Характеристика, виды, химическое строение и способы получения диеновых углеводородов

Алкадиены - ненасыщенные углеводороды с открытой цепью углеродных атомов. Химические свойства диенов с кумулированными и изолированными двойными связями. Карбин - продукт полимеризации ацетилена в присутствии одновалентных ионов меди и окислителей.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 05.03.2016
Размер файла 12,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

1. Диеновые углеводороды (алкадиены)

Диеновыми углеводородами или алкадиенами, называются ненасыщенные углеводороды с открытой цепью углеродных атомов, в молекулах которых имеются две двойные связи. Состав этих углеводородов может быть выражен формулой СnH2n-2.

2. Номенклатура и классификация

Индивидуальные углеводороды с двумя двойными связями называют, пользуясь принципами международной заместительной номенклатуры для алкенов, с той лишь разницей, что в наименовании перед окончанием - ен, обозначающим двойную связь, ставят греческое числительное -ди, так образуется родовое для этих углеводородов окончание - диен (отсюда и название диеновые). Перед названием основы (т.е. главной цепи, включающей обе двойные связи) ставят цифры, обозначающие номера углеродных атомов, за которыми следуют двойные связи. Отдельные представители имеют также и тривиальные названия.

Диеновые углеводороды, в которых две двойные связи находятся рядом и не разделены простыми связями, называют углеводородами с кумулированными двойными связями.

При нагревании в присутствии щелочи диеновые углеводороды с кумулированными двойными связями (аллены) могут перегруппировываться в алкины.

Диеновые углеводороды, в молекулах которых две двойные связи разделены двумя или более простыми связями, называются углеводородами с изолированными двойными связями.

Особое значение имеют этиленовые углеводороды, в молекулах которых двойные связи разделены одной простой связью. Такие углеводороды называют углеводородами с сопряженными двойными связями.

3. Химические свойства диенов с кумулированными и с изолированными двойными связями

По свойствам эти углеводороды близки к этиленовым углеводородам и вступают в обычные реакции присоединения. Отличие их состоит в том, что каждой молекуле этих диенов может последовательно присоединиться две молекулы реагента (например, Н2, Br2, HCl и т.п.). При этом обе двойные связи реагируют независимо одна от другой: вначале одна, потом вторая.

4. Химические свойства диенов с сопряженными двойными связями

Непредельные углеводороды с сопряженными двойными связями также характеризуются реакциями присоединения. Однако, две этиленовые группировки, разделенные одной простой связью и образующие систему сопряженных двойных связей, не независимы одна от другой, оказывают определенное взаимное влияние и связи в них находятся в особом состоянии. Вследствие этого, при действии реагентов на диеновые углеводороды с сопряженными двойными связями в реакции присоединения обычно участвует не одна, а две двойные связи одновременно. В результате два одновалентных атома реагента могут присоединяться к углеродным атомам на концах системы сопряженных двойных связей (в положении 1,4) а между атомами 2 и 3 возникает двойная связь. Вторая молекула реагента присоединяется по месту этой двойной связи уже обычным путем.

5. Присоединение галогенов

1,3-бутадиен, присоединяя одну молекулу брома, образует дибромпроизводное с одной двойной связью, в котором атомы брома расположены при 1-м и 4-м углеродных атомах, а двойная связь - между 2-м и 3-м углеродами. Однако некоторое число молекул 1,3-бутадиена присоединяет молекулу брома и просто по месту одной из двойных связей, т.е. в положение 1,2 или, что то же, в положение 3,4.

Аналогично идет реакция с хлором. Обычно получается смесь дигалогенидов, причем выход изомерных продуктов присоединения в положение 1,4 или 1,2 зависит от полярности или неполярности растворителя, в котором происходит реакция, от температуры и строения исходного углеводорода. Реакции диеновых соединений с сопряженными двойными связями, когда реагент присоединяется к атомам углерода в положение 1,4 (с перемещением остающейся двойной связи) называют 1,4-присоединеним, а когда реагент присоединяется как обычно - к атомам углерода одной двойной связи, - называют 1,2- присоединением.

6. Присоединение галогеноводоров

В обычных условиях это газ, легко конденсирующийся в жидкость, кипящую при -4,5С. Имеет большое хозяйственное значение , так как является исходным веществом для получения синтетического каучука. В России 1,3-бутадиен получают в огромных количествах по методу С.В. Лебедева (1874-1934) исходя из этилового спирта СН3--СН2--ОН. При пропускании последнего над специальным катализатором при нагревании (400-500С) происходят сложные процессы дегидратации и дегидрирования.

Очень важным в экономическом отношении явилось разрешение проблемы получения исходного в этом процессе вещества - этанола - из не пищевого сырья.

1,3-бутадиен может быть получен также из бутан-бутиленовой фракции газов крекинга путем каталитического дегидрирования содержащихся в ней бутана и бутиленов.

Этот процесс имеет важное значение для использования газов крекинга. Кроме того, ценным сырьем для получения 1,3-бутадиена является попутный нефтяной газ, также содержащий значительное количество бутана. Последний подвергают дегидрированию при 590-600С, пропуская через слой катализатора (Cr2O3-Al2O3); при этом образуется бутилен. Его очищают и также подвергают дегидрированию, пропуская в смеси с водяным паром при 625-675 оС над оксидами магния, цинка и другими - получается бутадиен.

Изопрен - бесцветная жидкость, температура кипения которой +34С. Его полимером является натуральный каучук. Сухой перегонкой каучука изопрен был получен впервые в чистом виде. Разработаны различные методы синтетического получения изопрена. Наиболее экономически выгодна реакция дегидрирования изопентана (2-метилбутана), которую ведут при 600С под небольшим давлением в присутствии катализатора (Cr2O3-Al2O3).

Сам изопентан может быть получен из некоторых бензиновых фракций при перегонке нефти.

Путем полимеризации из изопрена получается продукт, весьма близкий к натуральному каучуку. Реакция протекает подобно полимеризации 1,3-бутадиена.

7. Ненасыщенные углеводороды ряда ацетилена (алкины)

Углеводородами ряда ацетилена или ацетиленовыми углеводородами называют ненасыщенные углеводороды, в молекулах которых имеется тройная связь.

Гомология, изомерия и номенклатура.

Состав каждого члена гомологического ряда ацетиленовых углеводородов может быть выражен общей эмпирической формулой СnH2n-2. Простейшим членом этого ряда является углеводород ацетилен состава С2Н2.

Гомологи ацетилена можно рассматривать как его производные, образовавшиеся в результате замещения одного или обоих атомов водорода в молекуле ацетилена на углеводородные радикалы.

Изомерия. Возможны два типа ацетиленовых соединений R--C C--Н и R--CC--R'. (Линейная геометрия тройной связи делает невозможной цис- и транс-изомерию алкинов).

В соединениях первого типа при углероде с тройной связью имеется водород, в соединения второго типа при атомах углерода с тройной связью водорода нет. Изомерия ацетиленовых углеводородов, так же как и этиленовых, обусловлена изомерией углеродного скелета и изомерией положения кратной связи. Интересно отметить, что общая формула состава ацетиленовых углеводородов СnH2n-2 аналогична общей формуле состава диеновых углеводородов. Иначе говоря, непредельные углеводороды с двумя двойными связями изомерны непредельным углеводородам с одной тройной связью. Например, 1,3-бутадиен:

СН2=СН--СН=СН2

изомерен двум ацетиленовым углеводородам:

СН3--СН2--ССН (1) и СН3--СС--СН3.

Все эти углеводороды имеют состав С4Н6.

Номенклатура.

Международная заместительная номенклатура. Ацетиленовые углеводороды называют по заместительной номенклатуре так же, как предельные, с той лишь разницей, что наличие тройной связи обозначают путем замены в заместительном названии предельного углеводорода окончания -ан на -ин. Поэтому углеводороды с тройной связью по международной номенклатуре объединяют общим названием - алкины. Перед основой названия ставят цифру, соответствующую номеру углеродного атома главной цепи молекулы, за которым следует тройная связь. Принцип выбора главной цепи и нумерации атомов такой же, как в случае этиленовых углеводородов. Таким образом, ацетиленовые углеводороды, формулы которых написаны выше, называют так: (1)- 1-бутин и (2) - 2-бутин.

Рациональная номенклатура. По рациональной номенклатуре углеводороды с тройной связью рассматривают как производные ацетилена, в названии указывают наименования радикалов, связанных с группировкой --СС--, а в конце названия ставят слово ацетилен. Поэтому приведенные выше углеводороды называют следующим образом: (1) - этилацетилен; (2) - диметилацетилен; (3) - метилизопропилацетилен.

8. Свойства ацетиленовых углеводородов (алкинов)

Физические свойства.

Зависимости изменения физических свойств в гомологических рядах ацетиленовых углеводородов по мере возрастания числа атомов углерода в их молекулах аналогичны тем зависимостям, которые наблюдаются в рядах предельных и этиленовых углеводородов. Простейшие гомологи нормального строения до С5Н8 - газы, от С5Н8 до С16Н30 - жидкости, высшие ацетиленовые углеводороды - твердые тела. Все эти соединения бесцветны.

Химические свойства.

Ацетиленовым углеводородам, так же как этиленовым, свойственны реакции присоединения по месту кратной связи, в данном случае тройной.

Тройная связь, так же как и двойная, по характеру отличается от простой связи. Она осуществляется тремя парами обобщенных электронов. Из них, как и в случае двойной связи, одна пара осуществляет простую связь (-связь), а две другие электронные пары находятся в особом состоянии (-связи); осуществляемые ими связи проявляют повышенную склонность к поляризации. Этим обуславливаются реакции присоединения по месту тройной связи. Последние идут ступенчато: вначале тройная связь разрывается в двойную, и образуются производные этиленовых углеводородов. Затем разрывается и двойная связь, превращаясь в простую с образованием производных предельных углеводородов. При энергичном химическом воздействии возможен распад молекул с разрывом углеродной цепи по месту тройной связи.

Присоединение водорода (реакция гидрирования).

В присутствии катализаторов (например, Pt или Pd) водород присоединяется по месту тройной связи. При этом вначале образуется этиленовый, а затем предельный углеводород.

Присоединение галогенов.

При взаимодействии ацетиленовых углеводородов с галогенами последние присоединяются по месту тройной связи; вначале присоединяется одна молекула, а затем может присоединиться и вторая. Наиболее удобна реакция с бромом; как и в случае этиленовых углеводородов, она может быть использована как качественная реакция на тройную связь; в результате реакции бурая окраска брома или его растворов исчезает.

Присоединение галогеноводородов.

Присоединение галогеноводородов также протекает ступенчато. Вначале образуется моногалогенпроизводное этиленового ряда.

К последнему может присоединиться еще одна молекула галогеноводорода, причем реакция в этом случае протекает по правилу Марковникова: водород может присоединяется к углероду с большим числом водородных атомов, и в результате образуется дигалогенпроизводное предельного углеводорода, в котором оба атома галогена стоят при одном том же углеродом атоме.

При реакциях с ацетиленовыми углеводородами, построенными по типу R--CCH, галогеноводород присоединяется в соответствии с правилом Марковникова в обеих стадиях.

Присоединение воды (реакция гидратации).

Эта реакция была открыта в 1881г. М.Г. Кучеровым. Под действием солей окисной ртути в сернокислом растворе по месту тройной связи присоединяется одна молекула воды.

Образующееся соединение - виниловый спирт - относится к непредельным спиртам, в которых гидроксильная группа расположена при углероде с двойной связью. Такие соединения неустойчивы и в свободном виде не существуют, т.к. в момент образования в их молекулах происходит перегруппировка: водород гидроксильной группы перемещается к соседнему углеродному атому, этиленовая связь разрывается и возникает двойная связь между углеродом и кислородом (правило Эльтекова).

Таким образом, в результате реакции образуется соединение с карбонильной группой >С=О. В частности, из ацетилена при гидратации получается уксусный альдегид.

Реакция гидратации ацетиленовых углеводородов (реакция Кучерова) имеет большое практическое значение, т.к. ведет к синтезу различных ценных продуктов. Например, уксусный альдегид, получаемый гидратацией ацетилена, путем окисления может быть переведен в уксусную кислот, а при восстановлении в этиловый спирт. При гидратации гомологов ацетилена, так как реакция протекает по правилу Марковникова, всегда образуются кетоны.

Присоединение СО.

Присоединение СО (реакция В. Реппе). Идет в присутствии никелевых катализаторов (Х=ОН, ОС2Н5, NH2).

Реакция окисления.

Ацетиленовые углеводороды окисляются еще легче, чем этиленовые, обычно с распадом молекулы по месту тройной связи и образованием карбоновых кислот. Фиолетовая окраска раствора KMnO4 при действии его на ацетиленовые углеводороды быстро исчезает, что служит качественной реакцией на эти непредельные соединения.

Замещение водорода при атомах углерода с тройной связью на металл.

Все рассмотренные до сих пор реакции ацетиленовых углеводородов аналогичны реакциям углеводородов ряда этилена. Отличительной особенностью ацетиленовых углеводородов является подвижность атомов водорода, соединенных с углеродными атомами при тройной связи. Под влиянием последней атомы водорода в присутствии сильного основания (амида натрия NaNH2,металлоорганического соединения, иногда концентрированных растворов щелочей) проявляют способность замещаться на металл. При этом образуется металлические производные - ацетилениды (по номенклатуре ИЮПАК - ацетилиды).

При пропускании струи ацетилена в бесцветный прозрачный раствор оксида серебра аммиачный раствор оксида серебра представляет собой раствор комплексного соединения Ag(NH3)2OH - аммиаката серебра образуется желтоватый осадок ацетиленида серебра

HCCH + 2Ag(NH3)2OH AgCCAg + 2H2O + 4NH3.

Аналогично, при взаимодействии ацетилена с аммиачным раствором соли закиси меди обычно применяют раствор хлористой меди CuCl в NH4OH, содержащий комплексный аммиакат состава Сu(NH3)2Cl образуется красно-бурый осадок ацетиленида меди состава CuCCCu.

Очевидно, что из гомологов ацетилена осадок ацетиленидов образуют только соединения типа R--CCH, причем получаются однометаллические производные; соединения типа R--CC--R', не имеющие водорода при тройной связи, ацетиленидов не образуют.

Ацетилениды серебра и меди в сухом виде сильно взрываются от удара или при нагревании. Под действием соляной кислоты ацетилениды разлагаются с выделением ацетиленового углеводорода.

9. Полимеризация ацетилена

При пропускании ацетилена над нагретым активированным углем (метод Н.Д. Зелинского и Б.А. Казанского) очень легко в результате полимеризации трех молекул ацетилена С2Н2 образуется кольчатый углеводород - бензол С6Н6, являющийся родоначальником гомологического ряда очень важных в практическом отношении ароматических углеводородов. Превращение ацетилена в бензол происходит и при простом нагревании его в стеклянных трубах до температуры темно-красного каления (1860, М. Бертло).

В других условиях, под каталитическим действием солей закиси меди (Ю. Ньюленд), полимеризация ацетилена идет иначе. Во взаимодействие вступают две молекулы ацетилена: одна участвует в реакции с разрывом тройной связи, другая - за счет водорода, подвижного, благодаря влиянию тройной связи:

СНСН + СНСН СН2=СН--ССН

Продукт полимеризации (винилацетилен) представляет собой углеводород, в молекуле которого одновременно имеются двойная и тройная связи.

В присутствии свободных радикалов или специальных металлоорганических катализаторов алкины полимеризуются с образованием полиенов (полисопряженных систем).

Продукт полимеризации ацетилена в присутствии ионов Cu+ и окислителей называется карбин и может рассматриваться как аллотропическая модификация углерода (наряду с алмазом и графитом).

Доказано, что в такой полимерной цепи встречаются только кумулированные связи.

Литература

алкадиен химический ацетилен полимеризация

1. Писаренко А.П., Хавин З.Я. Курс органической химии. М., Высшая школа, 1975. 510с.

2. Нечаев А.П. Органическая химия. М., Высшая школа, 1976. 288с.

3. Артеменко А.И. Органическая химия. М., Высшая школа, 2000. 536с.

4. Березин Б.Д., Березин Д.Б. Курс современной органической химии. М., Высшая школа, 1999. 768с.

5. Ким А.М. Органическая химия. Новосибирск, Сибирское университетское издательство, 2002. 972с.

Размещено на Allbest.ru

...

Подобные документы

  • Непредельные соединения, с двумя двойными связями в молекуле - диеновые углеводороды. Связь между строением диеновых углеводородов и их свойствами. Способы получения девинила, изопрена, синтетического каучука. Органические галогениды и их классификация.

    лекция [130,9 K], добавлен 19.02.2009

  • Фолиевые краски Tough Tex Plus, их назначение. Процесс полимеризации растительных масел и способность к пленкообразованию. Образование гидроперекисей олефинов с изолированными двойными связями. Физико-химические превращения и процесс полимеризации масла.

    доклад [16,4 K], добавлен 07.05.2009

  • Номенклатура, изомерия, классификация и физические свойства диеновых углеводородов и органических галогенидов. Способы получения и химические свойства. Сущность диенового синтеза. Натуральные и синтетические каучуки, их применение в строительстве.

    контрольная работа [85,0 K], добавлен 27.02.2009

  • Общая характеристика и классификация диенов. Формула высокомолекулярных соединений полиолефинов, образующихся при полимеризации или сополимеризации ненасыщенных углеводородов, каучуки синтетические. Этиленпропиленовые каучуки, способ их получения.

    реферат [345,0 K], добавлен 11.11.2009

  • Основные способы получения ацетилена, его применение химической промышленности, в области машиностроении и металлообработке. Схема современного генератора непрерывного действия системы "карбид в воду". Химизм процесса получения ацетилена из углеводородов.

    реферат [1,6 M], добавлен 01.01.2015

  • Типы диенов: изолированные, сопряженные и куммулированные. Способ получения дивинила из этанола. Строение сопряженных диенов. Причины затрудненного вращения в молекуле бутадиена. Реакции полимеризации. Реакционная способность кумулированных алкадиенов.

    контрольная работа [320,4 K], добавлен 05.08.2013

  • Гомологический ряд метана. Строение молекулы метана. Углы между всеми связями. Физические свойства алканов. Лабораторные способы получения. Получение из солей карбоновых кислот. Тип гибридизации атомов углерода в алканах. Структурная изомерия алканов.

    презентация [1,5 M], добавлен 08.10.2014

  • Циклоалканы как ненасыщенные углеводороды, в молекулах которых имеется замкнутое кольцо из углеродных атомов, анализ их основных физических и химических свойств, общая формула и реакционная способность. Цис-транс-изомерия в циклических соединениях.

    реферат [159,5 K], добавлен 24.11.2010

  • Строение, номенклатура алкенов. Ненасыщенные углеводороды, молекулы которых содержат одну двойную С-С-связь. Гибридизация орбиталей. Изображение пространственного строения атомов. Пространственная изомерия углеродного скелета. Физические свойства алкенов.

    презентация [606,4 K], добавлен 06.08.2015

  • Понятие алканов (насыщенные углеводороды, парафины, алифатические соединения), их систематическая и рациональная номенклатура. Химические свойства алканов, реакции радикального замещения и окисления. Получение и восстановление непредельных углеводородов.

    реферат [46,2 K], добавлен 11.01.2011

  • Особенности строения предельных углеводородов. Номенклатура углеводородов ряда метана. Химические свойства предельных углеводородов, их применение. Структурные формулы циклопарафинов (циклоалканов), их изображение в виде правильных многоугольников.

    контрольная работа [151,2 K], добавлен 24.09.2010

  • Классификация углеводородов, их функциональные производные. Реакции полимеризации, особые механические и химические свойства полимеров. Общие принципы производства искусственных волокон. Ацетатное волокно, химическое строение, получение, свойства.

    контрольная работа [184,0 K], добавлен 29.03.2013

  • Что такое алкены, строение молекулы, физические и химические свойства. Выбор главной цепи, нумерация атомов главной цепи, формирование названия. Структурная изометрия. Химические свойства этилена, классификация способов получения, сфера применения.

    презентация [279,2 K], добавлен 20.12.2010

  • Товарные и определяющие технологию свойства ацетилена. Сырьевые источники получения. Перспективы использования различного сырья. Промышленные способы получения. Физико-химический процесс получения ацетилена методом термоокисленного пиролиза метана.

    контрольная работа [329,9 K], добавлен 30.03.2008

  • Ароматические углеводороды: общая характеристика. Номенклатура и изомерия, физические и химические свойства ароматических углеводородов. Механизм реакций электрофильного и нуклеофильного замещения в ароматическом ряду. Применение аренов, их токсичность.

    реферат [1,2 M], добавлен 11.12.2011

  • Полиэтилен как продукт полимеризации этилена. История его открытия, строение, химические, физические, эксплуатационные и экологические свойства. Основные способы переработки пластика. Примеры продукции, которые изготавливаются из данного полимера.

    презентация [137,7 K], добавлен 22.11.2016

  • Процесс получения ацетилена термоокислительным пиролизом. Зависимость максимально допустимого безопасного давления от концентрации ацетилена в смеси с азотом. Современные способы получения ацетилена. Получение алюминия из отходов переработки ацетилена.

    курсовая работа [116,0 K], добавлен 11.10.2010

  • Основные виды сажи, их физические и химические свойства. Промышленные способы производства сажи, разложение углеводородов под воздействием высокой температуры. Характеристика сырья, его приемка и хранение на заводах. Продукты процессов сажеобразования.

    контрольная работа [28,0 K], добавлен 24.10.2011

  • Атомные, физические и химические свойства элементов подгруппы меди и их соединений. Содержание элементов подгруппы меди в земной коре. Использование пиро- и гидрометаллургическиех процессов для получения меди. Свойства соединений меди, серебра и золота.

    реферат [111,9 K], добавлен 26.06.2014

  • Общая характеристика меди. История открытия малахита. Форма нахождения в природе, искусственные аналоги, кристаллическая структура малахита. Физические и химические свойства меди и её соединений. Основной карбонат меди и его химические свойства.

    курсовая работа [64,2 K], добавлен 24.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.