Получение этанола методом сернокислотной гидратации

Физические характеристики этилового спирта при нормальных условиях. Характеристика исходного сырья, материалов и полупродуктов для производства спирта. Методы выделения продукта из реакционной смеси. Отделение ректификации водно-спиртового конденсата.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 30.03.2016
Размер файла 7,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Теплообменник 10 состоит из нескольких аппаратов. По трубной части его проходит обратный газ сразу же после тройника нейтрализации. Вследствие высокой температуры в межтрубной части аппарата (в застойных зонах) образуется полимерная масса, которая ухудшает теплообмен.

Паровой подогреватель 4 работает в сложных температурных условиях. Межтрубное пространство всегда чистое, так как по нему проходит пар высокого давления. В трубках возможно образование полимерной массы из-за высокой температуры, поэтому при вскрытии аппарата трубки следует прочищать.

Котлы-утилизаторы 7 и 8 работают в сложных условиях из-за колебания уровня парового конденсата в межтрубном пространстве. При изменении уровня обнаженные трубки нагреваются сильнее и благодаря тепловому расширению испытывают большие механические нагрузки, так как концы трубок жестко закреплены. Это является причиной негерметичности аппарата как в узле вальцовки трубок, так и. в теле самих трубок. Корпус котлов-утилизаторов рассчитан на низкое давление. Пар выходит через сухопарник; там осуществляется отбой капель воды. Сухопарник приваривается непосредственно к корпусу. На корпусе котла имеются два нижние штуцера для ввода парового конденсата, два штуцера для подключения регулятора уровня и верхний штуцер-воздушник. На задней крышке котла имеется дренажный штуцер, а наверху -- бобышка для подключения манометра.

Холодильник 6 состоит из нескольких одинаковых менников. При грязной промышленной воде в межтрубном пространстве образуется накипь на трубках и на крышке плавающей головки. В процессе эксплуатации возможно образование газовых пробок из-за пропуска газа, что может привести к повышению температуры на выходе обратного газового потока.

В отделении ректификации все теплообменники -- кожухотрубные, жесткого типа. Водно-спиртовый конденсат и фузельная вода являются загрязняющими средами, т. е. они дают на поверхности теплообмена отложения полимеров и солей, которые периодически приходится удалять. Дефлегматор и конденсатор, работающие на промышленной воде, могут загрязняться только примесями, имеющимися в воде. Обычно теплообменное оборудование в отделении ректификации работает удовлетворительно.

3.2.3 Емкостное оборудование

Газоотделитель 12(1) представляет собой горизонтальную полую цилиндрическую емкость, имеющую вверху промывную колонку с насадкой из колец Рашига. Емкость 20 -- вертикальный цилиндрический аппарат с расположенным внутри по дну змеевиком для подогрева в зимнее время. Остальные аппараты -- полые цилиндрические емкости.

3.2.4 Оборудование катализаторного отделения

Осушитель воздуха 2 (см. рис. 3) -- вертикальный цилиндрический аппарат, заполненный активной окисью алюминия.

Пропарочный аппарат 4 -- вертикальный цилиндрический аппарат со сферическими днищами.

Сито 5 -- шестигранный барабан, обтянутый металлической сеткой (размер отверстий 2,5 мм). Аппарат, предназначен для отсева пыли и крошки от носителя.

Прокалочная печь 6 -- вертикальный прямоугольный аппарат шахтного типа, выложенный изнутри огнеупорным кирпичом и снабженный трубчатым теплообменником для охлаждения воздухом носителя, выгружаемого из аппарата. На верху аппарата имеется приемный бункер, обеспечивающий равномерное распределение носителя и служащий затворным устройством от попадания дымовых газов в помещение.

Топка 7-- горизонтальный цилиндрический аппарат с плоским днищем; выложен изнутри огнеупорным кирпичом.

Сито 24 -- сито «Ротекс» с электроприводом. Предназначено для отсева пыли и мелочи от готового катализатора.

Пропиточная ванна 10--вертикальный цилиндрический аппарат со сферическим днищем.

Сборник 16 -- вертикальный цилиндрический аппарат с коническим днищем.

3.2.5 Компрессоры и насосы

Компрессор 2 (см. рис. 1)--поршневого типа. Служит для сжатия этиленовой фракции, поступающей из цеха газоразделения, до 70 кгс/см3 . Компрессор 3 -- тоже поршневого типа; служит для обеспечения циркуляции газа в агрегате гидратации.

Для перекачки жидких продуктов применяются насосы различных типов -- поршневые, центробежные и др. Поршневые насосы используются для подачи на нейтрализацию подщелоченного водно-спиртового конденсатаи для подачи фузельной воды на отмывку паров спирта из циркулирующего газа в скруббер 13. Остальные насосы, применяемые в производстве, являются центробежными или других типов, обеспечивающих заданные условия перекачки.

3.2.6 Вспомогательное оборудование

К вспомогательному оборудованию относятся: бункеры, в которых транспортируют катализатор, тельферы, мостовые краны, дренажные емкости, масляное хозяйство, емкости парового хозяйства цеха, вентиляционное и отопительное оборудование, воздушный компрессор. Вспомогательное оборудование косвенным образом способствует успешному ведению технологического процесса.

Большое значение в производстве придается вентиляции, которая делится на приточную и вытяжную. Приточная вентиляция выполняет и отопительную функцию, подавая в зимнее время теплый воздух, нагретый в калориферах. Приточная вентиляция улучшает условия труда за счет уменьшения концентрации углеводородов, выделяемых через неплотности в оборудовании. Приточная вентиляция имеется в компрессорном, насосном и операторном помещениях, в отделениях гидратации и катализаторном. Вытяжная вентиляция служит для отсоса паров жидкостей и тяжелых газов. Отсасывающие отверстия коробов располагаются обычно низко над полом. Вытяжная вентиляция имеется в насосных и служит также для улучшения атмосферы в помещениях.

В отделении гидратации имеется вентиляционная система, отсасывающая катализаторную пыль в период загрузки и выгрузкикатализатора. Пыль, захваченная воздухом, задерживается в 72-рукавном фильтре с электроприводом. При этом пыль с внутренней поверхности рукава стряхивается вниз в сборник. Воздух, профильтрованный через рукава, выходит из фильтра. Такой же фильтр для улавливания пыли установлен в катализаторном отделении.

Дренажные емкости служат для сбора продуктов из аппаратов, которые освобождают перед ремонтом. Собранный продукт периодически откачивается из этих емкостей в специальный сборник. Наличие дренажных емкостей уменьшает сбросы, улучшает атмосферу цеха.

Отопительное оборудование (калориферы) подогревает воздух, подаваемый приточной вентиляцией в помещение. Необходимо следить, чтобы в холодную погоду калориферы не замерзли.

Грузоподъемное оборудование служит для подъема и перемещения грузов по территории.

Воздушный компрессор служит для обеспечения пневмотельфера воздухом.

3.3 Характеристика сырья и продукта

Основным сырьем для производства этилового спирта методом прямой гидратации является этилен.

Этилен СН2=СН2, мол.вес.28,05, бесцветный газ со слабым запахом; т.пл. 169,5о ; т.кип. - 103,8о ; теплота сгорания 333,5 ккал/моль; т.воспл. 546о (в воздухе); растворимость газообразного этилена в одном объеме растворителя: 0,25 в воде, 3,59 в спирте, хорошо растворим в эфире. Пределы взрывоопасных концентраций в воздухе 3-34 об.%. При нагревании выше 350-400о разлагается: 3С2Н4=2СН4+2СНєСН; при температуре белого каления этилен преимущественно дегидрируется: СН2=СН2®НСєСН+Н2.

В светильном и коксовом газе находится 3-5% этилена; в некоторых газах нефтепереработки его содержание достигает 20%.

Этилен - очень реакционноспособное соединение; его химические свойства обусловлены главным образом межуглеродной двойной связью и проявляются в большой склонности к реакциям присоединения. Этилен - один из важнейших исходных продуктов синтеза органических соединений.

При действии хлора на этилен в органическом растворителе ( обычно в дихлорэтане) в присутствии металл.или хлорного железа гладко образуется дихлорэтан:

СН2=СН2 +Cl2 ®Cl2 CH2 CH2 Cl

Дихлорэтан широко применяют как растворитель и сырье для получения винилхлорида и др. В присутствии АLСI3 этилен алкилирует бензол и образует этилбензол. В присутствии ионных катализаторов типа АLСI3 или ВF3 возможно алкилирование этиленом изопарафинов с образованием сильно разветвленных алканов, представляющих интерес в качестве авиационного топлива.

С НСIэтилен при -30о дает этил хлористый, применяемый для этилирования, например, в производстве тетраэтилсвинца.

С хлоридами серы этилен образует дихлордиэтилсульфид (иприт) (СIСН2 СН2 )2 S. Реакцией этилена с формальдегидом в уксусной кислоте в присутствии Н2 SО4 можно получить ацетат триметиленгликоля его омылением - триметиленгликоль. Реакцией этилена с СО и Н2 можно получить пропионовый альдегид, а с СО2 - пропионовую кислоту.

К числу производств, основанных на использовании этилена и получивших широкое промышленное развитие, относятся в первую очередь его полимеризация, его окисление в окись этилена, гидратация в этиловый спирт.

Из общего количества используемого в различных странах этилена 25-40% расходуется на производство полиэтилена, 20-40% перерабатывается в спирт, до 25% идет на получение окиси этилена, »10% приходится на долю производства стирола (через этилбензол), примерно столько же на дихлорэтан и другие хлорпроизводные.

При содержании в воздухе около 0,1% этилена фрукты и овощи (особенно лимоны, виноград, помидоры) ускоренно созревают. В медицине этилен применяют для общего наркоза при хирургических операциях.

Этилен можно получать многими способами, в частности дегидратацией спирт, пропуская его пары над Al2 O3 при 350о -400о . При этом образуется сравнительно чистый этилен. Метод применяется не только в лабораторной практике, но и в небольшом масштабе и в производстве. В странах, бедных нефтью, этилен иногда производят частичным гидрированием ацетилена при 180 - 320о над Рd - катализатором на силикагеле. Этилен можно также получать реакцией этана с избытком окиси углерода над Fе2 О3 при 800 - 900о ,образующаяся смесь этилена с СО пригодна для непосредственного получения пропионового альдегида.

Однако основные методы получения дешевого этилена в крупном масщтабе связаны с переработкой нефти и природного газа. Так, газы парофазного или жидкофазного крекинга нефтепродуктов при 700 - 800о содержат 17 - 20 % этилена. После разделения газов методами дробной абсорбции, глубокого охлаждения и ректификации под давлением выделяют этиленовую фракцию, с 90 - 95% этилена и примесью 1-3% пропилена, 1-4% метана и 3-6% этана.

В настоящее время основным источником низших олефинов является пиролиз углеводородного сырья, проводимый с целью производства этилена. Попутно при пиролизе получают другие ненасыщенные газообразные углеводороды - пропилен, бутены и бутадиен. Одновременно образуются жидкие продукты (смола пиролиза), которые содержат также ценные углеводороды, как изопрен, циклопентадиен, бензол, толуол, ксилолы и нафталин.

Основным сырьем процесса пиролиза с целью получения газах, газовые бензины прямой перегонки нефти, а также рафинад каталитического риформинга, остающийся после удаления ароматических углеводородов. В качестве сырья пиролиза применяют также средние и тяжелые нефтяные фракции и даже сырую нефть.

Процесс производства этилена и других олефинов из углеводородного сырья включает стадии пиролиза углеводородов, компримирования газа пиролиза, удаления тяжелых углеводородов, осушки, разделения (газофракционирование), удаление сероводорода, диоксида углерода и ацетилена этилена являются этан, пропан и бутан, содержащиеся в попутных газах нефтедобычи и в нефтезаводских

Этиловый спирт - конечный продукт производства. Физические свойства этилового спирта описаны во введении данной работы. Рассмотрим теперь, что же представляет этиловый спирт по своим химическим свойствам. При взаимодействии этилового спирта с щелочными металлами образуются этилаты: 2С2 Н5 ОН + 2Nа®2С2 Н5 ОNа + Н2; водой этилаты омыляются до С2Н5ОН и NаОН. При действии на этиловый спирт кислот образуются сложные эфиры. Концентрированная H2 SO4 образует с этиловым спиртом этилсерную кислоту

С2 Н5 ОН + Н2 SО4 ® С2 Н5 НSО4 + Н2 О;

При взаимодействии этилового спирта с уксусной кислотой в присутствии конц. серной кислоты или других катализаторов получается этилацетат:

С2 Н5 ОН + СН2 СООН ® С2 Н5 ОСОСН3 + Н2 О

При дегидрировании этилового спирта в присутствии катализаторов(серебро, медь) образуется ацетальдегид:

С2 Н5 ОН ® СН3 СНО

Если пропускать пары этилового спирта над сложным катализатором при 380-400о нормальном давлении, происходит дегидратация и дегидрогенизация этилового спирта (способ С.В. Лебедева) с образованием бутадиена - 1,3 (дивинила):

2С2 Н5 ОН® СН2 = СН - СН = СН2 + 2Н2 О + Н2

Нагреванием этилового спирта до 140о в присутствии Н2SО4 образуется диэтиловый эфир:

2C2 Н5 ОН ® (С2Н4 )2 О + Н2 О

Над активированной окисью алюминия этиловый спирт дегидратируется до этилена:

С2 Н5 ОН® СН2 =СН2 + Н2 О

При каталитическом взаимодействии этилового спирта с аммиаком образуются моно-, ди- и триэтиламины.

Этиловый спирт - наркотик, возбуждающе действующий на организм. Длительное воздействие больших доз может вызвать тяжелые органические заболевания нервной системы, печени, сердечно-сосудистой системы, пищеварительного тракта и т.д.

Предельно-допустимая концентрация этилового спирта в воздухе рабочей зоны 1000 мг/м3

4. Ежегодные нормы расхода основных видов сырья, материалов и энергоресурсов

Настоящие нормы служат основой для плановых расчетов потребности этилового спирта и являются средством контроля и учета.

Нормы составлены на основе государственных и отраслевых стандартов, технических условий на изделия, ведомственных нормативных документов, инструкций по эксплуатации приборов и оборудования, чертежей изделий, подлежащих обработке этиловым спиртом.

Нормы распространяются на применение технического спирта (ГОСТ 18300-72) и гидролизного (ГОСТ 17299-78), пищевого ректификованного (ГОСТ 5962-67).

Единицей измерения этилового спирта является единица объема (мл, л, дал) безводного спирта (абсолютного алкоголя) при температуре +20 °С.

Нормативы расхода, приведенные в настоящем сборнике, указаны в литрах безводного спирта, кроме табл.44 и 45, где нормы даны в литрах этилового спирта, имеющего крепость (объемное содержание) 96 объемных процентов (% об.) при температуре +20 °С.

Расчет потребности производится в декалитрах безводного спирта (1 дал =10 л).

При учете этилового спирта определению подлежат:

а) масса водно-спиртового раствора в кг

б) содержание спирта в растворе в объемных процентах

в) объем безводного спирта в растворе в литрах безводного спирта.

Нормативы расхода спирта на протирку при эксплуатации ЭВМ разработаны с учетом 3-сменной загрузки.

Для расчета годовой потребности в этиловом спирте на эксплуатационные нужды химических цехов электрических станций следует пользоваться "Методическими указаниями по организации и объему химического контроля воднохимического режима на тепловых электростанциях" РД-34 M.188.

Потребность в этиловом спирте на эксплуатацию нестандартного оборудования и приборов, не вошедших в настоящие Нормы, следует рассчитывать по нормативам.

При проведении промывочных операций и испытаний в спиртовых ваннах необходимо предусматривать возврат этилового спирта, бывшего в употреблении.

Потери крепости спирта после проведения работ устанавливаются химической лабораторией предприятия.

Отработанный спирт подлежит регенерации (очистке) или фильтрации от механических примесей для последующего его использования на менее ответственных операциях в соответствии с заключением химической лаборатории.

Спирт, непригодный для дальнейшего использования, загрязненный токсическими веществами, по заключению химической лаборатории подлежит уничтожению.

Нормы технологического режима

Наименование стадий процесса, места изменения параметров или отбора проб

Контролируемый параметр

Частота и способ контроля

Нормы и технологические показатели

1 Абсорбция пропилена серной кислоты

1.1 Серная кислота, подаваемая на абсорбцию

концентрация, % масс

1 раз в сутки

70-73 %

температура, К

2 раза в смену

не более 323К

1.3 Абгаз после отмывки в аппаратах К- 241,2 К-25

среда

постоянно

нейтральная

давление, МПа

постоянно

не более 0,8 МПа

1.4 Экстракт после аппарата Е- 4

удельный вес, г/см3

1 раз в час

1,26-1,27 г/см3

2 Гидролиз экстракта и отпарка спиртоводных паров

2.1 Гидролизат

температура, К

постоянно

не более 363 К

2.2 Колонна К- 10 1,2,3

давление, МПа температура, К

постоянно постоянно

не более 0,06 МПа

393-408 К

2.3 Колонна К- 161,2,3

давление, МПа

постоянно

не более 0,06 МПа

3 Ректификация спирта-сырца

3.1 Спирт-сырец

среда, мг/л

1 раз в час

2000-3500 мг/л

3.2 Колонна К-46

температура куба, К

постоянно

368-378 К

температура верха, К

постоянно

345-358 К

давление, МПа

постоянно

не более 0,07 МПа

4 Ректификация эпюрата

4.1 Колонна К-146

температура куба, К

постоянно

378-388 К

температура верха, К

постоянно

365-370 К

давление, МПа

постоянно

не более 0,07 МПа

5 Отпарка эфира из фракции полимерной

5.1 Колонна К-40

температура куба, К

постоянно

348-363 К

температура верха, К

постоянно

343-353 К

давление, МПа

постоянно

не более 0,05 МПа

4. Контроль производства и управление технологическим процессом

Для технологического процесса производства этилового спирта характерны невысокие температуры и давление, требования ведения процессов определены технологическим регламентом, пределы значений технологическими параметрами. Кроме того, технологическое оборудование установлено на открытых площадках или в отдельных производственных зданиях. Поэтому для контроля и управления устанавливают или совокупность различных приборов и регуляторов или другие автоматические устройства. Большинство технологических операции в данном процессе автоматизированы. Стадии гидратации пропилена и ректификации водно- спиртового конденсата в состоянии нормального режима могут быть автоматизированы до такой степени, что участия аппаратчика в ведении процесса почти не потребуется. Аппаратчик с помощью контрольно - измерительных приборов и регуляторов осуществляет контроль и управление процессом на всех стадиях производства спирта. по отделению гидратации

Рис 2 Схема отделения прямой гидратации пропилена:

1-Буфер; 2 - компрессор свежего пропилена; 3 - компрессор циркулирующего глаза ; 4 паровой подегреватель; 5,10,14 - теплообменники; 6,15- холодилники ; 7-8 - котлы - утилизаторы; 9- реактор; 11- сепаратор; 12- газоотделители ( сеператоры); 13- скруббер; 16,20 - емкости; 17,18,21 - насосы, 19- сборник; ФВ - фузельная вода.

Температура : на приеме и нагнетании компрессоров 2 и 3 ; прямого газа перед входом в аппарат 5,10,4 и 9 ; верха, середины и куба реактора 9; после тройника нейтрализации и далее после ап. 10,8,7 и 6; на линиях отдувки газа высокого и низкого давлений.

Давление: на приеме и нагнетании компрессоров 2и 3; на входе и выходе из реактора 9; пара высокого давления в ап. 4; в ап.12

Расход : циркулирующего газа после ап.4; пара высокого давления на смещение ; подщелочного водноспиртового конденцата перед тройником нейтрализации ; фузельной воды в ап.15; парового конденсата в котлы-утилизаторы 7и 8; водно - спиртового конденсата из ап.11 и 13.

рH среди в ап.11

Расход сырья измеряется методом переменного перепада давления с помощью стандартной камерной диафрагмы типа ДКС-6,3. Разность на этой диаграмме пропорциональна квадрату расхода, измеряется мембранным пневматическим дифманометром типа 13ДД-11 и преобразуется в стандартный пневматический сигнал, который поступает на вторичный прибор контроля типа ПВ4.2Э, где записывается на ленточной диаграмме и указывается на шкале. Одновременно сигнал идет на регулирующий блок типа ПРЗ-31, который в зависимости от величины отклонений вырабатывает сигнал по Пи-закону регулирования и направляется на регулирующий клапан типа 16С50НЖНО с мембранным исполнительным механизмом

5. Охрана окружающей среды

Отходы и их обезвреживание

Процесс производства синтетического этилового спирта методом прямой гидратации этилена связан с применением и образованием токсичных, взрывоопасных и пожароопасных веществ.

Для уменьшения и предотвращения вредных выбросов в атмосферу газов, содержащих токсичные углеводороды,(этилен, диэтиловый эфир, ацетальдегид и др.) имеются следующие возможности:

· строгое соблюдение технологического режима (при этом снижается количество выбросов через предохранительные клапаны и воздушники, уменьшаются частота остановок и связанное с ними сбрасывание газов);

· монтаж и эксплуатация оборудования в соответствии с правилами (это предупреждает газовые выбросы через неплотности).

Процесс синтеза этилового спирта сопровождается значительным уносом фосфорной кислоты, которая может вызвать коррозию оборудования и трубопроводов. Поэтому одной из стадий процесса является нейтрализация продуктов реакции, выходящих из гидрататора в парогазовой фазе путем взаимодействия с подщелоченным водно-спиртовым конденсатом. Образующиеся при нейтрализации соли фосфорной кислоты (0,4-0,5 кг на 1 т спирта) растворяются в водно-спиртовом конденсате и пройдя вместе с продуктами реакции через теплообменник-рекуператор, котлы-утилизаторы, сепараторы и т.д. поступают на узел ректификации и выводятся из системы вместе с обратной промывной водой в канализацию.

В процессе гидратации этилена образуются побочные продукты: диэтиловый эфир, ацетальдегид, полимеры этилена, являющиеся отходами производства. Значительная часть этих соединений удаляется при ректификации и очистке этилового спирта.

С целью улучшения качества спирта и снижения содержания углеводородов в сточных водах производства синтетического этанола в настоящее время на стадии переработки спирта-сырца проводится отвод жидкостной фазы (в составе которой отходы производства - полимеры) с содержанием спирта 40 - 80 об. % с последующим ее разбавлением до содержания спирта 10 - 20 об. % и направлением в отстойник.

Полимеры, являясь водонерастворимыми органическими продуктами, хорошо растворяются в этиловом спирте и в процессе ректификации накапливаются в колонне, достигая максимальной концентрации (17 - 35 об. %) в той части колонны, где концентрация спирта 40 - 80 об.%.

Выделившиеся при разбавлении полимеры отделяют от водноспиртового слоя во флорентийском сосуде, выводят в сборник и далее в канализацию, а водноспиртовой слой направляют обратно в колонну на тарелку питания.

Способ позволяет улучшить качество стоков по химическому поглощению кислорода на 60 - 65 %, что облегчает очистку сточных вод на биоочистных сооружениях.

Для поддержания высокой концентрации этилена (98,5 %)в процессе гидратации проводят отдувку циркулирующего газа, который после отмывки паров спирта в скруббере, поступает в цех газоразделения для переработки совместно с газом пиролиза.

Для вывода с установки инертных газов (метан, этан и др.) часть газа из верхней части кольцевого коллектора при 40 - 45 кгс/см2 передают через подогреватель в цех газоразделения для переработки.

6.Обеспечение безопасности жизнедеятельности

Мероприятия по технике безопасности, промсанитарии, пожарной безопасности и охране труда

Производство синтетического этилового спирта относится к пожаро- и взрывоопасным производствам. Кроме того, в цехе используются токсичные и едкие вещества. Основными моментами, определяющими опасность в цехе, являются:

1) наличие жидких и газообразных продуктов, образующих с воздухом взрывоопасные смеси с низким пределом взрываемости;

2) ведение процесса при высоких давлениях (до 100 кгс/см2 ) и высоких температурах (до 450 °С);

3) наличие тока высокого напряжения для электродвигателей;

4) токсичность сырья, вспомогательных материалов и готовой продукции;

5) образование зарядов статического электричества при движении газов и жидкостей по трубопроводам и аппаратам;

6) ведение сварочных работ внутри реакторов.

Характеристика производства по взрыво- и пожароопасности

Процессы гидратации этилена, ректификации и очистки спирта являются закрытыми и осуществляются по непрерывной схеме. Появление газа или паров в производственном помещении возможно только вследствие неисправности оборудования или при авариях. Помещения цеха по взрываемости относятся к классу В-1а, наружные установки к классу В-1г, катализаторное отделение -- невзрывоопасное.

По пожаро- и взрывоопасности цех относится к категории «А», так как во всех отделениях имеются вещества с нижним пределом взрываемости 10% и менее, а также легковоспламеняющиеся жидкости (т. всп. 28 °С и ниже) в количествах, достаточных для образования взрывоопасных смесей. В компрессорном зале и отделении ректификации имеется этилен; в насосных и на установке удаления ацетилена из спирта имеются этиловый спирт и диэтиловый эфир; в катализаторном отделении применяют метано-водородную фракцию в качестве топлива.

Если концентрация этих продуктов в воздухе находится между верхним и нижним пределами взрываемости и имеется источник воспламенения, возможен взрыв; при концентрации этих продуктов выше верхнего предела взрываемости и при наличии источника воспламенения возможен пожар.

При монтировании электрооборудования следует учитывать, что технологическая среда производственных помещений установки по взрываемости имеет такую характеристику согласно ПИВРЭ (Правила изготовления взрывобезопасного и рудничного электрооборудования): по этилену ЗТ1, по этанолу 2Т2, по диэтиловому эфиру 2Т4 (где первая цифра -- категория взрывоопасной смеси, Т1, Т2, Т4 -- группы взрывоопасности смеси).

По санитарным условиям производство этанола относится к производствам П-д, для которых в бытовых помещениях предусмотрены гардеробная, умывальная и душ. По количеству выделяющегося от оборудования тепла помещения реактора и паровых коллекторов относятся к горячим отделениям; для таких производственных помещений предусмотрен 8-кратный обмен воздуха в час.

Свойства сырья и вспомогательных материалов

Этиленовая фракция , содержащая 98--99% (об.) С2 Н4 . Горючий газ. Смесь этилена с воздухом взрывоопасна, ядовита, действует на центральную нервную систему. Предельно допустимая концентрация этилена в помещении 500 мг/м3 .

Метано-водородная фракция , содержащая 89--90% СН4 и 5--10% Н2 . Указанные вещества не ядовиты, но при большом содержании их в воздухе затрудняется дыхание из-за недостатка кислорода. С воздухом образует взрывоопасные смеси.

Этиловый спирт ядовит, действует на центральную нервную систему, при попадании в организм в небольших количествах вызывает опьянение, в больших -- состояние, близкое к наркозу, иногда заканчивающееся смертью. Предельно допустимая концентрация паров спирта в помещении 1000 мг/м3 .

Диэтиловый эфир обладает наркотическими свойствами, действуя на центральную нервную систему. Пары эфира с воздухом образуют взрывоопасные смеси. Предельно допустимая концентрация паров диэтилового эфира в помещении 300 мг/м3 .

Инертный газ состоит из азота (до 86%), двуокиси углерода (до t2%) и кислорода (до 2%); СО быть не должно. При большом скоплении инертного газа в помещении снижается содержание кислорода, что может привести к кислородному голоданию организма. Иногда в инертном газе содержится окись углерода; она вызывает головные боли при вдыхании небольших количеств, обморочное состояние и смерть при вдыхании больших количеств.

Азот не ядовит, но при большом скоплении в помещении снижает содержание кислорода. Технический азот, подаваемый в цех, содержит до 0,1% кислорода.

Фосфорнокислотный катализатор , содержащий не менее 48% Н3 Р04 и до 52% силикагеля. Катализаторная пыль вызывает раздражение дыхательных путей. Предельно допустимая концентрация катализаторной пыли в помещении 2 мг/м3 .

Ортофосфорная кислота (60--80%-ная) при попадании на кожу вызывает ожоги.

Едкий натр (40%-ный раствор) -- едкая жидкость. При попадании на кожу вызывает ожоги с образованием язвочек. Особенно опасно попадание щелочи в глаза.

Основные правила работы с токсичными газами и едкими веществами

Общими средствами защиты от углеводородных газов и паров, применяемыми в производственных помещениях, являются проветривание помещений (естественная вентиляция), приточная, вытяжная и аварийная вентиляция.

В качестве индивидуальных средств защиты органов дыхания и зрения работающих используются промышленные фильтрующие противогазы. Применение фильтрующих противогазов возможно только в атмосфере, содержащей не менее 16% (об.) свободного кислорода и не более 0,5°/о (об.) вредных веществ..

Общими средствами защиты от пыли катализатора и силикагеля служат вытяжные вентиляционные и аспирационные установки, а также воздухозаборники, устанавливаемые в местах пылевыделения. Индивидуальными средствами защиты от пыли являются респираторы типа «лепесток» одноразового пользования.

Защитными средствами от едких жидкостей (кислот, щелочей) являются наголовные щитки, очки, шлем-маски от противогазов, прорезиненные фартуки и перчатки, резиновые сапоги. При работе со щелочью необходимо быть в хлопчатобумажной спецодежде, при работе с кислотой -- в суконной.

При проведении работ в слабо вентилируемых помещениях, емкостях, колодцах, траншеях и т. д. применяют шланговые противогазы. В тех случаях, когда нельзя работать в шланговом противогазе, применяют газоизолирующий аппарат.

При загазованности помещения первый, кто это заметил, должен сообщить в газоспасательный отряд по телефону и начальнику смены, а сам до прибытия дежурного по отделению должен принять меры по устранению причины загазованности, усилению вентиляции и предупреждению обслуживающего персонала.

Основные правила пожарной безопасности

Взрыв или пожар могут произойти при концентрациях углеводородов, спирта, диэтилового эфира в интервале от нижнего до верхнего пределов взрываемости.

Возбудителями взрыва или воспламенения являются:

1) открытое пламя (курение или ведение огневых работ в цехе);

2) самовоспламенение продуктов (сернистого железа, образующегося в аппаратах при наличии сероводорода в перерабатываемом газе, а также углеводородных полимеров, образующихся в процессе переработки непредельных углеводородов);

3) искра при ударе металла о металл или камень;

4) образование искры при работе на неисправном электрооборудовании;

5) статическое или атмосферное электричество.

В целях соблюдения мер пожарной безопасности в цехе и недопущения пожаров и загораний необходимо весь цех (территорию, технологические установки, резервуарные парки, склады, мастерские, служебно-бытовые помещения и прочие объекты) содержать в чистоте и порядке. Кроме того, не допускается загромождение проезжих дорог, подъездов, подступов к зданиям и сооружениям, путей эвакуации, проходов и выходов из зданий, площадок вокруг производственного оборудования, подступов к противопожарному инвентарю и средствам связи посторонними предметами.

Условия проведения огневых работ в цехе такие:

1) в компрессорном отделении цеха разрешаются временные огневые работы по пайке электродвигателей, компрессоров. Двигатель, ремонтируемый с применением временных огневых работ, отключают от коммуникаций заглушками и продувают инертным газом до отсутствия в цилиндрах двигателя непредельных углеводородов;

2) систему гидратации, на которой проводятся временные огневые работы, нужно остановить. Давление из системы сбрасывают, а участок, на котором проводятся временные огневые работы, отключают заглушками от аппаратов и коммуникаций и пропаривают до полного отсутствия углеводородов; анализ воздуха в месте сварки должен показывать отсутствие углеводородов;

3) при проведении огневых работ внутри реактора требуются следующие дополнительные условия: во время проведения огневых работ с помощью вытяжной вентиляции отсасывают воздух из реактора; решетки под реактором закрывают асбестовым одеялом с целью избежать попадания искр на этот этаж отделения.

Все средства пожаротушения, пожарное оборудование и инвентарь должны содержаться на установленных местах в полной исправности и готовности к немедленному использованию.

Не допускается розлив жидких углеводородов и нефтепродуктов, а также утечка газов через фланцевые соединения, сальники насосов и запорную арматуру.

В случае возникновения пожара или аварии необходимо немедленно сообщить в пожарную команду по телефону 01 или по извещателю и одновременно принять меры по ликвидации аварии и тушению пожара имеющимися средствами пожаротушения: водой, песком, паром, асбестовыми одеялами, огнетушителями.

При тушении электрооборудования можно применять воду и пар; пенный огнетушитель разрешается использовать только после снятия напряжения.

Заключение

Производство этилового спирта в нашей стране играет важную роль в народном хозяйстве.

Гидратация этилена - наиболее эффективный способ производства этилового спирта, позволяющий экономить по сравнению с его получением из пищевого сырья на 1т этилового спирта около 4 т зерна или до 12 т картофеля.

На получение 1 т этилового спирта из пищевого сырья затрачивается от 160 чел.-час (из зерна) до 280 чел.-час. (из картофеля), из нефтехимического сырья - 10 чел.-час.; значительно меньше капитальных затрат потребуется на строительство заводов синтетического этилового спирта по сравнению с заводами пищевого этилового спирта.

Метод получения этилового спирта сернокислотной гидратацией этилена в настоящее время несколько устарел, кроме того он является небезопасным. Опасность данного метода обуславливается прежде всего использованием концентрированной серной кислоты и жёсткими технологическими параметрами процесса. Использование того или иного способа производства во многом обуславливается качеством сырья, а именно - содержанием этилена в исходной фракции.

Прямая гидратация этилена имеет ряд преимуществ перед сернокислотным методом: исключение расхода серной кислоты и минимальные потребности в других реагентах, кроме этилена и водяного пара. Кроме того, процесс прямой гидратации этилена протекает в одну стадию, что обуславливает более высокий выход спирта.

Этиловый спирт применяется в пищевой, химической промышленности, в парфюмерии и медицине, поэтому необходимо следить за соответствием получаемого спирта ГОСТам нашей страны. Сейчас в России довольно сложная ситуация с потреблением алкоголя населением. Нашей пищевой промышленности нужен контроль за качеством спирта, за подпольным производством и незаконной продажей спиртных напитков. Таким образом, возможно, уменьшить смертность населения, и употребление алкоголя станет более безопасным.

Размещено на Allbest.ru

...

Подобные документы

  • Получение этилового спирта сбраживанием пищевого сырья. Гидролиз древесины и последующее брожение. Получение этилового спирта из сульфитных щёлоков. Сернокислотный способ гидратации этилена. Физико-химические основы процесса. Отделение гидратации этилена.

    дипломная работа [1,2 M], добавлен 16.11.2010

  • Описание процесса производства изопропилового спирта методом сернокислой гидратации пропилена. Характеристика сырья и готовой продукции. Расчет холодильника, материального и теплового баланса колонны. Технико-экономические показатели работы установки.

    дипломная работа [202,5 K], добавлен 27.11.2014

  • Исходное сырье для производства этилового спирта и способы его получения. Физико-химическое обоснование основных процессов производства этилового спирта. Описание технологической схемы процесса производства, расчет основных технологических показателей.

    курсовая работа [543,6 K], добавлен 04.01.2009

  • Технологические особенности и этапы, сырьевая и материальная база для изготовления этилового спирта в химической промышленности, его главные физические и химические свойства, направления практического использования. Гидратация этилена и ее схема.

    курсовая работа [739,7 K], добавлен 16.10.2011

  • Экологизация химической и нефтеперерабатывающей промышленности. Подготовка сырья для процесса гидратации. Основные методы получения спиртов. Производство спиртов сернокислотной гидратацией олефинов. Производство спиртов прямой гидратацией олефинов.

    курсовая работа [2,0 M], добавлен 23.03.2007

  • Определение спиртов, общая формула, классификация, номенклатура, изомерия, физические свойства. Способы получения спиртов, их химические свойства и применение. Получение этилового спирта путем каталитической гидратации этилена и брожения глюкозы.

    презентация [5,3 M], добавлен 16.03.2011

  • Этанол как многотоннажный продукт органического синтеза, огнеопасный растворитель. Общая характеристика основных методов и способов получения синтетического этанола. Знакомство с технологическими особенностями процесса производства этилового спирта.

    реферат [901,0 K], добавлен 02.04.2019

  • Характеристика исходного сырья, материалов и полупродуктов для производство диоксиэтиланилина. Пожаро-взрывоопасные и токсические свойства сырья, полупродуктов и готового продукта. Материальный баланс технологического процесса оксиэтилирования.

    лабораторная работа [130,4 K], добавлен 18.10.2012

  • Методы получения целевого продукта. Термодинамический анализ реакции. Восстановление карбоновых кислот. Реакция глицерина с щавелевой кислотой. Гидрирование пропаргилового спирта. Селективное гидрирование акролеина или пропаргилового спирта над палладием.

    дипломная работа [790,2 K], добавлен 18.05.2011

  • Разработка технологической схемы непрерывной ректификации для выделения метилового спирта из его смеси с водой. Проектирование тарельчатой ректификационной колонны. Подбор подогревательной исходной смеси по каталогу. Выбор тарелки, энтальпий, штуцеров.

    курсовая работа [4,7 M], добавлен 24.10.2011

  • Особенности химического состава зернового сырья для производства спирта. Строение зерна пшеницы, ржи: альбумины и глобулины, липиды, минеральные вещества. Приготовление замеса свекловичной мелассы, ферментативный гидролиз молекул крахмала до сахарозы.

    реферат [24,1 K], добавлен 24.04.2017

  • Биохимические процессы, лежащие в основе производства этилового спирта из клубней картофеля: гидролиз; процесс разделения жидкостей по точкам кипения. История возникновения и представление об одноатомных спиртах. Окисление этанола и его действие на белок.

    курсовая работа [176,1 K], добавлен 18.03.2014

  • Получение этилена дегидратацией этанола над оксидом алюминия. Получение ацетилена и опыты с ним, утилизация обесцвеченного раствора KMnO4 и бромной воды. Получение веществ в процессе нагревания спирта и серной кислоты, обесцвечивающих бромную воду.

    лабораторная работа [1,4 M], добавлен 02.11.2009

  • Основные химические свойства ацетона и изопропилового спирта, области применение и влияние на человека. Получение изопропилового спирта из ацетона. Тепловой и материальный баланс адиабатического РИВ и РПС. Программы расчёта и результаты, выбор реактора.

    курсовая работа [255,0 K], добавлен 20.11.2012

  • Устройство и принцип действия абсорберов. Определение скорости газа и диаметра абсорбера, высоты насадочной колонны и гидравлического сопротивления насадки. Система автоматического регулирования процесса очистки газовой смеси, поступающей в абсорбер.

    курсовая работа [3,5 M], добавлен 24.10.2011

  • Представление об одноатомных насыщенных спиртах на примере этанола. Химические свойства, теплотворная способность; производство и применение спирта. Уравнения химической реакции этанола с металлами. Продукты замещения атома водорода гидроксильной группы.

    разработка урока [28,8 K], добавлен 19.03.2015

  • Характеристика сущности и назначения биоэтанола - топлива из биологического сырья, получаемого, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Промышленное производство спирта из биологического сырья.

    курсовая работа [82,5 K], добавлен 17.05.2012

  • Методы получения красителей. Получение сульфанилата натрия синтезом. Характеристика исходного сырья и получаемого продукта. Расчет химико–технологических процессов и оборудования. Математическое описание химического способа получения сульфанилата натрия.

    дипломная работа [408,2 K], добавлен 21.10.2013

  • Классификация спиртов по числу гидроксильных групп (атомности) и характеру углеводородного радикала. Получение безводного этанола - "абсолютного спирта", его применение в медицине, пищевой промышленности и парфюмерии. Распространение спиртов в природе.

    презентация [11,7 M], добавлен 30.05.2016

  • Превращения крахмала и низших углеводов, азотистых и пектиновых веществ во время водно-тепловой обработки крахмалистого сырья. Превращения крахмала и белковистых веществ под действием ферментов солода и ферментных препаратов при осахаривании сырья.

    контрольная работа [26,6 K], добавлен 03.06.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.