Технология получения метанола и формальдегида
Характеристики сырья и основных процессов органического синтеза. Физические и токсические свойства метанола. Сферы его применения. Промышленные способы получения метилового спирта. Производство формальдегида дегидрированием и окислением метанола.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 13.04.2016 |
Размер файла | 924,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1. Характеристики сырья и основных процессов органичесого синтеза
Сырье - термин широкого значения. Под этим термином объединяются все природные материалы, которые используются для производства промышленных продуктов. Наличие или отсутствие того или иного сырья решающим образом влияет на возможности промышленного развития любой страны. Сырьевые ресурсы - важнейшее национальное богатство. Одной из главных задач народного хозяйства является бережное отношение к сырьевым запасам, поэтому наиболее рациональным является полное (комплексное) использование сырья, возможно, без всяких потерь и отходов. Несмотря на очень высокий технический и экономический уровень современной промышленности это удается редко и эта проблема в наше время является одной из самых актуальных для экономики страны.
Химическая технология связана с природным сырьем, т.е. с такими материалами, которые непосредственно получаются из различных природных источников. Особая роль предприятий химической промышленности и близких к ней отраслей заключается в том, что химические производства начинают длинную и сложную цепь переработки природных материалов в готовую продукцию непосредственного потребления. Большинство предприятий химической промышленности, как правило, производит не готовую продукцию, а только полупродукты, которые являются сырьем для дальнейшей переработки в других отраслях промышленности. С этой точки зрения химические производства являются сырьевой базой для других отраслей промышленности.
Сырье - термин не очень четкий и зависит от уровня развития производительных сил. В одном случае это полупродукт, в другом - отход производства, которые, в свою очередь, могут оказаться сырьем в том же или другом производстве. В то же время имеются все основания четко определить: сырье это необработанный природный продукт - объект переработки химическими способами.
Сырье может иметь различное происхождение. Минеральное сырье извлекается из недр земли. Этот вид сырья имеет наибольшее значение, так как обладает универсальностью, т.е. возможностью обеспечить промышленность любого назначения.
Второй вид сырья относится к растительному и животному происхождению. Это прежде всего древесина - материал, обладающий мощным ресурсом, продукты сельского хозяйства - хлопок, лен, джут, агава, картофель, корнеплоды, масленичные и др.; животного происхождения - шерсть, жир, рыба.
Минеральное сырье - всевозможные руды, твердое топливо, нефть, газ, минеральные соли и другие многочисленные минералы располагаются в земной коре очень неравномерно. Эта неравномерность и разные глубины залегания минералов создают большие затруднения в организации поисков этих сырьевых источников и возможности их извлечения для использования.
Открытие месторождения не означает еще, что оно может быть немедленно использовано. Необходимо установить запасы сырья, причем такие, которые могут быть извлечены при современном уровне техники. Разработать методы извлечения, установить состав сырья и реальные возможности получения из него продукции необходимого качества. Только после получения этих данных, месторождение может быть использовано. В геологии установлены определенные категории геологических запасов. Например, категория А - вполне доказанные и подготовленные к эксплуатации запасы, категория В - геологически обоснованные и достаточно разведанные запасы и категория С - запасы установленные геологическими изысканиями. Могут служить основанием для дальнейшей горно-геологической разведки.
Основной задачей в работе геологов-разведчиков и горняков является перевод из одной категории в другую, т.е. увеличение в конечном итоге категории А запасов, которые могут использоваться немедленно.
Извлеченное из недр минеральное сырье требует предварительной подготовки для использования его на предприятиях химических производств. Это вызвано следующими обстоятельствами.
Физическое состояние (размер кусков) может не удовлетворять возможностей производства. Следовательно, возникает необходимость механической обработки сырья: размол, рассев и т.п.
Большой объем балласта, например, в нефти много воды, в твердых минералах присутствуют сопутствующие, не нужные породы, существенным образом затрудняющие технологические приемы переработки сырья. В этом случае необходимо отделение нужной породы от сопутствующих минералов. Последняя проблема становится все более важной в горной промышленности. Некоторые виды сырья содержат нужный минерал в незначительных количествах (например, в случае руд цветных металлов). В то же время других руд нет и вероятно не будет, следовательно, необходимо перерабатывать такое сырье. Естественно, что переработка такого бедного сырья в технологических установках не будет эффективна или просто невозможна. В этих случаях нужный минерал концентрируют, применяя различные методы. Совокупность таких методов известна сейчас под термином «обогащение» сырья. Обогащение сырья занимает сейчас видное место на предприятиях не только горной промышленности, но и на предприятиях металлургической, химической и других предприятиях.
Все химическое сырье подразделяется на группы по происхождению, химическому составу, запасам и агрегатному состоянию. Классификация химического сырья представлена на рисунке.
Химическое сырье принято также делить на:
а) первичное (извлекаемое из природных источников) и вторичное (промежуточные и побочные продукты промышленного производства и потребления, отходы)
б) природное и искусственное (полученное в результате промышленной обработки природного сырья).
Рис. 1
Органический синтез - раздел органической химии, в котором рассматриваются пути и методы искусственного создания органических соединений в лаборатории и промышленности. Широко применим в лабораторных условиях (главным образом для исследовательских целей) и в промышленности.
Успешное развитие органического синтеза началось после разработки теории химического строения и накопления сведений о химических свойствах органических соединений (2я пол. 19 в.). С этого времени органический синтез как основной источник новых органических соединений играет фундаментальную роль в становлении органической химии как науки и в ее дальнейшем развитии, обеспечивая постоянно расширяющийся круг изучаемых объектов. Развитие органического синтеза в 20 в., особенно в последние десятилетия, характеризуется все возрастающим вниманием к синтезу природных соединений и их аналогов, значительным укреплением методической базы (созданием надежных синтетических методов), началом создания самостоятельной теории органического синтеза. Осуществление синтеза сложнейших природных соединений (например хлорофилла, витамина В12, биополимеров), создание материалов с необычными свойствами (например так называемые органические металлы) показывает, что для современного органического синтеза практически не существует неразрешимых задач.
В реферате рассмотрены вопросы, касающиеся планирования органического синтеза, т.е. выбора оптимального пути получения соединения с заранее заданной структурой. Конкретные методы синтеза - образование новой связи С-С, введение функциональных групп и другое.
Обычно синтез целевого соединения осуществляют из относительно простых и доступных (т.е. выпускаемых промышленностью) исходных веществ. Как правило, при синтезе сложных веществ путь от исходных соединений к целевому разбивается на ряд этапов (стадий), на каждом из которых происходит образование одной - двух связей (фрагментов) будущей молекулы или подготовка к образованию таких связей.
Осуществление органического синтеза сопряжено с решением двух основных вопросов: 1) разработка общего плана синтеза, т.е. выбор оптимальных исходных соединений и последовательности стадий, ведущих кратчайшим путем к целевому продукту (стратегия синтеза); 2) выбор (или разработка новых) синтетических методов, обеспечивающих возможность построения необходимой связи в определенном месте собираемой молекулы.
Основные методы органического синтеза можно разбить на три группы:
1) конструктивные, ведущие к образованию новых связей С-С, назначение которых - построение скелета будущей молекулы (например, реакция Гриньяра, реакция Фриделя-Крафтса, цикло - присоединение);
2) деструктивные, ведущие к разрыву определенных связей С-С с целью удаления той или иной группировки из молекулы после того, как ее роль в синтезе сыграна (например, декарбоксилирование, периодатное окисление диолов);
3) методы трансформации функциональных групп. Последнее важно для введения в молекулы исходных или промежуточных соединений функциональных групп и их защиты, требующихся для осуществления очередной конструктивной реакции, а на заключительных стадиях синтеза-для введения необходимых функциональных групп в целевое соединение.
2. Производство метанола
Метанол (метиловый спирт) CH3OН - это один из важнейших по значению и масштабам производства органический продукт, выпускаемый химической промышленностью. В нефтеперерабатывающей промышленности метиловый спирт служит селективным растворителем для очистки бензинов от меркаптанов и азеотропным реагентом при выделении толуола ректификацией.
Также метанол используется как растворитель в производстве карбамидных смол, уксусной кислоты, синтетических каучуков, поливинилового спирта и ацеталей, антифризов, денатурирующих добавок. Значительно возрос интерес к метанолу как к важному и экономически эффективному сырью для получения водорода и синтез-газа, которые широко применяют в металлургии, в производстве аммиака. Существенно расширяется использование метанола для очистки сточных вод от вредных соединений азота, для производства кормового белка.
В химической промышленности метанол применяется в качестве полупродукта для многих промышленных синтезов. В наибольших количествах метанол используется для получения формальдегида, а также в качестве метилирующего агента в производстве таких важных продуктов, как диметилтерефталат, метилметакрилат, некоторые пестициды.
В последнее время планируется применение метанола в качестве источника энергии, а именно топлива для тепловых электростанций, моторного топлива и как компонента автомобильных бензинов. Благодаря добавке метанола улучшаются антиденотационные свойства бензинов, повышается КПД двигателя и уменьшается содержание вредных веществ в выхлопных газах.
Физические и токсические свойства метанола
Метанол представляет собой бесцветную жидкость (т. кип.64,50C, т. пл. -97,90C, плотность 0,79 г/см3). Теплотворная способность метанола - 5300 ккал/кг, что в два раза меньше теплотворной способности бензина (11000 ккал/кг). Запах метанола похож на запах этилового спирта, и по этому признаку их невозможно отличить. Он горюч, образует с воздухом взрывоопасные смеси (6 - 34,7 % об.), температура самовоспламенения его паров в воздухе4640C.
Метанол смешивается в любых соотношениях с водой, спиртами, бензолом, ацетоном и многими другими жидкостями, но не смешивается с алифатическими углеводородами. Также как и этиловый спирт, образует сводой и некоторыми органическими растворителями (например, с ацетоном, бензолом, дихлорэтаном) азеотропные смеси (это значит, что температура кипения смеси ниже температуры кипения индивидуальных веществ), что затрудняет их разделение отгонкой (ректификацией), но используется в некоторых производственных процессах, например, в смеси с этиленгликолем метиловый спирт применяется для экстракции толуола из бензинов.
Метанол представляет собой большую опасность из-за своей высокой токсичности. Является сильным нервным и сосудистым ядом кумулятивного действия; обладает также слабым наркотическим действием. Предельно допустимая концентрация паров метилового спирта в воздухе производственных помещений 50 мг/м3.
Промышленные способы получения метанола
Среди способов получения метилового спирта можно выделить следующие основные:
-сухая перегонка древесины,
-каталитическое гидрирование оксида и диоксида углерода (синтез-газ).
-каталитическое неполное окисление метана,
Сухая перегонка древесины.
Впервые метанол был обнаружен в древесном спирте в 1661 г., но лишь в 1834 г. был выделен из продуктов сухой перегонки древесины Думасом и Пелиготом.
До промышленного освоения каталитических способов, метанол получали, в основном, сухой перегонкой (пиролиз или коксование) древесины, отсюда название метанола - древесный спирт.
Рис. 2
синтез метанол формальдегид
Метанол, полученный этим способом, был загрязнен ацетоном и другими трудноотделимыми примесями. В настоящее время этот метод получения метанола практически не имеет промышленного значения.
Традиционно основными продуктами пиролиза являются смола и "жижка" - надсмольная вода, а коксования - коксовый (угольный) остаток, представляющий собой чистый углерод. Жидкие продукты сухой перегонки содержат метиловый спирт, ацетон и другие трудно разделяемые примеси. Газообразные продукты являются побочными в этих методах переработки твердого сырья.
Однако, твердое топливо сохраняет, в качестве сырья, важное перспективное значение. Разработка и внедрение в широкую практику нового технологического процесса-газификации угля, основной целью которого является получение газообразных продуктов, в том числе синтез-газа или "сингаза", содержащего Н2СО2,СО, может изменить структуру сырьевой базы не только производства метанола, но и других важных химических продуктов.
Рис. 3
Рис. 4 Технология получение метанола из синтез-газа.
Выход продуктов всех указанных технологических процессов (пиролиза, коксования или газификации) зависит от условий проведения в зоне восстановления реакции.
Метод синтеза метанола из окиси углерода и водорода был разработан в 1913 году и в дальнейшем интенсивно развивался и совершенствовался.
Сегодня исходный синтез-газ (сингаз) для синтеза метанола получают в результате конверсии (превращения) углеводородного сырья: природного газа, коксового газа, жидких углеводородов (нефти, мазута, легкого каталитического крекинга) и твердого топлива (угля, сланцев). Исходный газ для синтеза метанола можно получить почти из всех видов сырья, которые используют при получении водорода, например в процессах синтеза аммиака. Поэтому производство метанола часто базируется на тех же сырьевых ресурсах, что и производство аммиака и поэтому является составной частью основного химического производства. Примером такого смешанного производства являются ОАО "Невинномысский Азот", расположенное в г. Невинномысске (Ставропольский край) и НПО "Азот" в г. Новомосковске.
Рис. 5
Реакции, лежащие в основе получения метанола
CO+2H2ЃМCH3OH+90,8кДж
CO2+3H2ЃМCH3OH+49,6кДж
являются обратимыми, гомогенными, экзотермическими и протекают с уменьшением объема. Поэтому равновесие можно сместить в сторону выхода продукта при повышении давления и понижении температуры. Однако, ввиду того, что при низких температурах скорость реакции снижается, прибегают к нагреванию. Процесс осуществляют на цинк-хромовых и медьсодержащих катализаторах. На отечественных производствах метанола в основном используют активный цинк-хромовый катализатор (3ZnO-ZnCr2О4)при380--4000C и давлении 20 - 30 МПа. Выбирая оптимальный температурный режим и величину давления, необходимо учитывать возможность образования побочных соединений: метана, высших спиртов, кислот, альдегидов, кетонов и эфиров. Эти реакции обусловливают бесполезный расход синтез-газа и удорожают очистку метанола.
Рис. 6
Таким образом, промышленный синтез метилового спирта включает три основные стадии:
- получение смеси окиси углерода и водорода (синтез-газ);
- получение метилового спирта-сырца;
- выделение и очистка метилового спирта (ректификация).
Как и в производстве аммиака, при синтезе метанола используют принцип циркуляции. Очищенный от сернистых соединений синтез-газ сжимается в компрессоре до давления 5--9 МПа, охлаждается в холодильнике и поступает в сепаратор для отделения сконденсировавшейся воды. Пройдя сепаратор, синтез-газ смешивается с циркуляционным газом, который снова доводится до рабочего давления в циркуляционном компрессоре.
Рис. 7
В последние годы проводятся работы по созданию комбинированных установок, где совмещены экзотермический синтез метанола и эндотермические процессы получения синтез-газа, то есть установки самообеспечиваются теплом (принцип теплообмена).
Контрольно-измерительные и регулирующие приборы промышленных установок должны обеспечивать бесперебойное осуществление процесса, в частности смягчать влияние различных нарушений в системе путем автоматического включения быстродействующих вентилей. Особое внимание уделяется предотвращению загрязнения окружающей среды отходящими газами и сточными водами.
3. Производство формальдегида
Формальдегид (метаналь, муравьиный альдегид) - бесцветный газ с острым раздражающим запахом, с температурой кипения-19.20С, температурой плавления -1180С и плотностью (в жидком состоянии при -200С) 0.815т/м3. С воздухом образует взрывчатые смеси с пределами воспламеняемости 5.5 и 34.7% об. Формальдегид хорошо растворим в воде, спиртах, ограниченно растворим в бензоле, эфире, хлороформе, не растворим в алифатических углеводородах. Легко полимеризуется, образуя твердый полимер линейного строения (параформ) с оксиметиленовыми звеньями:
NНСНО + Н2О - Н-(-О-СН2-)n, где n = 8-100
Процесс полимеризации обратим, поэтому параформ легко деполимеризуется под воздействием щелочных и кислотных реагентов, что используется на практике для хранения и транспортировки формальдегида. Токсичен, ПДК составляет 0.05мг/м3.
Товарный продукт выпускается обычно в виде 37%-ного водного раствора (формалин), в котором формальдегид содержится в форме гидрата НСНО*Н2О и низкомолекулярных полимеров - полиоксиметиленгликолей. Для предотвращения более глубокой полимеризации формальдегида и выпадения осадка, который может отлагаться в аппаратуре, в формалин добавляется 6-15% объема метанола.
Формальдегид вырабатывается в очень больших масштабах и широко используется в различных областях органического синтеза, а также в качестве дезинфицирующего и дезинсекционного средства. В больших количествах формальдегид применяется для производства фенола-карбамида и меламиноформальдегидных полимеров, в качестве полупродукта в синтезах изопрена, пентаэритрита, уротропина.
Формальдегид может быть получен окислением метана и его гомологов или из метанола. При окислении метана в газовой фазе воздухом или кислородом при атмосферном давлении протекают реакции:
СН4+ 0.5О2= СН3ОН -ДН (а)
СН3ОН + 0.5О2= НСНО + Н2О -ДН (б)
Реакция (б) селективно ускоряется катализаторами на основе меди и серебра. Однако достаточная для промышленного использования селективность процесса по формальдегиду может быть достигнута только при очень малой степени окисления метана и недостатка кислорода, т.е. при весьма большой кратности циркуляции метанола. В противном случае образовавшийся формальдегид подвергается дальнейшему окислению
НСНО + 0.5О2= НСООН и НСООН + 0.5О2= СО2+ Н2О
Вследствие этого и, следовательно, малого выхода формальдегида технологический процесс прямого окисления метана становится экономически невыгодным. Основная масса формальдегида производится поэтому из метанола по двум методам:
- окислительным дегидрированием
- окислением.
Окислительное дегидрирование метанола представляет гетерогенно-каталитический процесс, протекающий в газовой фазе на твердом катализаторе. В этом процессе совмещены экзотермическая реакция окисления метанола:
СН3ОН + 0.5О2= НСНО + Н2О (д)
и эндотермическая реакция его дегидрирования:
СН3ОН -НСНО + Н2(е)
При соотношении реакций (д) и (е) равным 0.55:0.45, тепловой эффект процесса достаточен для возмещения потерь тепла системы в окружающую среду и для нагревания исходных продуктов до нужной температуры. Если это отношение соблюдается, а в исходной паровоздушной смеси содержится около 45%об. метанола, что лежит за верхним пределом взрываемости ее (34.7%), процесс можно проводить в реакторах адиабатического типа, не имеющих поверхностей теплообмена.
В качестве катализаторов процесса окислительного дегидрирования используют медь (в виде сетки или стружки) и серебро, нанесенное на пемзу. Одновременно с основными реакциями протекают побочные реакции глубокого окисления, а также реакции дегидрирования и гидрирования, приводящие к образованию смеси продуктов:
СН3ОН > НСНО > СО; СН3ОН + Н2> СН4+ Н2О
для подавления которых в метанол вводится до 10% воды. Во избежание глубокого окисления метанола процесс окислительного дегидрирования проводится при недостатке кислорода. В то же время реакция дегидрирования инициируется кислородом, что позволяет уменьшить удельный вес побочных реакций. Процесс окислительного дегидрирования проводится при Т=500-6000С и времени контактирования около 0.02 с. В этих же условиях выход формальдегида в расчете на пропущенное сырье составляет 80-85% при степени контактирования 0.85-0.90.
Технологическая схема процесса включает следующие стадии: подача в испаритель, обогреваемый паром, метанола и очищенного от пыли воздуха; удаление из образовавшейся паровоздушной смеси брызг, ее подогрев и подача в реактор, загруженный катализатором; быстрое охлаждение продуктов реакции в холодильнике, подача их в абсорбер, орошаемый водой и охлаждение образовавшегося в абсорбере 37%-ного раствора формальдегида; подача продукта в сборник формалина и очистка непоглощенных газов в санитарной башне.
Производство формальдегида окислением метанола.
В этом новом, относительно недавно внедренном в практику методе, метанол окисляется в избытке воздуха при Т=350-4300С и атмосферном давлении на окисном железо-молибденовом катализаторе состава МоО3*Fе2(МоО4)3. Этот катализатор имеет высокую активность и малочувствителен к каталитическим ядам.
Технологический процесс прямого окисления отличается от рассмотренного нами ранее процесса окислительного дегидрирования высокой степенью конверсии метанола (0.99), селективностью по формальдегиду, достигающей 96% и высокой экзотермичностью. Поэтому для окисления метанола в нем используют трубчатые реакторы с интенсивным охлаждением циркулирующей в межтрубном пространстве водой или другими хладоагентами. К достоинствам метода относятся также низкие расходные коэффициенты по сырью и энергии. Производство формальдегида по этой схеме работает по замкнутому циклу, и в нем отсутствуют отходы, сточные воды и вредные газовые выбросы.
Производство формальдегида из метанола-сырца.
Рассмотренные ранее схемы производства формальдегида дегидрированием и окислением метанола предусматривают использование преимущественно пемзосеребряных катализаторов, весьма чувствительных к контактным ядами. Поэтому в них используют метанол-ректификат, тщательно очищаемый от соединений железа, хлора, серы и некоторых других органических соединений. Необходимость подобной очистки увеличивает капитальные затраты и значительно повышает себестоимость сырья и удорожает производство формальдегида. Исходя из этого, имеется схема производства формальдегида непосредственно из метанола-сырца, в которой совмещены стадии каталитической очистки сырья и получения формальдегида. Подобная технология позволяет, не меняя принципиальной схемы процесса, не только использовать вместо метанола-ректификата метанол-сырец, но и утилизировать содержащиеся в последнем побочные продукты, снизить расход пара на ректификацию и, в целом, повысить ТЭП производства без снижения качества конечного целевого продукта.
Список используемой литературы
1. Огородников С.К. Формальдегид. - Л: Химия, 2004. - 280 с.
2. Технологический регламент производства формалина ?Завода формалина и карбосмол? Томского Нефтехимического комбината.
3. Лебедев Н.Н. Химия и технология основного и нефтехимического синтеза: Учебник для вузов. - М: Химия, 2001. - 608 с.
4. Охрана труда в химической промышленности. Под ред. Г.В. Макарова. М: Химия, 2000. - 476 с.
5. Криницына З.В. Менеджмент. Томск ТПУ, 2002. - 54 с.
6 Иванов Г.Н., Ляпков А.А., Бочкарев В.В. Учебное пособие - Томск: изд. ТПУ - 2002. - 113 с.
7 Гутник С.П. Расчеты по технологии органического синтеза. М: Химия, 2008. - 272 с.
8 Справочник нефтехимика. Под ред. С.К. Огородникова - Л: Химия, 1998. Т.2. - 592 с.
9 Основные процессы и аппараты химической технологии. Пособие по проектированию. Под ред. Ю.И. Дытнерского М: Химия 2001. - 496 с.
10 Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. - Л: Химия, 2007. - 576 с.
Размещено на Allbest.ru
...Подобные документы
Товарные и определяющие технологию свойства метанола, области применения в химической технологии. Сырьевые источники получения метанола. Перспективы использования различных видов сырья. Промышленный синтез метилового спирта и его основные стадии.
контрольная работа [42,6 K], добавлен 10.09.2008Совмещенное дегидрирование и окисление метанола. Получаемые и побочные продукты. Условия проведения процесса. Оформление реакционного узла. Получение формальдегида дегидрированием или окислением первичных спиртов. Дегидрирование первичных спиртов.
реферат [496,5 K], добавлен 27.02.2009Синтез метанола из оксида углерода и водорода. Технологические свойства метанола (метиловый спирт). Применение метанола и перспективы развития производства. Сырьевые источники получения метанола: очистка синтез-газа, синтез, ректификация метанола-сырца.
контрольная работа [291,5 K], добавлен 30.03.2008Физико-химические свойства метанола, области применения, текущее состояние рынка данного продукта. Производство, переработка метанола в России и перспективы его использования. Метанол как альтернативный энергоноситель. Новое топливо из природного газа.
курсовая работа [2,1 M], добавлен 05.10.2011Особенности использования метанола в органическом синтезе. Промышленные способы получения и схема производства метанола. Влияние параметров управления на на равновесие и скорость химической реакции. Оптимизация работы реактора по экономическим критериям.
курсовая работа [552,7 K], добавлен 23.02.2012Выбор метода производства готового продукта. Характеристика исходного сырья, вспомогательных материалов и продукции. Способы получения уксусной кислоты из метанола. Уравнение реакции карбонилирования метанола. Катализаторы, носители, поглотители.
дипломная работа [136,8 K], добавлен 03.11.2013Отличие условий синтеза метанола от условий синтеза высших спиртов. Стадии процесса и их тепловой эффект. Влияние вида катализатора на параметры, скорость и глубину процесса. Синтез метанола на цинк-хромовом катализаторе. Схемы синтеза метанола.
реферат [748,6 K], добавлен 15.06.2010Актуальность производства метанола. Физические и химические свойства. Подготовка углеводородного сырья. Производство синтез-газа. Получение целевого продукта. Структурный анализ затрат. Формы отравления метаноловым спиртом. Применение метанола в мире.
презентация [863,6 K], добавлен 15.11.2015Химические свойства и основные области применения формальдегида. Технологическая схема производства формалина. Абсорбция формальдегидсодержащих реакционных газов. Окисление метанола воздуха в присутствии серебряных или молибденовых катализаторов.
реферат [1,1 M], добавлен 04.02.2015Технология производства уксусной кислоты из метанола и оксида углерода. Материальный баланс реактора и стадии синтеза уксусной кислоты. Получение уксусной кислоты окислением ацетальдегида, н-бутана, н-бутенов, парафинов С4-С8. Применение уксусной кислоты.
курсовая работа [207,3 K], добавлен 22.12.2010Обоснование источников сырья, энергоресурсов, географической точки строительства для производства метанола. Параметры технологического процесса. Синтез и анализ химической, структурной, операторной схемы. Пути использования вторичных энергоресурсов.
курсовая работа [112,1 K], добавлен 13.01.2015Физические и химические свойства 2-метилбутадиен-1,3. Анализ видов опасного воздействия, токсичности, класса опасности. Применение в промышленности. Методы получения, химизм и технология процессов. Получение изопрена на основе изобутилена и формальдегида.
курсовая работа [1,0 M], добавлен 09.03.2015Способы получения сложных эфиров. Основные продукты и области применения эфиров. Условия проведения реакции этерификации органических кислот со спиртами. Катализаторы процесса. Особенности технологического оформления реакционного узла этерификации.
реферат [440,1 K], добавлен 27.02.2009Исходные мономеры для синтеза поливинилхлорида (ПВХ), его физические и физико-химические свойства. Способы получения винилхлорида. Способы получения ПВХ на производстве. Производство ПВХ эмульсионным способом. Основные стадии получения суспензионного ПВХ.
реферат [81,1 K], добавлен 19.02.2016Товарные и определяющие технологию свойства ацетилена. Сырьевые источники получения. Перспективы использования различного сырья. Промышленные способы получения. Физико-химический процесс получения ацетилена методом термоокисленного пиролиза метана.
контрольная работа [329,9 K], добавлен 30.03.2008Достижения Московских нефтехимических НИИ по внедрению диметилового эфира в качестве альтернативы дизельному топливу. Исследование каталитических систем на основе аморфного алюмофосфата с SiO2 в процессе дегидратации метанола до диметилового эфира.
дипломная работа [3,6 M], добавлен 04.01.2009Исходное сырье для производства этилового спирта и способы его получения. Физико-химическое обоснование основных процессов производства этилового спирта. Описание технологической схемы процесса производства, расчет основных технологических показателей.
курсовая работа [543,6 K], добавлен 04.01.2009Краткая история получения мочевино-формальдегидных смол. Исходное сырьё для производства, механизм образования, технология производства и применение мочевино-формальдегидных смол. Сущность, химические свойства и функциональность мочевины и формальдегида.
реферат [1,2 M], добавлен 13.12.2010Физические свойства стирола. Методы его промышленного производства. Реакционный узел для дегидрирования этилбензола. Технология совместного получения стирола и пропиленоксида. Преимущества использования "двойной ректификации" для разделения компонентов.
курсовая работа [379,3 K], добавлен 06.01.2016Понятие и номенклатура фенолов, их основные физические и химические свойства, характерные реакции. Способы получения фенолов и сферы их практического применения. Токсические свойства фенола и характер его негативного воздействия на организм человека.
курсовая работа [292,0 K], добавлен 16.03.2011