Газовая хроматография

Сущность метода газовой хроматографии, его использование для анализа газообразных, жидких и твёрдых веществ. Оборудование для газовой хроматографии: пламенно-ионизационный, масс-селективный, атомно-эмиссионный, редокс-хемилюминесцентный детекторы.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 17.03.2016
Размер файла 87,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Газовая хроматография

План

1. Сущность метода

2. Оборудование для газовой хроматографии

2.1 Газовый хроматограф

2.2 Детекторы

2.3 Пламенно-ионизационный детектор (ДИП, ПИД)

2.4 Детектор электронного захвата (ДЭЗ)

2.5 Термоионный детектор (ДТИ, ТИД)

2.6 Пламенно-фотометрический детектор (ПФД)

2.7 Детектор по теплопроводности (ДТП)

2.8 Инфракрасные детекторы (ИКД)

2.9 Масс-селективный детектор (МСД)

2.10 Атомно-эмиссионный детектор (АЭД)

2.11 Гелий-ионизационный детектор (ГИД)

2.12 Редокс-хемилюминесцентный детектор (РХД)

2.13 Детектор по плотности (ДП)

2.14 Фотоионизационный детектор (ДФИ)

3. Газовая хроматография

1. Сущность метода

Газовая хроматография -- разновидность хроматографии, метод разделения летучих компонентов, при котором подвижной фазой служит инертный газ (газ-носитель), протекающий через неподвижную фазу с большой поверхностью. В качестве подвижной фазы используют водород, гелий, азот, аргон, углекислый газ. Газ-носитель не реагирует с неподвижной фазой и разделяемыми веществами. Различают газо-твёрдофазную и газо-жидкостную хроматографию. В первом случае неподвижной фазой является твёрдый носитель (силикагель, уголь, оксид алюминия), во втором -- жидкость, нанесённая на поверхность инертного носителя.

Газо-жидкостная хроматография -- разделение газовой смеси вследствие различной растворимости компонентов пробы в жидкости или различной стабильности образующихся комплексов. Неподвижной фазой служит жидкость, нанесенная на инертный носитель, подвижной -- газ.

Разделение основано на различиях в летучести и растворимости (или адсорбируемости) компонентов разделяемой смеси.

Этот метод можно использовать для анализа газообразных, жидких и твёрдых веществ с молекулярной массой меньше 400, которые должны удовлетворять определённым требованиям, главные из которых -- летучесть, термостабильность, инертность, лёгкость получения. Этим требованиям в полной мере удовлетворяют, как правило, органические вещества, поэтому газовую хроматографию широко используют как серийный метод анализа органических соединений.

газовый хроматография плазменный детектор

2. Оборудование для газовой хроматографии

2.1 Газовый хроматограф

Схема газового хроматографа

1 -- источник газа-носителя (подвижной фазы)

2 -- регулятор расхода газа носителя

3 -- устройство ввода пробы

4 -- хроматографическая колонка в термостате

5 -- детектор

6 -- электронный усилитель

7 -- регистрирующий прибор (самописец, компьютер)

8 -- расходомер

2.2 Детекторы

Детекторы предназначены для непрерывного измерения концентрации веществ на выходе из хроматографической колонки. Принцип действия детектора должен быть основан на измерении такого свойства аналитического компонента, которым не обладает подвижная фаза.

В газовой хроматографии используют следующие виды детекторов:

Исходя из цели анализа и условий его проведения, следует выбирать такой детектор, характеристики которого соответствуют им в наибольшей степени. Критерии оценки детекторов общеприняты для всех систем детектирования; к ним относятся:

- чувствительность;

- минимально детектируемая концентрация (предел обнаружения);

- фоновый сигнал;

- уровень шума;

- скорость дрейфа нулевой линии;

- диапазон линейности детектора;

- эффективный объем и время отклика (быстродействие);

- селективность.

Чувствительность отражает степень взаимодействия анализируемого вещества с детектором и определяет величину сигнала, соответствующего содержанию (концентрации и потоку) вещества в газе-носителе. На практике чувствительность чаще всего определяют по площади сигнала детектора в зависимости от типа детектора.

Быстродействие (инерционность) - способность детектора быстро реагировать на резкое изменение концентрации вещества в потоке газа-носителя, проходящего через детектор.

Селективность - характеристика, определяющая сигнал детектора по отношению к различным соединениям.

2.3 Пламенно-ионизационный детектор (ДИП, ПИД)

В основе ДИПа лежит зависимость электрической проводимости ионизированного газа от его состава. Сигналом детектора является изменение ионного тока, вызванное введением в детектор анализируемого вещества. Газ-носитель в смеси с анализируемой смесью и водородом подается в форсунку горелки, где происходит ионизация. Одновременно горелка выполняет функцию одного из электродов, а нержавеющая пластинка, свернутая в цилиндр, укрепленная на небольшом расстоянии над пламенем, образует второй -- собирающий электрод.

2.4 Детектор электронного захвата (ДЭЗ)

Детектор электронного захвата является наиболее часто используемым селективным газохроматографическим детектором. ДЭЗ применяется для определения соединений, обладающих большим сродством к электронам. Эти вещества захватывают свободные тепловые электроны в камере с радиоактивным источником с образованием стабильных ионов. Он успешно применяется для определения малых концентраций галоген-, азот- и кислородсодержащих веществ.

2.5 Термоионный детектор (ДТИ, ТИД)

До настоящего времени ДТИ -- это один из наиболее высокочувствительных и селективных детекторов к фосфорорганическим веществам. Кроме того, получили все большее распространение варианты термоионного детектора, проявляющие высокую чувствительность и селективность к азот- и галогенсодержащим веществам. Конструкции детекторов различаются главным образом способом размещения и нагревания соли щелочного металла, а также геометрией детектора, причем все эти различия оказывают весьма существенное влияние на его характеристики -- стабильность, чувствительность, селективность. Щелочная соль в виде таблетки или нанесенная на какой-либо держатель, выполненный из пористого металла или керамики в виде спирали, сетки или петли, может нагреваться либо водородным пламенем, либо электрическим током. В качестве источника ионов щелочного металла пригодны почти все его соли и гидроксиды.

2.6 Пламенно-фотометрический детектор (ПФД)

ПФД является селективным по отношению к фосфор- и серосодержащим веществам. Принцип действия основан на измерении свечения водородного пламени при сгорании в нем фосфор- и серосодержащих соединений. Различие условий сжигания в ПФД и ДИП состоит в том, что в ПФД пламя обогащено водородом, в то время как в ДИП оно обогащено кислородом. Конструктивно ПФД представляет собой сочетание ячейки ДИП с оптической схемой измерения светового потока. Световой поток сначала проходит интерференционный фильтр, который поглощает фоновое излучение пламени, после чего поступает на чувствительный элемент фотоумножителя. Полученный таким образом фототок направляется в электрометрический усилитель и далее поступает на самопишущий потенциометр. Выбор измеряемой длины волны определяется характером эмиссионного спектра пламени фосфор- и серосодержащих соединений, имеющих максимум соответственно при 526 и 394 нм. Спектральное выделение этих полос производится интерференционными светофильтрами. Защита оптических фильтров от высокой температуры обеспечивается специальной кварцевой или пирексовой насадкой, размещенной над горелкой в зоне водородного пламени или увеличением с помощью световодов расстояния между зоной пламени и фотоумножителем.

2.7 Детектор по теплопроводности (ДТП)

ДТП или катарометр является универсальным недеструктирующим детектором. В основу работы ДТП положен процесс передачи тепла от нагретого чувствительного элемента к более холодному корпусу детектора за счет теплопроводности газового потока. С изменением состава газового потока меняется его теплопроводность, т.е. количество тепла, отводимое от чувствительного элемента. Это, в свою очередь, приводит к изменению температуры, а, следовательно, и электрического сопротивления чувствительного элемента. В измерительной схеме ДТП возникает сигнал в виде разности потенциалов (напряжения), величина которого пропорциональна концентрации анализируемого вещества в газе-носителе. Особенностью ДТП, по сравнению с другими детекторами, является необходимость продувки его двумя потоками газа-носителя - по рабочей и сравнительной линии, в каждой из которых помещается два чувствительных элемента. Обе линии равноценны и могут быть как рабочей, так и сравнительной. В сравнительную линию ДТП подается, как правило, "чистый" газ-носитель из сравнительной колонки, в рабочую линию подается поток газа-носителя из рабочей (аналитической) колонки. Таким образом, в ДТП производится сравнение теплопроводностей "чистого" газа-носителя и газа-носителя, содержащего разделенные в рабочей колонке анализируемые вещества.

2.8 Инфракрасные детекторы (ИКД)

Инфракрасная спектроскопия широко применяется в химическом анализе и в сочетании с газовой хроматографией. Методом ИК-спектроскопии с преобразованием Фурье (ИКПФ) проводят анализ элюируемых соединений с высокой скоростью и чувствительностью. Полученный при этом ИК-спектр поглощения можно рассматривать как индивидуальную характеристику соединения и использовать для его идентификации.

2.9 Масс-селективный детектор (МСД)

Уже давно масс-спектрометр рассматривается как отличный детектор для газовой хроматографии. Полученные с его помощью спектры, подобно ИКД, дают такую информацию о качественном составе пробы, какую не могут дать иные газохроматографические детекторы. Различие между МСД и ИКД состоит в том, что первый обладает большей чувствительностью по сравнению с ИКД, кроме того, он разрушает пробу, дает информацию о массе, а не о функциональных группах и различает скорее гомологи, чем изомеры. При бомбардировке электронами молекул в газообразном состоянии связи в молекулах разрываются и образуют ионы. Вид и количество образующихся фрагментов характерны для данной молекулы. При наложении магнитного поля положительно заряженные частицы ускоряются и движутся по изогнутым кривым, радиус кривизны которых пропорционален корню квадратному из массы иона. При некотором постоянном магнитном поле поток ионов, содержащий ионы с идентичным масса/заряд, попадает на коллектор. Здесь при разряде ионов возникает ток, пропорциональный относительному количеству ионов с соответствующей массой. Изменением магнитного поля постепенно переводят на коллектор потоки ионов с другим соотношением масса/заряд. Ток коллектора записывается и дает масс-спектрограмму. В квадрупольном масс-спектрометре разделение по массе достигается иным образом. Между четырьмя постоянными магнитами образуется высокочастотное электрическое поле. Когда пучок ионов попадает в это поле, только ионы с определенным отношением масса/заряд имеют стабильную траекторию и попадают на детектор (коллектор). Детектирование пучков с различным отношением масса/заряд проводят варьированием электрического поля.

2.10 Атомно-эмиссионный детектор (АЭД)

В течение многих лет исследователи пытались использовать атомно-эмиссионную спектроскопию в газовой хроматографии. Ее применение дает возможность определять элементы непосредственно в элюате, поступающем из колонки. Возбуждающие атомы излучают свет с характерной длиной волны. В атомно-эмиссионном детекторе проба переводится в атомарное состояние, а образовавшиеся атомы переходят в возбужденное состояние. Для этого необходима значительная энергия, которая имеется в плазме, индуцированной микроволновым излучением. Переход возбужденных атомов в состояние с более низкой энергией сопровождается излучением света. Длина волны возникающего излучения измеряется спектрофотометром.

2.11 Гелий-ионизационный детектор (ГИД)

Гелий-ионизационный детектор был разработан в 1950-е годы. Принцип действия ГИД основан на том, что ионизация инертного газа увеличивается, если при постоянном уровне облучения в него добавляют посторонний газ. Точный механизм этого явления не вполне ясен, хотя за последние годы в этом направлении достигнут некоторый прогресс. Механизм процесса основан, вероятнее всего, на переносе энергии от метастабильного гелия к другим атомам и молекулам. Сначала образуются отрицательные заряды с постоянной скоростью. Освободившиеся электроны малых энергий разгоняются сильным полем и при соударениях с атомами газа-носителя сообщают им энергию, переводящую их в возбужденное (метастабильное) состояние.

Полный сбор электронов и ионов, возникающих в результате первичной ионизации газа-носителя, создает фоновый ток детектора. Вероятность перехода возбужденных атомов Ar или Не в первоначальное энергетическое состояние значительно увеличивается при введении в детектор веществ, имеющих близкие или меньшие потенциалы ионизации (энергию отрыва электрона), чем энергия возбужденного состояния. Образующиеся в результате реакции вторичной ионизации заряды создают дополнительный ток, являющийся сигналом детектора на введенное количество вещества. Так как энергия возбуждения метастабильного гелия (19,6 эВ) и аргона (11,6 эВ) больше, чем потенциал ионизации всех других частиц, за исключением неона (21 эВ), поэтому другие компоненты могут ионизироваться. ГИД используется главным образом в том случае, если необходимо обнаружить следы посторонних газов. ГИД является универсальным детектором.

2.12 Редокс-хемилюминесцентный детектор (РХД)

Этот вид детекторов был разработан в конце 1970-х годов для количественного анализа азота, водорода и соединений серы в воде или воздухе. Обычно для определения используется реакция азота с озоном. С помощью РХД можно анализировать следующие классы соединений: спирты, альдегиды, кетоны, фенолы, олефины, ароматические углеводороды, амины, тиолы, сульфиды и фосфонаты. РХД хорошо сочетается с ДИП, так как многие соединения, не дающие сигнала в детекторе ДИП, реагируют как восстановители и тем самым способны регистрироваться детектором РХД.

2.13 Детектор по плотности (ДП)

Детектор по плотности был впервые описан Мартином. Однако предложенный им детектор был настолько сложен по устройству, что, несмотря на последующие упрощения, не нашел достаточного применения. Предложена более простая система детектора. Работа детектора основана на измерении давления в вертикальной трубке, заполненной газом, выходящим из хроматографической колонки, при попадании в нее вместе с газом-носителем анализируемого вещества. Изменение давления в этом канале пропорционально изменению плотности газового потока.

Для ДП характерен высокий линейный диапазон и возможность расчета по его показаниям количества компонента если известна его молекулярная масса. Поэтому при работе с ДП не требуется проведения калибровки, кроме введения 5% поправки для газа-носителя водорода, учитывающей его высокую теплопроводность. С применением двух и более газов-носителей могут быть расчитаны молекулярные массы анализируемых соединений с целью их идентификации.

2.14 Фотоионизационный детектор (ДФИ)

Принцип работы ДФИ состоит в следующем: фотоны от УФ-лампы попадают в ионизационную камеру, через которую непрерывно проходит газ-носитель, выбранный таким образом, чтобы его потенциал ионизации был значительно выше энергии фотонов. В этом случае газ-носитель не ионизируется, в то время как попадание в камеру анализируемого вещества вызывает появление фотоионизационного тока, пропорционального концентрации этого вещества. Детектируются все соединения, в том числе и неорганические, для которых потенциал ионизации меньше энергии фотонов. Различные УФ-лампы могут обеспечить разную селективность ДФИ к различным соединениям. ДФИ более чувствителен, чем ДПИ. Наряду с этим использование воздуха в качестве газа-носителя и отсутствие пламени дают ДФИ неоспоримые преимущества перед ДПИ.

3. Газовая хроматография

Хроматография - процесс, основанный на многократном повторении актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента. Разделение сложных смесей хроматографическим способом основано на различной сорбируемостикомпонентов смеси. В процессе хроматографирования так называемая подвижная фаза (элюент), содержащая анализируемую пробу, перемещается через неподвижную фазу. Обычно неподвижная фаза представляет собой вещество с развитой поверхностью, а подвижная - поток газа или жидкости, фильтрующейся через слой сорбента. При этом происходит многократное повторение актов сорбции - десорбции, что является характерной особенностью хроматографического процесса и обуславливает эффективность хроматографического разделения.

Качественный хроматографический анализ, т.е. индетификация вещества по его хроматограмме, может быть выполнен сравнениемхроматограических характеристик, чаще всего удерживаемого объема (т.е. объема подвижной фазы, пропущенной через колонку от начала ввода смеси до появления данного компонента на выходе из колонки), найденных при определенных условиях для компонентов анализируемой смеси и для эталона.

Количественный хроматографический анализ проводят обычно на хроматографе. Метод основан на измерении различных параметровхроматографического пика, зависящих от концентрации хроматографируемых веществ - высоты, ширины, площади и удерживаемого объема или произведения удерживаемого объема на высоту пика.

В количественной газовой хроматографии применяют методы абсолютной градуировки и внутренней нормализации, или нормировки. Используется также метод внутреннего стандарта. При абсолютной градуировке экспериментально определяют зависимость высоты или площади пика от концентрации вещества и строят градуировочные графики или рассчитывают соответствующие коэффициенты. Далее определяют те же характеристики пиков в анализируемой смеси, и по градуировочному графику находят концентрацию анализируемого вещества. Этот простой и точный метод является основным при определении микропримесей.

При использовании метода внутренней нормализации принимают сумму каких-либо параметров пиков, например сумму высот всех пиков или сумму их площадей, за 100%. Тогда отношение высоты отдельного пика к сумме высот или отношение площади одного пика к сумме площадей при умножении на 100 будет характеризовать массовую долю (%) компонента в смеси. При таком подходе необходимо, чтобы зависимость величины измеряемого параметра от концентрации была одинаковой для всех компонентов смеси.

По способу относительного перемещения фаз различают фронтальную, или элюэнтную, и вытеснительную хроматографию.

Проявительный (элюентный) метод. При работе по этому методу в колонку водят порцию анализируемой смеси, содержащей компонентыА и В в растворителе Solv, и колонку непрерывно промывают газом-носителем или растворителем Solv. При этом компоненты анализируемой смеси разделяются на зоны: хорошо сорбирующееся вещество В занимает верхнюю часть колонки, а менее сорбирующийся компонент А будет занимать нижнюю часть.

В газе или растворе, вытекающем из колонки, сначала появляется компонент А, далее - чистый растворитель, а затем компонент В. Чем больше концентрация компонента, тем выше пик и больше его площадь, что составляет основу количественного хроматографического анализа.Проявительный метод дает возможность разделять сложные смеси, он наиболее часто применяется в практике. Недостатком метода является уменьшение концентрации выходящих растворов за счет разбавления растворителем или газом-носителем. Размещено на Allbest.ru

...

Подобные документы

  • Основы метода обращенной газовой хроматографии. Газовая хроматография - универсальный метод качественного и количественного анализа сложных смесей и способ получения отдельных компонентов в чистом виде. Применение обращенной газовой хроматографии.

    курсовая работа [28,9 K], добавлен 09.01.2010

  • Сущность метода хроматографии, история его разработки и виды. Сферы применения хроматографии, приборы или установки для хроматографического разделения и анализа смесей веществ. Схема газового хроматографа, его основные системы и принцип действия.

    реферат [130,2 K], добавлен 25.09.2010

  • Явления, происходящие при хроматографии. Два подхода к объяснению - теория теоретических тарелок и кинетическая теория. Газовая, жидкостная, бумажная хроматография. Ионообменный метод. Случаи применения ионообменной хроматографии. Гельхроматографирование.

    реферат [69,4 K], добавлен 24.01.2009

  • Общая характеристика процесса хроматографии. Физико-химические основы тонкослойной хроматографии, классификация методов анализа. Варианты хроматографии по фазовым состояниям. Контроль качества пищевых продуктов посредством метода ТСХ, оборудование.

    курсовая работа [371,8 K], добавлен 27.12.2009

  • Методы фотометрического анализа. Количественное определение веществ в газовой хроматографии. Сущность амперометрического титрования. Природа происхождения атомных спектров. Типы радиоактивных превращений, используемых в радиометрических методах анализа.

    контрольная работа [222,2 K], добавлен 17.05.2014

  • Способ определения группового и компонентно-фракционного состава нестабильного газового конденсата методами газоадсорбционной и капиллярной газовой хроматографии с прямым вводом пробы НГК, находящейся под давление без предварительного разгазирования.

    дипломная работа [1,1 M], добавлен 24.11.2015

  • Сущность высокоэффективной жидкостной хроматографии (ВЭЖХ) как метода анализа и разделения сложных примесей. Сорбенты, координационно-насыщенные хелаты; закономерности влияния строения лиганда на поведение хелатов в условиях обращенофазной хроматографии.

    реферат [109,8 K], добавлен 11.10.2011

  • Комплектные приборы с высокой степенью автоматизации для жидкостной хроматографии. Принципиальная схема жидкостного хроматографа. Современные насосы для жидкостной хроматографии. Устройства для формирования градиента. Инжекторы для ввода пробы, детекторы.

    контрольная работа [210,5 K], добавлен 12.01.2010

  • Влияние природы газа-носителя и его параметров на качество разделения веществ. Основные требования к газу-носителю. Газовая хроматография с применением паров. Природа неподвижной жидкости. Полярные и неполярные соединения. Образование водородной связи.

    реферат [18,5 K], добавлен 10.02.2010

  • Сущность и содержание ионно-парной хроматографии, ее использование в жидкостной хроматографии и экстракции для извлечения лекарств и их метаболитов из биологических жидкостей в органическую фазу. Варианты ионно-парной хроматографии, отличительные черты.

    реферат [28,7 K], добавлен 07.01.2010

  • Понятие и основные этапы протекания метода эксклюзионной хроматографии, его принципиальная особенность и сферы применения, разновидности и их отличительные признаки. Характеристика оборудования, используемого в процессе эксклюзионной хроматографии.

    реферат [54,4 K], добавлен 07.01.2010

  • Возникновение и развитие хроматографии. Классификация хроматографических методов. Хроматография на твердой неподвижной фазе: газовая, жидкостная (жидкостно-адсорбционная). Хроматография на жидкой неподвижной фазе: газо-жидкостная и гель-хроматография.

    реферат [28,1 K], добавлен 01.05.2009

  • Специфика метода жидкостно-жидкостной хроматографии - физико-химического метода разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях. Распределительная хроматография на бумаге.

    курсовая работа [601,2 K], добавлен 13.03.2011

  • Назначение лигандообменной хроматографии, принцип и этапы ее реализации, задействованные элементы. Определение микропримесей в жидкостной хроматографии, рекомендации по его проведению. Методика анализа сложных примесей и инструментарий для него.

    реферат [27,1 K], добавлен 07.01.2010

  • Определения примесей в таблетках диазепама и феназепама с использованием двухступенчатой капиллярной газовой хроматографии в сочетании с масс-спектрометрическим детектированием в режиме off-line. Оценка суммарного содержания зарегистрированных примесей.

    статья [143,2 K], добавлен 12.06.2012

  • Хроматографическая система - метод разделения и анализа смесей веществ. Механизм разделения веществ по двум признакам. Сорбционные и гельфильтрационные (гельпроникающие) методы. Адсорбционная, распределительная, осадочная и ситовая хроматография.

    реферат [207,8 K], добавлен 24.01.2009

  • Диметилацеталь диметилформамида как эквивалент карбонильной группы при образовании оснований Шиффа в реакции с первичными аминами. Методика применения диметилацеталя диметилформамида в качестве реагента для дериватизации аналитов в газовой хроматографии.

    дипломная работа [2,1 M], добавлен 24.06.2015

  • Основные требования к растворителям. Элюирующая сила растворителя и элюотропные ряды. Элюотропные серии для адсорбционной хроматографии на силикагеле. Вопрос о чистоте растворителя, адсорбционная очистка методом классической колоночной хроматографии.

    реферат [41,5 K], добавлен 12.01.2010

  • Использование тонкослойной хроматографии в качественном анализе. Выбор проявляющего растворителя (подвижной фазы). Нанесение раствора образца на пластинку. Двумерная хроматография на бумаге. Приготовление подвижной фазы, нанесение вещества и проявление.

    курсовая работа [1,1 M], добавлен 01.12.2015

  • Основные факторы выбора конкретных условий проведения хроматографического анализа. Применение газовой хроматографии для исследования газов и других неорганических веществ. Легкие газы, водород, его изотопы и изомеры, углеводороды, смеси типа бензинов.

    реферат [25,1 K], добавлен 27.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.