет повысить производительность агрегата, уменьшить размеры аппаратов. Процесс осуществляется под давлением 0,41 - 0,73 МПа. Основным условием получения высоких выходов NO под давлением являются повышение температуры и времени контактирования (увеличение числа сеток).

При стехиометрическом соотношении кислорода и аммиака O2: NH3 = 1,25 даже при атмосферном давлении выход оксида азота не превышает 60 - 80%. Кроме того, пришлось выработать в области взрывоопасных концентраций. При увеличении соотношения O2: N до 1,7 что соответствует содержанию аммиака в смеси 11,5%, выход NO возрастает для получения высокого выхода NO необходим 30% -ный избыток кислорода сверх стехиометрического. Это связано с тем, что поверхность платинового катализатора должна постоянно быть покрыта кислородом, иначе уже при 500 °С аммиак начинает разлагаться на азот и кислород.

1.4 Функциональная схема производства

В качестве первого уровня наглядного изображения ХТС после разработки химической концепции метода является функциональная схема системы. Она показывает, какие технологические операции и в какой последовательности необходимо осуществить для реализации разработанного химического процесса в промышленном масштабе. Она представляет собой совокупность блоков, каждый из которых соответствует необходимой функции которую требуется реализовать. Связи между блоками обозначаются соответствующими стрелками, указывающими направления потоков.

Эта схема детализируется путем представления каждого макроблока в виде совокупности блоков, отвечающим определенным операциям.

2. Теоретические основы заданного процесса производства

2.1 Химическое равновесие заданного процесса

Химическое равновесие - состояние химической системы, при котором возможны реакции, идущие с равными скоростями в противоположных направлениях. При химическом равновесии концентрации реагентов, температура и другие параметры системы не изменяются со временем.

1. контактное окисление аммиака до оксида азота (II);

2. доокисление оксида азота (II) до оксида азота (IV);

3. поглощение оксида азота (IV) водой с образованием азотной кислоты.

Суммарная реакция образования азотной кислоты выражается уравнением:

2.2 Скорость этого процесса

Определяющей стадией всего процесса окисления является скорость диффузии кислорода к поверхности катализатора. Следовательно, каталитическое окисление аммиака на платиновом катализаторе протекает преимущественно в диффузионной области, в отличие от окисления на окисном катализаторе, которое идет в кинетической области.

Для ускорения целевой реакции окисления до оксида азота (II) применяют селективно действующие катализаторы, В современных установках используют платиновые катализаторы в виде пакета сеток из сплава платины с 7,5% родия, или двухступенчатые катализаторы в виде слоя таблетированной смеси оксидов железа (III) и хрома (III). Введение родия повышает механическую прочность и уменьшает потери платины за счет ее уноса током газа. Поверхность подобных катализаторов достигает 1,5 м23 объема.

Повышение температуры способствует увеличению скорости реакций и коэффициента диффузии аммиака в смеси и, поэтому, является наиболее эффективным средством, увеличения скорости процесса, протекающего преимущественно в диффузионной области.

Соотношение аммиака и кислорода в газовой смеси влияет на температурный режим и общую скорость процесса в том случае, если лимитирующей в нем является химическая реакция, то есть процесс протекает в кинетической области.

Повышение давления ускоряет процесс окисления аммиака за счет увеличения концентрации реагентов и производительности катализатора, что позволяет сократить размеры аппаратуры. При этом, однако, снижается выход оксида азота (II) и увеличивается эрозия и унос катализатора, что удорожает продукцию.

Скорость каталитического окисления аммиака до оксида азота (II) весьма высока. За десятитысячные доли секунды степень превращения составляет 0,9 7-- 0,98 дол. ед. при атмосферном давлении и 0,98--0,96 при давлении 0,8--1,0 МПа.

Время контактирования зависит от природы катализатора и составляет; для платиновых катализаторов 10-4 - 10-5с, для окисных катализаторов около 10-2с. Увеличение времени контактирования, то есть снижение объемной скорости АВС приводит к развитию реакции окисления аммиака до элементарного азота.

Оптимальный режим процесса на этой стадии должен обеспечить селективность окисления аммиака, минимальные потери катализатора вследствие его уноса и автотермичность процесса. Этим требованиям удовлетворяют следующие условия: температура 800°С, давление 0,1--1,0 МПа, молярное отношение О2: NH3 - 1,8--2,0, время контактирования 1--2·10-4 с.

2.3 Катализаторы этого же процесса

В производстве азотной кислоты в качестве катализаторов используются платиноидные катализаторы (Pt, Pt-Rh и Pt-Pd-Rh-сплавы с содержанием платины 81 - 92%).

Платиновый катализатор применяют в виде пакетов сеток, сплетенных из тончайших проволок (диаметр 0,06 мм), сетки имеют 1024 отверстия в 1 см2. Сетки эти для создания определенного времени контактирования скрепляются в виде пакета, устанавливаемого в контактном аппарате. На 1 м2 активной поверхности контактной сетки под атмосферным давлением можно окислить до 600 кг, а при давлении 0.8 МПа - до 3000 кг аммиака в сутки. Однако при работе под давлением 0.8 МПа и выше платиновый катализатор разрушается быстрее (унос платины составляет 0.3 - 0.4 г, часть платины улавливается и регенерируется, но расходы на платину составляют значительную часть себестоимости азотной кислоты.)

Сейчас наряду с платиновыми катализаторами используют катализаторы из смеси оксидов железа и хрома. Контактные массы изготавливаются в виде таблеток диаметром 5 мм. Однако не платиновые катализаторы значительно менее активны.

Окисление аммиака на платиновых катализаторах является одной из самых кратковременных каталитических реакций, известных в настоящее время (время протекания реакции 1·10-4 сек). Скорость каталитического окисления аммиака зависит от технологического режима процесса и конструкции контактного аппарата. На высокоактивных платиноидных катализаторах процесс протекает в диффузной области. На менее активных (оксидных) катализаторах при пониженных температурах и хорошем перемешивании газовой смеси окисление аммиака определяется скоростью каталитических актов, т.е. протекает в кинетической области.

С целью экономии платины применяют двухстадийное контактирование, при котором аммиак частично окисляется на платиноидных сетках, а затем доокисляется в слое неплатинового зернистого катализатора (оксиды Fe, Cr, соли Со). Если использовать двухступенчатый катализатор, состоящий из одной сетки и слоя таблеток, выход оксида азота (II) составляет 97%.

3. Технологическая схема производства, ее описание

В 1960-х годах разработан агрегат по производству азотной кислоты мощностью 120 тыс. т/год под давлением 0,716 МПа с использованием высокотемпературной каталитической очистки выхлопных газов, выпускающий продукцию в виде 53-58% -ной HNO3. Технологическая схема этого производства в упрощенном варианте представлена на рисунке 3. 1

Рис. 3.1 Схема производства азотной кислоты под давлением 0,716 МПа с приводом компрессора от газовой турбины: 1 - фильтр воздуха; 2 - реактор каталитической очистки; 3 - топочное устройство; 4 - подогреватель метана; 5 - подогреватель аммиака; 6 - смеситель аммиака и воздуха с пролитовым фильтром; 7 - холодильник-конденсатор; 8 - сепаратор; 9 - абсорбционная колонна; 10 - продувочная колонна; 11 - подогреватель отходящих газов; 12 - подогреватель воздуха; 13 - сосуд для окисления нитрозных газов; 14 - контактный аппарат; 15 - котел_утилизатор; 16,18 - двухступенчатый турбокомпрессор; 17 - газовая турбина

Атмосферный воздух проходит тщательную очистку в двухступенчатом фильтре 1. Очищенный воздух сжимают двухступенчатым воздушным компрессором. В первой ступени 18 воздух сжимают до 0,35 МПа, при этом он нагревается до 165-175°С за счет адиабатического сжатия. После охлаждения воздух направляют на вторую ступень сжатия 16, где его давление возрастает до 0,716 МПа.

Основной поток воздуха после сжатия нагревают в подогревателе воздуха 12 до 250-270 °С теплотой нитрозных газов и подают на смешение с аммиаком в смеситель 6.

Газообразный аммиак, полученный путем испарения жидкого аммиака, после очистки от влаги, масла и катализаторной пыли через подогреватель 5 при температуре 150 °С также направляют в смеситель 6. Смеситель совмещен в одном аппарате с поролитовым фильтром. После очистки АВС с содержанием NH3 не более 10% подают в контактный аппарат 14 на конверсию аммиака.

Конверсия аммиака протекает на платинородиевых сетках при температуре 870_900°С, причем степень конверсии составляет 96%. Нитрозные газы при 890-910 °С поступают в котел-утилизатор 15, расположенный под контактным аппаратом. В котле за счет охлаждения нитрозных газов до 170 °С происходит испарение химически очищенной деаэрированной воды, питающей котел-утилизатор; при этом получают пар с давлением 1,5 МПа и температурой 230 °С, который выдается потребителю.
После котла-утилизатора нитрозные газы поступают в окислитель нитрозных газов 13. Он представляет собой полый аппарат, в верхней части которого установлен фильтр из стекловолокна для улавливания платинового катализатора. Частично окисление нитрозных газов происходит уже в котле-утилизаторе (до 40%). В окислителе 13 степень окисления возрастает до 85%. За счет реакции окисления нитрозные газы нагреваются до 300-335 °С. Эта теплота используется в подогревателе воздуха 12.

Охлажденные в теплообменнике 12 нитрозные газы поступают для дальнейшего охлаждения в теплообменник 11, где происходит снижение их температуры до 150 °С и нагрев выхлопных (хвостовых) газов до 110-125 °С. Затем нитрозные газы направляют в холодильник-конденсатор 7, охлаждаемый оборотной водой. При этом конденсируются водяные пары и образуется слабая азотная кислота. Нитрозные газы отделяют от сконденсировавшейся азотной кислоты в сепараторе 8, из которого азотную кислоту направляют в адсорбционную колонну 9 на 6-7-ю тарелку, а нитрозные газы - под нижнюю тарелку абсорбционной колонны. Сверху в колонну подают охлажденный паровой конденсат. Образующаяся в верхней части колонны азотная кислота низкой концентрации перетекает на нижележащие тарелки. За счет поглощения оксидов азота концентрация кислоты постепенно увеличивается и на выходе достигает ~1%. Поэтому кислота направляется в продувочную колонну 10, где подогретым воздухом из нее отдувают оксиды азота, и отбеленная азотная кислота поступает на склад. Воздух после продувочной колонны подается в нижнюю часть абсорбционной колонны 9.

Степень абсорбции оксидов азота достигает 99%. Выходящие из колонны хвостовые газы с содержанием оксидов азота до 0,11% при температуре 35 °С проходят подогреватель 11, где нагреваются до 110-145 °С и поступают в топочное устройство (камера сжигания 3 установки каталитической очистки. Здесь газы нагреваются до температуры 390-450 °С за счет горения природного газа, подогретого предварительно в подогревателе 4, и направляются в реактор с двухслойным катализатором 2, где первым слоем служит оксид алюминия с нанесенным на него палладием, вторым слоем - оксид алюминия. Очистку осуществляют при 760 °С. Очищенные газы поступают в газовую турбину 17 при температуре 690-700 °С; энергия, вырабатываемая турбиной за счет теплоты хвостовых газов, используется для привода турбокомпрессора 18. Затем газы направляют в котел-утилизатор и экономайзер (на схеме не показаны) и выбрасывают в атмосферу. Содержание оксидов азота в очищенных выхлопных газах составляет 0,005-0,008%, содержание CO2 - 0,23%.

Таким образом, данный агрегат полностью автономен по энергии. Энергия рекуперируется в результате установки на одной оси с турбокомпрессором газовой турбины.

4. Выбор типа промышленного реактора

4.1 Эскиз реактора

Рисунок 4.1 Реактор селективной очистки с электроподогревателем: 1 - корпус аппарата; 2 - катализатор; 3 -электроподогреватель

4.2 Описание конструкции реактора

Очищаемый газ поступает в аппарат сверху, проходит по кольцевому пространству между корпусом и кожухом изоляции катализаторной коробки и теплообменника, расположенный внутри аппарата, и попадает в межтрубное пространство теплообменника, где нагревается за счет тепла конвертированного газа. Из теплообменника газ проходит по центральной трубе, где при необходимости дополнительно обогревается электороподогревателем, затем поступает на катализатор и проходит через него в радиальном направлении. Очищенный газ направляется в трубки теплообменника, где отдает большую часть своего тепла холодному газу, поступающему на очистку.

Недостатком радиальной конструкции является низкая линейная скорость в слоях катализатора, последних по ходу газа, т.е. именно там, где реагируют ничтожно малые количества окиси углерода, и возрастает тормозящее влияние диффузии. Кроме того, в радиальном аппарате расход катализатора увеличивается на 30-50% за счет его усадки. Для компенсации усадки приходится помимо работающего слоя катализатора располагать в радиальной корзине затворные слои, в которых находится 10-15% общего объема катализатора. Некоторая часть катализатора также не участвующая в работе, заполняет днище корзины. Эти дополнительные объемы катализатора являются для реактора паразитными.

Определенную часть объема реактора занимают каналы, предназначенные для подвода и отвода потока. В результате степень полезного использования объема аппарата в радиальном аппарате ниже, чем в полочном. Если высота затворного слоя выбрана неправильно или из-за неудовлетворительной эксплуатации катализатор сильно разрушился, возможно образование байпасного потока газа мимо слоя катализатора, через освободившиеся отверстия перфорации. В результате усадки возможно образование и местных байпасов, например под термопарными карманами. Имеет место неравномерное распределение газа по высоте аппарата.

5. Экологические проблемы заданного производства и пути их решения

Для обеспечения охраны окружающей среды в производстве азотной кислоты по схеме АК-72 осуществляется использование отходов производства, предварительная очистка и подготовка сбросов в канализацию или атмосферу.

Используемыми отходами производства являются:

- Перегретый пар с давлением 2,65 МПа (27 кгс/см2) и температурой не более 305 єС;

- Насыщенный пар после паровой турбины ГТТ-12 давлением 0,88 - 0,98 МПа (9-10 кгс/см2), температурой 250 єС.

- Аммиачная вода, образующаяся в аварийной емкости при нагревании продувок из испарителей аммиака, периодически передается на переработку;

- Аммиак газообразный с давлением 0,39 - 0,49 МПа (4-5 кгс/см2) и температурой не более 120 єС их испарителей, во время пусков агрегатов и из емкости постоянно при выпарке аммиака из поступающих продувок. Передается в заводскую сеть предприятия на аммиачно-холодильную установку;

- Масло турбинное (отработанное). Периодически, при замене масла в агрегате ГТТ-12 по трубопроводу или контейнером выдается в цех регенерации масел;

- Отработанный катализатор АПК-2, АПЭК-0,5 отправляется на завод втордрагметаллов.

В газовые выбросы по производству входят:

- Выбросы вентиляционные от вытяжных вентиляции производственного помещения, лаборатории, комнаты регенерации катализаторных сеток. Сброс постоянный;

- Очищенный выхлопной газ после газовых турбин ГТТ-12. Сброс постоянный через выхлопную трубу высотой 150 м для обеспечения необходимого рассеивания.

Твердым неиспользуемым отходом производства является отработанная окись алюминия (второй слой катализатора в реакторе каталитической очистки выхлопных газов поз. Р-40), которая 1 раз в три года с расходом 17-19 тонн (с двух агрегатов) вывозится на полигон твердых отходов.

Мероприятия, обеспечивающие надежность охраны водных ресурсов

В производстве азотной кислоты по схеме АК-72 постоянный сброс ядовитых и химически активных веществ в водоемы отсутствует. В отделениях абсорбции, охлаждения нитрозного газа и на складе кислоты, ввиду возможности закисления ливневых вод, при возможных проливах кислоты, а также при ремонте насосов предусмотрено устройство поддонов из кислотоупорного кирпича, в которых установлены дренажные баки являющиеся также емкостями для опорожнения кислотных аппаратов и коммуникаций во время ремонтов.

Из дренажных баков насосами подкисленная вода и проливы кислоты откачиваются в емкость подкисленной воды, откуда (после проведения анализа) направляются в производственный цикл или на склад кислоты в хранилище.

Из дренажного бака, установленного в насосной склада кислоты погружным насосом подкисленная вода и проливы откачиваются в хранилище. Нейтральные ливневые воды из поддона склада кислоты, (после проведения анализа) передвижной мотопомпой сбрасываются в условно-чистую канализацию.

Периодически 8-10 раз в год (в сумме для двух агрегатов), образуются химически грязные стоки после регенерации и промывки катализаторных сеток с расходом не более 5 м3/ч в течение двух часов в сутки.

Массовая концентрация - соляная кислота в стоках не более 1 %.

Химически грязные стоки сбрасываются в химически грязную канализацию и направляются на станцию нейтрализации.

Отбор анализов на контроль стоков, поступающих в химически грязную канализацию, производится из колодца.

Для опорожнения аппаратов и коммуникаций от жидкого аммиака в период ремонта и в случае аварийных ситуаций, предусмотрена емкость.

Мероприятия по защите атмосферного воздуха от загрязнений окислами азота

В производстве азотной кислоты по схеме АК-72 постоянным источником вредных выбросов в атмосферу являются отходящие выхлопные газы, содержащие окислы азота.

Технологической схемой предусмотрено проведение каталитического разложения окислов азота, содержащихся в выхлопных газах с использованием природного газа в качестве восстановителя. Объемная доля окислов азота после реактора составляет не более 0,006 %. С учетом образования окислов азота при сжигании природного газа в подогревателе объемная доля окислов азота в выхлопном газе на выбросе составляет не более 0,008 % или 0,27 м3 NОх на 1 т 100 % азотной кислоты.

Выхлопные газы, имеющие в своем составе: окислы азота, окись углерода и аммиак рассеиваются в атмосфере через выхлопную трубу высотой 150 м.

Выводы

Неуклонный рост производства азотной кислоты тесно связан с увеличением объёма отходящих газов, а следовательно, с увеличением количества выбрасываемых в атмосферу оксидов азота. Оксиды азота очень опасны для любых живых организмов. Некоторые растения повреждаются уже через 1час пребывания в атмосфере, содержащей 1мг оксидов в 1м3 воздуха. Оксиды азота вызывают раздражение слизистой оболочки дыхательных путей, ухудшение снабжения тканей кислородом и другие нежелательные последствия.

Хвостовые газы производства азотной кислоты содержат после адсорбционных колонн от 0,05 до 0,2% оксидов азота, которые по санитарным требованиям без дополнительной очистки запрещено выбрасывать в атмосферу.

Радикальное решение проблемы очистки хвостовых газов - каталитическое восстановление оксидов азота горючими газами - водородом, природным газом, оксидом углерода, аммиаком. Условия проведения процесса и тип используемого катализатора определяется видом применяемого газа. Восстановление оксидов азота снижает их содержание в очищенном газе до 0,001-0,005%, что обеспечивает санитарные нормы по содержанию оксидов азота в приземном слое воздуха при мощностях производства кислоты до 1млн.т в год, сосредоточенных в одной точке и при высоте выброса 100-150м.

Одним из наиболее реальных способов утилизации оксидов азота, обеспечивающих санитарные нормы содержания оксидов азота в приземном слое атмосферы после рассеивания их из выхлопной трубы, является адсорбционно - десорбционный метод, в котором используется непрерывно циркулирующий сорбент (силикагель). Разработаны способы адсорбции на молекулярных ситах, промывки кислым раствором мочевины и другими промывными жидкостями.

На современных установках получения азотной кислоты нет постоянных источников сточных вод. Эти установки потребляют большое количество обратной охлаждающей воды. Растворы, периодически сливаемые из насосов и другого оборудования, например при проведении ремонта, собирают в прямоток и нейтрализуют.

Перспективы развития азотнокислотного производств:

Исключительное значение азотной кислоты для многих отраслей народного хозяйства и оборонной техники и большие объёмы производства обусловили интенсивную разработку эффективных и экономически выгодных направлений совершенствования азотнокислотного производства. К таким направлениям относятся:

- создание систем высокой единичной мощности (до 400 тыс.т в год), работающих при повышенном давлении;

- разработка высокоактивных избирательно действующих неплатиновых катализаторов окисления аммиака;

- возможно более полное использование энергии сжатых отходящих газов и низкопотенциальной теплоты процесса путём создания полностью автономных энерготехнологических схем;

- создание замкнутого оборота охлаждающей воды;

- решение проблемы очистки отходящих газов с утилизацией адсорбционного - десорбционного метода очистки на силикагеле и цеолитах;

- возможно более полное удаление остатков азота из отходящих газов с использованием в качестве восстановителей горючих газов и аммиака.

Список использованной литературы

1. Салтанова, В.П. Технология связанного азота: учебник / В.П. Салтанова, Н.С. Торочешников. М.: Высшая школа, 1981. 205 с.

2. Технология связанного азота: учебник / Ф.А. Андреев, СИ. Каргин, Л.И. Козлов, В.Ф. Приставко. М.: Химия, 1966. 500 с.

3. Общая химическая технология / Под ред. А.Г. Амелина. М.: Химия, 1977. 400 с.

4. Курс технологии связанного азота / под ред. В.И. Атрощенко. М: Химия, 1968. 384 с.

5. Основы химической технологии / под ред. И.П. Мухлёнова. 4-е изд., перераб. и доп. М: Высшая школа, 1991. 463 с.

6. Соколов, Р.С. Химическая технология: учебное пособие, 2000. 368с.

7. Справочник азотчика: Физико-химические свойства газов и жидкостей. Производство технологических газов. Очистка технологических газов. Синтез аммиака, 2-е изд., перераб., М.: Химия, 1986. 512 с.

8. Википедия - свободная энциклопедия - http://wikipedia.org (Электронный ресурс ).

9. Кутепов А.М. и др. Общая химическая технология: Учеб. для техн. вузов / М.: Высш. шк., 1990. 520 с.

10. Мухленов И.П. и др. Общая химическая технология: Учеб. для химико-техн. спец. вузов. В 2-х т. Т.2. Важнейшие химические производства / М.: Высш. шк., 1984. 263 с.

Размещено на Allbest.ru

...

Подобные документы

  • Физические и физико-химические свойства азотной кислоты. Сырье для производства азотной кислоты. Характеристика целевого продукта. Процесс производства слабой (разбавленной) и концентрированной азотной кислоты. Действие на организм и ее применение.

    презентация [1,6 M], добавлен 05.12.2013

  • Технологические свойства азотной кислоты, общая схема азотнокислотного производства. Физико-химические основы и принципиальная схема процесса прямого синтеза концентрированной азотной кислоты, расходные коэффициенты в процессах производства и сырье.

    реферат [2,3 M], добавлен 08.04.2012

  • История развития промышленного производства азотной кислоты, особенности ее получения и сферы применения. Методика проведения расчета производительности, тепловых и конструктивных расчетов оборудования цеха по производству азотной кислоты из аммиака.

    курсовая работа [63,8 K], добавлен 09.05.2010

  • В настоящее время в промышленных масштабах азотная кислота производится исключительно из аммиака. Физико-химические основы синтеза азотной кислоты из аммиака. Общая схема азотнокислотного производства. Производство разбавленной азотной кислоты.

    контрольная работа [465,6 K], добавлен 30.03.2008

  • Исследование технологического процесса производства серной кислоты как объекта управления. Физико-химические основы получения продукта, описание схемы производства и выбор обоснования параметров контроля и управления уровня в сборниках кислоты.

    реферат [752,4 K], добавлен 25.03.2012

  • Сущность промышленного получения азотной кислоты методом окисления аммиака кислородом воздуха. Обоснование принятой схемы производства. Оценка выпускаемой продукции, исходного сырья, вспомогательных материалов. Расчеты материальных балансов процессов.

    курсовая работа [1,1 M], добавлен 11.08.2012

  • Физические и физико-химические свойства азотной кислоты. Дуговой способ получения азотной кислоты. Действие концентрированной серной кислоты на твердые нитраты при нагревании. Описание вещества химиком Хайяном. Производство и применение азотной кислоты.

    презентация [5,1 M], добавлен 12.12.2010

  • Значение витамина С для организма человека. Строение и физико-химические свойства аскорбиновой кислоты, химическая схема производства. Характеристика стадий технологической схемы производства аскорбиновой кислоты. Выбор рационального способа производства.

    курсовая работа [2,9 M], добавлен 12.12.2010

  • Виды сырья, используемого в производстве, и его классификация. Технологическая схема, химическая, функциональная и структурная система производства серной кислоты контактным способом. Основные физико-химические процессы производства серной кислоты.

    курсовая работа [143,9 K], добавлен 26.12.2011

  • Азотная кислота как важнейший продукт химической промышленности. Производство концентрированной и неконцентрированной азотных кислот. Концентрирование нитратом магния. Прямой синтез азотной кислоты из окислов азота. Катализаторы окисления аммиака.

    курсовая работа [1,5 M], добавлен 29.03.2009

  • Общая схема сернокислотного производства. Сырьевая база для производства серной кислоты. Основные стадии процесса катализа. Производство серной кислоты из серы, из железного колчедана и из сероводорода. Технико-экономические показатели производства.

    курсовая работа [7,1 M], добавлен 24.10.2011

  • Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.

    презентация [759,6 K], добавлен 27.04.2015

  • Расчет одной из стадий процесса производства азотной кислоты - окисление оксида азота. Составление материального баланса для контактного аппарата, котла-утилизатора и окислителя. Определение температуры газа на выходе из окислителя, вычисление его объема.

    курсовая работа [306,1 K], добавлен 20.10.2011

  • Технология производства уксусной кислоты из метанола и оксида углерода. Материальный баланс реактора и стадии синтеза уксусной кислоты. Получение уксусной кислоты окислением ацетальдегида, н-бутана, н-бутенов, парафинов С4-С8. Применение уксусной кислоты.

    курсовая работа [207,3 K], добавлен 22.12.2010

  • Обоснование технологической схемы и аппаратурного оформления производства нитробензола. Материальный баланс водной промывки. Разбавление отработанной кислоты и экстракция нитробензола и азотной кислоты из отработанной кислоты. Расчет аппарата промывки.

    курсовая работа [96,4 K], добавлен 25.01.2013

  • Теоретические основы каталитического окисления аммиака. Получение неконцентрированной азотной кислоты под давлением 0,73МПа. Конструкция основного аппарата и вспомогательного оборудования. Автоматизация технологического процесса. Анализ готовой продукции.

    дипломная работа [244,8 K], добавлен 03.11.2013

  • Зависимость температуры кипения водных растворов азотной кислоты от содержания HNO. Влияние состава жидкой фазы бинарной системы на температуру кипения при давлении. Влияние температуры на поверхностное натяжение водных растворов азотной кислоты.

    реферат [3,9 M], добавлен 31.01.2011

  • Выбор метода производства готового продукта. Характеристика исходного сырья, вспомогательных материалов и продукции. Способы получения уксусной кислоты из метанола. Уравнение реакции карбонилирования метанола. Катализаторы, носители, поглотители.

    дипломная работа [136,8 K], добавлен 03.11.2013

  • Строение и химические свойства сульфата железа (II), азотной и серной кислоты. Кристаллогидраты, двойные соли. Плотность и температура кипения азотной кислоты. Получение сернокислого железа (III) окислением сернокислого железа (II) азотной кислотой.

    курсовая работа [92,2 K], добавлен 07.11.2014

  • Физико-химические свойства и области применения азотной кислоты. Обоснование технологической схемы переработки окислов азота в азотную кислоту. Расчеты материальных балансов процессов, тепловых процессов, конструктивные расчеты холодильника-конденсатора.

    курсовая работа [822,8 K], добавлен 03.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.