Ациклические непредельные углеводороды (алкены)
Гомологический ряд и изомерия алкенов. Электронное строение двойной связи. Схема образования связей в молекуле этилена. Формирование sp2-орбиталей этилена. Нахождение в природе и физиологическая роль алкенов. Промышленные методы получения алкенов.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 18.04.2016 |
Размер файла | 477,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Алкены (олефины, этиленовые углеводороды) -- ациклические непредельные углеводороды, содержащие одну двойную связь между атомами углерода, образующие гомологический ряд с общей формулой CnH2n. Атомы углерода при двойной связи находятся в состоянии spІ гибридизации, и имеют валентный угол 120°. Простейшим алкеном является этен (C2H4). По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.
Углеводородные радикалы, образованные от алкенов имеют суффикс «-енил». Тривиальные названия: CH2=CH-- «винил», CH2=CH--CH2--«аллил».
1. Гомологический ряд и изомерия
Алкены, число атомов углерода в которых больше двух, (т.е. кроме этилена) имеют изомеры. Для алкенов характерны изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная. Например, единственным изомером пропена является циклопропан (C3H6) по межклассовой изомерии. Начиная с бутена, существуют изомеры по положению двойной связи (бутен-1 и бутен-2), по углеродному скелету (изобутилен или метилпропен) и геометрические изомеры (цис-бутен-2 и транс-бутен-2). С ростом числа атомов углерода в молекуле количество изомеров быстро возрастает.
этен (этилен) |
C2H4 |
|
пропен |
C3H6 |
|
бутен |
C4H8 |
|
пентен |
C5H10 |
|
гексен |
C6H12 |
|
гептен |
C7H14 |
|
октен |
C8H16 |
|
нонен |
C9H18 |
|
децен |
C10H20 |
Алкены могут существовать в виде пространственных или геометрических изомеров.
Различают:
цис- изомеры: заместители расположены по одну сторону от двойной связи;
транс- изомеры: заместители расположены по разные стороны от двойной связи.
IUPAC рекомендует называть геометрические изомеры по следующей номенклатуре:
Z- изомеры: старшие заместители у углеродных атомов двойной связи находятся по одну сторону относительно двойной связи;
E- изомеры: старшие заместители у углеродных атомов двойной связи находятся по разные стороны относительно двойной связи.
2. Электронное строение двойной связи
В соответствии с теорией гибридизации двойная связь образуется за счет перекрывания вдоль линии связи С-С spІ-гибридных орбиталей атомов углерода (у-связь) и бокового перекрывания углеродных p-орбиталей (р-связь).
Схема образования связей в молекуле этилена
Все атомы этилена лежат в одной плоскости, а величина валентного угла связи C-H практически равна 120°. Центры углеродных атомов в этилене находятся на расстоянии 0,134 нм, то есть длина двойной связи несколько короче, чем С-С.
Согласно теории молекулярных орбиталей линейная комбинация двух атомных 2p-орбиталей углерода формирует две молекулярные р-орбитали этилена[1]:
Формирование р-орбиталей этилена
Первый потенциал ионизации этилена составляет 10,51 эВ[2] , что позволяет электрону относительно легко уходить (электрофильное взаимодействие) с высшей занятой молекулярной орбитали (ВЗМО). В то же время, низшая связывающая молекулярная орбиталь (НСМО) этилена имеет достаточно низкую энергию: ?1,6-1,8 эВ, что объясняет относительную легкость присоединения электрона с образованием аниона[2] (нуклеофильное взаимодействие).
Добавление метильного заместителя снижает потенциал ионизации р- электронов примерно на 0,6-0,8 эВ и повышает энергию НСМО на 0,2 эВ, а ВЗМО на 0,7 эВ[2] .
3. История открытия
Впервые этилен был получен в 1669 году немецким химиком и врачом Бехером действием серной кислоты на этиловый спирт. Ученый установил, что его «воздух» более химически активен, чем метан, однако, идентифицировать полученный газ он не смог и названия ему не присвоил[3].
Вторично и тем же способом «воздух Бехера» был получен и описан голландскими химиками Дейманом, Потс-ван-Трооствиком, Бондом и Лауверенбургом в 1795 году. Они назвали его «маслородным газом» так как при взаимодействии с хлором, он образовывал маслянистую жидкость -- дихлорэтан (об этом стало известно позднее). По-французски «маслородный» -- olйfiant. Французский химик Антуан Фуркруа ввёл этот термин в практику, а когда были обнаружены другие углеводороды такого же типа, это название стало общим для всего класса олефинов (или, по современной номенклатуре, алкенов)[4].
В начале XIX века французский химик Ж. Гей-Люссак обнаружил, что этанол состоит из «маслородного» газа и воды. Этот же газ он обнаружил и в хлористом этиле[5]. В 1828 году Ж. Дюма и П. Буллей предположили, что этилен представляет собой основание, способное давать соли подобно аммиаку. Якоб Берцелиус принял эту идею, назвав соединение «этерином» и обозначив буквой E[6].
Определив, что этилен состоит из водорода и углерода, долгое время химики не могли выписать его настоящую формулу. В 1848 году Кольбе писал формулу этилена как С4Н4, этого же мнения придерживался и Либих. Ж. Дюма правильно определил состав вещества, но его структура по-прежнему была описана неверно: С2НН3[5].
В 1862 году немецкий химик-органик Э.Эрленмейер предположил наличие в молекуле этилена двойной связи, а в 1870 году известный российский ученый А. М. Бутлеров признал эту точку зрения правильной, подтвердив её природу экспериментально[7].
4. Нахождение в природе и физиологическая роль алкенов
В природе ациклические алкены практически не встречаются[8]. Простейший представитель этого класса органических соединений -- этилен (C2H4) -- является гормоном для растений и в незначительном количестве в них синтезируется.
Один из немногих природных алкенов -- мускалур (цис- трикозен-9) является половым аттрактантом самки домашней мухи (Musca domestica).
Низшие алкены в высоких концентрациях обладают наркотическим эффектом. Высшие члены ряда также вызывают судороги и раздражение слизистых оболочек дыхательных путей[9].
Отдельные представители:
· Этилен -- вызывает наркоз, обладает раздражающим и мутагенным действием.
· Пропилен -- вызывает наркоз (сильнее, чем этилен), оказывает общетоксическое и мутагенное действие.
· Бутен-2 -- вызывает наркоз, обладает раздражающим действием[9].
5. Физические свойства
· Температуры плавления и кипения алкенов (упрощенно) увеличиваются с молекулярной массой и длиной главной углеродной цепи.
· При нормальных условиях алкены с C2H4 до C4H8 -- газы; с C5H10 до C17H34 -- жидкости, после C18H36 -- твёрдые тела. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.
Физические свойства алкенов
№ |
Название |
Формула |
Т плавления,°С |
Т кипения,°С |
Плотность, d204 |
|
1 |
Этилен |
С2H4 |
?169,1 |
?103,7 |
0,5700* |
|
2 |
Пропилен |
C3H6 |
?187,6 |
?47,7 |
0,5193* |
|
3 |
Бутен-1 |
C4H8 |
?185,3 |
?6,3 |
0,5951* |
|
4 |
цис-Бутен-2 |
CH3-CH=CH-CH3 |
?138,9 |
3,7 |
0,6213 |
|
5 |
транс-Бутен-2 |
CH3-CH=CH-CH3 |
?105,5 |
0,9 |
0,6042 |
|
6 |
2-Метилпропен-1 |
CH3-C(CH3)=CH2 |
?140,4 |
?7,0 |
0,5942* |
|
7 |
Пентен-1 |
С5H10 |
?165,2 |
30,1 |
0,6405 |
|
8 |
Гексен-1 |
С6H12 |
?139,8 |
63,5 |
0,6730 |
|
9 |
Гептен-1 |
С7H14 |
?119,0 |
93,6 |
0,6970 |
|
10 |
Октен-1 |
С8H16 |
?101,7 |
121,3 |
0,7140 |
* Значения измерены при температуре кипения.
алкен этилен молекула
6. Методы получения алкенов
Основным промышленным методом получения алкенов является каталитический и высокотемпературный крекинг углеводородов нефти и природного газа. Для производства низших алкенов используют также реакцию дегидратации соответствующих спиртов.
В лабораторной практике обычно применяют метод дегидратации спиртов в присутствии сильных минеральных кислот[1], дегидрогалогенирование и дегалогенирование соответствующих галогенпроизводных; синтезы Гофмана, Чугаева, Виттига и Коупа[11].
Размещено на Allbest.ru
...Подобные документы
Исследование состава и структуры алкенов как ациклических непредельных углеродов, содержащих одну двойную связь С=С. Процесс получения алкенов и свойства цис-транс-изомерии в ряду алкенов. Анализ физических и химических свойств алкенов и их применение.
реферат [41,1 K], добавлен 11.01.2011Номенклатура и изомерия алкенов. Промышленные и лабораторные способы получения олефинов. Расчет уровня энергии молекулярных орбиталей. Окисление и восстановление алкенов, присоединение к ним электрофильных реагентов, свободных радикалов, карбенов.
контрольная работа [308,8 K], добавлен 05.08.2013Строение, номенклатура алкенов. Ненасыщенные углеводороды, молекулы которых содержат одну двойную С-С-связь. Гибридизация орбиталей. Изображение пространственного строения атомов. Пространственная изомерия углеродного скелета. Физические свойства алкенов.
презентация [606,4 K], добавлен 06.08.2015Предмет органической химии. Понятие о химических реакциях. Номенклатура органических соединений. Характеристика и способы получения алканов. Ковалентные химические связи в молекуле метана. Химические свойства галогеналканов. Структурная изомерия алкенов.
контрольная работа [1,4 M], добавлен 01.07.2013Что такое алкены, строение молекулы, физические и химические свойства. Выбор главной цепи, нумерация атомов главной цепи, формирование названия. Структурная изометрия. Химические свойства этилена, классификация способов получения, сфера применения.
презентация [279,2 K], добавлен 20.12.2010Понятие оксиранов, их сущность и особенности, характерные реакции. Окись этилена как простейший оксиран, методы получения, использование в промышленности. Реакции окисления алкенов органическими надкислотами, внутримолекулярное замещение галогенгидринов.
реферат [117,5 K], добавлен 04.02.2009Критическая температура изменяется нелинейно с изменением числа углеродных атомов в молекуле во всех гомологических группах. При расчете критической температуры для алканов и алкенов используют индексы молекулярной связности Рандича и метод Джобака.
реферат [284,9 K], добавлен 21.01.2009История открытия циклоалканов, их номенклатура, строение, изомерия, свойства, значение в жизни человека, а также общая характеристика методики их получения. Особенности межклассовой изомерии алкенов. Принципы дегалогенирования дигалогенопроизводных.
реферат [589,7 K], добавлен 30.11.2010Окись этилена - один из наиболее крупнотоннажных продуктов органического синтеза. Физические и химические свойства вещества. Строение молекулы. Производство оксида этилена: синтез через этиленхлоргидрин, окисление этилена. Применение оксида этилена.
курсовая работа [5,8 M], добавлен 24.06.2008Непредельные соединения, с двумя двойными связями в молекуле - диеновые углеводороды. Связь между строением диеновых углеводородов и их свойствами. Способы получения девинила, изопрена, синтетического каучука. Органические галогениды и их классификация.
лекция [130,9 K], добавлен 19.02.2009Описание физико-химических свойств окиси этилена – одного из самых реакционноспособных органических соединений, который относится к циклическим простым эфирам. Процесс синтеза оксида этилена. Выбор катализатора. Технологическая схема реакционного узла.
контрольная работа [19,7 K], добавлен 13.12.2011Виды спиртов, их применение, физические свойства (кипение и растворимость в воде). Ассоциаты спиртов и их строение. Способы получения спиртов: гидрогенизация окиси углерода, ферментация, брожение, гидратация алкенов, оксимеркурирование-демеркурирование.
реферат [116,8 K], добавлен 04.02.2009Комплексы никеля - самые распространенные катализаторы олигомеризации олефинов. Линейные производные этилена. Распределение продуктов олигомеризации этилена. Группы никелевых катализаторов. Процесс полимеризации этилена с образованием линейного продукта.
статья [860,6 K], добавлен 03.03.2010Обзор вариантов промышленного получения этиленгликоля из окиси этилена. Описание технологической схемы и сырья, используемого в производстве многотонажного синтеза этиленгликоля (окись этилена, вода), побочных продуктов (этиленгликоль, диэтиленгликоль).
курсовая работа [38,0 K], добавлен 06.04.2010Гомологический ряд метана. Строение молекулы метана. Углы между всеми связями. Физические свойства алканов. Лабораторные способы получения. Получение из солей карбоновых кислот. Тип гибридизации атомов углерода в алканах. Структурная изомерия алканов.
презентация [1,5 M], добавлен 08.10.2014Алканы - предельные углеводороды, содержащие только простые связи углерода. Получение алканов: промышленный метод, нитрование и окисление. Углеводороды, содержащие двойную связь углерода - алкены или этиленовые углеводороды. Диеновые углеводороды.
лекция [146,5 K], добавлен 05.02.2009Типы спиртов в зависимости от строения радикалов, связанных с атомом кислорода. Радикально-функциональная номенклатура спиртов, их структурная изомерия и свойства. Синтез простых эфиров, реакция Вильямсона. Дегидратация спиртов, получение алкенов.
презентация [870,1 K], добавлен 02.08.2015Источники алканов в природе: природный газ, минеральное углеводородное сырье. Последовательность соединений алканов - гомологический ряд. Порядок соединения атомов и структурная изомерия алканов. Рост количества изомеров с ростом числа углеродных атомов.
презентация [500,4 K], добавлен 14.02.2011Окись этилена как крупнейший по масштабу производства продукт нефтехимического синтеза. Термодинамический анализ вероятности протекания процесса, сведения о механизме и кинетике протекающих реакций. Анализ промышленных технологий синтеза оксида этилена.
контрольная работа [510,5 K], добавлен 07.06.2014Гибридизация – квантово-химический способ описания перестройки орбиталей атома в молекуле по сравнению со свободным атомом. Изменение формы и энергии орбиталей атома при образовании ковалентной связи и достижения более эффективного перекрывания орбиталей.
презентация [788,9 K], добавлен 22.11.2013