Комплексные соединения химических веществ
Анализ комплексных соединений как химических веществ, в состав которых входят комплексные частицы. Характеристика особенностей катионных, анионных, нейтральных комплексных соединений. Изомерия координационных соединений, их магнитные свойства, применение.
Рубрика | Химия |
Вид | доклад |
Язык | русский |
Дата добавления | 29.05.2016 |
Размер файла | 593,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Комплексные соединения
Коммплексные соединения (лат. complexus - сочетание, обхват) или координационные соединения (лат. co - «вместе» и ordinatio - «упорядочение») - частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами. Теория комплексных соединений (координационная теория) была предложена в 1893 г. А. Вернером.
Комплексные соединения, имеющие внешнюю сферу, в водном растворе полностью диссоцируют на комплексный малодиссоцирующий катион или анион. Комплексные соединения без внешней сферы в воде нерастворимы (например, карбонилы металлов).
Основные термины
Комплексное соединение - химическое вещество, в состав которого входят комплексные частицы. В настоящее время строгого определения понятия «комплексная частица» нет. Обычно используется следующее определение.
Комплексная частица - сложная частица, способная к самостоятельному существованию в кристалле или растворе, образованная из других, более простых частиц, также способных к самостоятельному существованию. Иногда комплексными частицами называют сложные химические частицы, все или часть связей в которых образованы по донорно-акцепторному механизму.
Комплексообразователь - центральный атом комплексной частицы. Обычно комплексообразователь - атом элемента, образующего металл, но это может быть и атом кислорода, азота, серы, йода и других элементов, образующих неметаллы. Комплексообразователь обычно положительно заряжен и в таком случае именуется в современной научной литературе металлоцентром; заряд комплексообразователя может быть также отрицательным или равным нулю.
Лиганды (Адденды) - атомы или изолированные группы атомов, располагающиеся вокруг комплексообразователя. Лигандами могут быть частицы, до образования комплексного соединения представлявшие собой молекулы (H2O, CO, NH3 и др.), анионы (OH?, Cl?, PO43? и др.), а также катион водорода H+.
Внутренняя сфера комплексного соединения - центральный атом со связанными с ним лигандами, то есть, собственно, комплексная частица.
Внешняя сфера комплексного соединения - остальные частицы, связанные с комплексной частицей ионной или межмолекулярными связями, включая водородные.
Дентатность лиганда определяется числом координационных мест, занимаемых лигандом в координационной сфере комплексообразователя. Различают монодентатные (унидентатные) лиганды, связанные с центральным атомом через один из своих атомов, то есть одной ковалентной связью, бидентатные (связанные с центральным атомом через два своих атома, то есть, двумя связями), три- , тетрадентатные и т. д.
Координационный полиэдр - воображаемый молекулярный многогранник, в центре которого расположен атом-комплексообразователь, а в вершинах - частицы лигандов, непосредственно связанные с центральным атомом.
Координационное число (КЧ) - число связей, образуемых центральным атомом с лигандами. Для комплексных соединений с монодентантными лигандами КЧ равно числу лигандов, а в случае полидентантных лигандов - числу таких лигандов, умноженному на дентатность.
Классификация
Существует несколько классификаций комплексных соединений в основу которых положены различные принципы.
По заряду комплекса
1) Катионные комплексы образованы в результате координации вокруг положительного иона нейтральных молекул (H2O, NH3 и др.).
[Zn(NH3)4]Cl2 - хлорид тетраамминцинка(II)
[Co(NH3)6]Cl2 - хлорид гексаамминкобальта(II)
2) Анионные комплексы: в роли комплексообразователя выступает атом с положительной степенью окисления, а лигандами являются простые или сложные анионы.
K2[BeF4] - тетрафторобериллат(II) калия
Li[AlH4] - тетрагидридоалюминат(III) лития
K3[Fe(CN)6] - гексацианоферрат(III) калия
3) Нейтральные комплексы образуются при координации молекул вокруг нейтрального атома, а также при одновременной координации вокруг положительного иона - комплексообразователя отрицательных ионов и молекул.
[Ni(CO)4] - тетракарбонилникель
[Pt(NH3)2Cl2] - дихлородиамминплатина(II)
По числу мест, занимаемых лигандами в координационной сфере
Структура комплексного иона, образованного катионом металла и анионом ЭДТА
1) Монодентатные лиганды. Такие лиганды бывают нейтральными (молекулы Н2О, NH3, CO, NO и др.) и заряженными (ионы CN?, F?, Cl?, OH?, SCN?, и др.).
2) Бидентатные лиганды. Примерами служат лиганды: ион аминоуксусной кислоты H2N - CH2 - COO?, оксалатный ион ?O - CO - CO - O?, карбонат-ион СО32?, сульфат-ион SO42?, тиосульфат-ион S2O32?.
3) Полидентатные лиганды. Например, комплексоны - органические лиганды, содержащие в своём составе несколько групп ?С?N или ?COOH (этилендиаминтетрауксусная кислота - ЭДТА). Циклические комплексы, образуемые некоторыми полидентатными лигандами, относят к хелатным (гемоглобин и др.).
По природе лиганда:
1) Аммиакаты - комплексы, в которых лигандами служат молекулы аммиака, например: [Cu(NH3)4]SO4, [Co(NH3)6]Cl3, [Pt(NH3)6]Cl4 и др.
2) Аквакомплексы - в которых лигандом выступает вода: [Co(H2O)6]Cl2, [Al(H2O)6]Cl3 и др.
3) Карбонилы - комплексные соединения, в которых лигандами являются молекулы оксида углерода(II): [Fe(CO)5], [Ni(CO)4].
4) Ацидокомплексы - комплексы, в которых лигандами являются кислотные остатки. К ним относятся комплексные соли: K2[PtCl4], комплексные кислоты: H2[CoCl4], H2[SiF6].
5) Гидроксокомплексы - комплексные соединения, в которых в качестве лигандов выступают гидроксид-ионы: Na2[Zn(OH)4], Na2[Sn(OH)6] и др.
Номенклатура
1) В названии комплексного соединения первым указывают отрицательно заряженную часть - анион, затем положительную часть - катион.
2) Название комплексной части начинают с указания состава внутренней сферы. Во внутренней сфере прежде всего называют лиганды - анионы, прибавляя к их латинскому названию окончание «о». Например: Cl? - хлоро, CN? - циано, SCN? - тиоцианато, NO3? - нитрато, SO32? - сульфито, OH? - гидроксо и т. д. При этом пользуются терминами: для координированного аммиака - аммин, для воды - аква, для оксида углерода(II) - карбонил.
3) Число монодентатных лигандов указывают греческими числительными: 1 - моно (часто не приводится), 2 - ди, 3 - три, 4 - тетра, 5 - пента, 6 - гекса. Для полидентатных лигандов (например, этилендиамин, оксалат) используют бис-, трис-, тетракис- и т. д.
4) Затем называют комплексообразователь, используя корень его латинского названия и окончание -ат, после чего римскими цифрами указывают (в скобках) степень окисления комплексообразователя.
5) После обозначения состава внутренней сферы называют внешнюю сферу.
6) В названии нейтральных комплексных частиц комплексообразователь указывается в именительном падеже, а степень его не указывается, так как она однозначно определяется, исходя из электронейтральности комплекса.
Примеры:
K3[Fe(CN)6] - гексацианоферрат(III) калия
(NH4)2[PtCl4(OH)2] - дигидроксотетрахлороплатинат(IV) аммония
[Сr(H2O)3F3] - трифторотриаквахром
[Сo(NH3)3Cl(NO2)2] - динитритохлоротриамминкобальт
[Pt(NH3)4Cl2]Cl2 - хлорид дихлоротетраамминплатины(IV)
[Li(H2O)4]NO3 - нитрат тетрааквалития
История
Основателем координационной теории комплексных соединений является швейцарский химик Альфред Вернер (1866-1919). Координационная теория Вернера 1893 года была первой попыткой объяснить структуру комплексных соединений. Эта теория была предложена до открытия электрона Томсоном в 1896 году, и до разработки электронной теории валентности. Вернер не имел в своём распоряжении никаких инструментальных методов исследований, а все его исследования были сделаны интерпретацией простых химических реакций.
Структура и стереохимия
Строение комплексных соединений рассматривают на основе координационной теории, предложенной в 1893 г. швейцарским химиком Альфредом Вернером, лауреатом Нобелевской премии. Его научная деятельность проходила в Цюрихском университете. Ученый синтезировал много новых комплексных соединений, систематизировал ранее известные и вновь полученные комплексные соединения и разработал экспериментальные методы доказательства их строения.
В соответствии с этой теорией в комплексных соединениях различают комплексообразователь, внешнюю и внутреннюю сферы. Комплексообразователем обычно является катион или нейтральный атом. Внутреннюю сферу составляет определённое число ионов или нейтральных молекул, которые прочно связаны с комплексообразователем. Их называют лигандами. Число лигандов определяет координационное число (КЧ) комплексообразователя. Внутренняя сфера может иметь положительный, отрицательный или нулевой заряд.
Остальные ионы, не разместившиеся во внутренней сфере, находятся на более далеком расстоянии от центрального иона, составляя внешнюю координационную сферу.
Электронные свойства
Окраска
Окраска комплексных соединений зависит от типа лигандов и комплексообразователя. Из-за расщепления энергии d-орбиталей появляется возможность перехода электронов с подуровней dxy, dzy, dxz на вакантные подуровни с более высокой энергией dz2,dz2-y2 под действием поглощаемых квантов света. Эти явления можно наблюдать с помощью электронной спектроскопии. В зависимости от разности расщепленных уровней комплексы поглощают кванты света определённых диапазонов длин волн, поэтому имеют соответствующую окраску.
Изомерия координационных соединений
В статистическом аспекте стереохимии центральным оказывается явление изомерии координационных соединений. Свойство изомерии химических соединений было известно ещё при разработке классической теории химического строения. Изомерия молекул открыта в 1823 г. Ю.Либихом, обнаружившим, что серебряная соль гремучей кислоты и изоцианат серебра имеют один и тот же элементный состав, но разные физические и химические свойства.
Под изомерией понимают способность к разному взаимному расположению атомов и атомных фрагментов в соединениях одинакового общего состава, диктующую отличия в химических и физических свойствах соответствующих соединений - изомеров. В случае координационных соединений указанные различия могут быть связаны как со спецификой расположения лигандов во внутренней координационной сфере, так и с распределением лигандов между внутренней и внешними сферами.
Изомерия прямо связана с наличием или отсутствием в соединении тех или иных элементов симметрии: поворотных осей, зеркально-поворотных осей, центра и плоскостей симметрии.
Стереохимическая конфигурация характеризует относительное пространственное расположение атомов или групп атомов в молекуле химического соединения. Смысл этого термина зависит от конкретного пространственного расположения атомов в структуре комплекса. Его используют для описания фигуры или многогранника вместе с дополнительным определением, характеризующим специфику пространственного расположения атомов. Так, можно говорить о цис- или транс-конфигурации; D (d), L(l), DL (dl) - соответственно право-, левовращающая конфигурация, рацемат.
Существуют изомеры двух типов:
1) соединения, в которых состав внутренней сферы и строение координированных лигандов идентичны (геометрические, оптические, конформационные, координационного положения);
2) соединения, для которых возможны различия в составе внутренней сферы и строении лигандов (ионизационные, гидратные, координационные, лигандные).
Магнитные свойства
Среди химических соединений, в том числе комплексных, различают парамагнитные и диамагнитные, по разному взаимодействующие с внешним магнитным полем. Парамагнитные комплексы обладают моментом µ и поэтому при взаимодействии с внешним магнитным полем втягиваются в него. Напротив, диамагнитные комплексы, не имея собственного магнитного момента, выталкиваются из внешнего магнитного поля. Парамагнитные свойства веществ обусловлены наличием в их структуре неспаренных электронов и в случае комплексов объясняются специфическим заполнением электронами энергетических уровней.
Существуют два принципа, определяющих заполнение электронами d-орбиталей, расщепленных на dе и dг -подуровни.
1. Электроны заполняют орбитали так, чтобы число неспаренных электронов было максимальным (правило Хунда).
2. Сначала заполняются орбитали, имеющие меньшую энергию.
С учетом этих правил при числе d-электронов в комплексообразователе от 1 до 3 или 8, 9, 10 их можно расположить по d-орбиталям только одним способом (в соответствии с правилом Хунда). При числе электронов от 4 до 7 в октаэдрическом комплексе возможно либо занятие орбиталей, уже заполненных одним электроном, либо заполнение свободных dг -орбиталей более высокой энергии. В первом случае потребуется энергия на преодоление отталкивания между электронами, находящимися на одной и той же орбитали, во втором - для перехода на орбиталь более высокой энергии. Распределение электронов по орбиталям зависит от соотношения между величинами энергий расщепления (Д) и спаривания электронов (Р). При низких значениях Д («слабое поле»), величина Д может быть < Р, тогда электроны займут разные орбитали, а спины их будут параллельны. При этом образуются внешнеорбитальные (высокоспиновые) комплексы, характеризующиеся определённым магнитным моментом µ. Если энергия межэлектронного отталкивания меньше, чем Д («сильное поле»), то есть Д > Р, происходит спаривание электронов на dе -орбиталях и образование внутриорбитальных (низкоспиновых) комплексов, магнитный момент которых µ =0.
Применение
соединение комплексный катионный анионный
Комплексные соединения имеют важное значение для живых организмов, так гемоглобин крови образует комплекс с кислородом для доставки его к клеткам, хлорофилл находящийся в растениях является комплексом.
Комплексные соединения находят широкое применение в различных отраслях промышленности. Химические методы извлечения металлов из руд связаны с образованием КС. Например, для отделения золота от породы руду обрабатывают раствором цианида натрия в присутствии кислорода. Метод извлечения золота из руд с помощью растворов цианидов был предложен в 1843 г. русским инженером П. Багратионом. Для получения чистых железа, никеля, кобальта используют термическое разложение карбонилов металлов. Эти соединения - летучие жидкости, легко разлагающиеся с выделением соответствующих металлов.
Широкое применение комплексные соединения получили в аналитической химии в качестве индикаторов.
Многие КС обладают каталитической активностью, поэтому их широко используют в неорганическом и органическом синтезах. Таким образом, с использованием комплексных соединений связана возможность получения многообразных химических продуктов: лаков, красок, металлов, фотоматериалов, катализаторов, надёжных средств для переработки и консервирования пищи и т. д.
Комплексные соединения цианидов имеют важное значение в гальванопластике, так как из обычной соли бывает невозможно получить настолько прочное покрытие как при использовании комплексов.
Размещено на Allbest.ru
...Подобные документы
Общая характеристика комплексных соединений металлов. Некоторые типы комплексных соединений. Комплексные соединения в растворах. Характеристика их реакционной способности. Специальные системы составления химических названий комплексных соединений.
контрольная работа [28,1 K], добавлен 11.11.2009Комплексные соединения как обширный класс химических веществ, количество которых значительно превышает число обычных неорганических соединений. Роль геометрической изомерии в становлении и утверждении координационной теории, анализ разновидностей.
контрольная работа [393,5 K], добавлен 12.03.2015Определение комплексных соединений и их общая характеристика. Природа химической связи в комплексном ионе. Пространственное строение и изомерия, классификация соединений. Номенклатура комплексных молекул, диссоциация в растворах, реакции соединения.
реферат [424,7 K], добавлен 12.03.2013Основные понятия комплексных соединений, их классификация и разновидности, направления практического использования, типы изомерии. Химическая связь и конфигурация комплексных соединений, определение их устойчивости, методы ее практического повышения.
курсовая работа [912,8 K], добавлен 07.04.2011Сущность и общие сведения о комплексных соединениях. Методы получения этих химических соединений и их свойства. Применение в химическом анализе, в технологии получения ряда металлов, для разделения смесей элементов. Практические опыты и итоги реакций.
лабораторная работа [26,7 K], добавлен 16.12.2013Роль и значение комплексных соединений в современной науке, их классификация. Основные положения координационной теории А. Вернера. Лиганды и их виды. Теории химической связи в координационных соединениях, магнитные и оптические свойства комплексов.
курсовая работа [9,0 M], добавлен 22.03.2011Понятие комплексной частицы и комплексообразователя. Унидентатные и монодентатные лиганды. Электронное строение центрального атома и координационное число. Внутренняя и внешняя сфера комплексного соединения. Классификация комплексных соединений.
презентация [379,7 K], добавлен 11.10.2015Рассмотрение внутренней и внешней сфер комплексных соединений: целостный ион, простые анионы и катионы. Исследование механизма донорно-акцепторной связи лиганды с центральным атомом. Номенклатура, изомерия, химическая связь и диссоциация комплексов.
лабораторная работа [655,6 K], добавлен 14.12.2011Общие характеристики и свойства урана как элемента. Получение кротоната уранила, структура его кристаллов. Схематическое строение координационных полиэдров в структуре соединений уранила. Синтез комплексных соединений уранила, их основные свойства.
реферат [1,0 M], добавлен 28.09.2013Изучение состава чая, вещества, образующиеся и накапливающиеся в чайном листе. Применение и свойства кофеина и фенольных соединений. Углеводы - важная группа химических соединений, входящих в состав чайного растения. Содержание и роль минеральных веществ.
реферат [427,2 K], добавлен 30.07.2010Степени окисления, электронные конфигурации, координационные числа и геометрия соединений хрома. Характеристика комплексных соединений. Многоядерные комплексы хрома, их электронные соединения. Фосфоресцирующие комплексы, высшие состояния окисления хрома.
курсовая работа [1,1 M], добавлен 06.06.2010Комплексные соединения как частицы, образующиеся в результате присоединения к иону, называемому комплексообразователем, нейтральных молекул или других ионов, называемых лимандами. Особенности строения анионных комплексов, их номенклатура и свойства.
реферат [237,1 K], добавлен 16.12.2015Медь, электронное строение и свойства. Электрохимический синтез и его применение для получения координационных соединений. Определение концентрации соляной кислоты и раствора гидроксида калия. Спектрофотометрическое и ИК-спектроскопическое исследования.
дипломная работа [2,9 M], добавлен 09.10.2013Метод валентных химических связей, ионная и ковалентная связи в комплексных соединениях. Теория кристаллического поля. Развитие на квантовомеханической основе электростатической теории Косселя и Магнуса. Анализ изомерии в комплексных соединениях.
контрольная работа [274,4 K], добавлен 13.02.2015Реакция лития, натрия, калия с водой. Изучение физических и химических свойств бинарных кислородных соединений. Важнейшие соединения щелочноземельных металлов. Окислительно-восстановительные свойства пероксидов. Применение металлорганических соединений.
презентация [94,3 K], добавлен 07.08.2015Основные положения координационной теории. Комплексообразователи: положительные ионы неметаллов, ионы металлов, нейтральные атомы. Номенклатура комплексных соединений и порядок перечисления ионов и лигандов. Понятие константы нестойкости комплекса.
реферат [142,9 K], добавлен 08.08.2015Описание строения и свойств комплексных (координационных) соединений, закономерности их образования, классификация, практическое значение. Анализ существующих видов изометрий и типов химических связей. Теория поля лигандов. Хелаты и хелатный эффект.
курсовая работа [441,6 K], добавлен 25.03.2015Изомерия как явление существования соединений, одинаковых по составу, но разных по строению и свойствам. Межклассовая изомерия, определяемая природой функциональной группы. Виды пространственной изомерии. Типы номенклатуры органических соединений.
презентация [990,3 K], добавлен 12.03.2017Физические свойства элементов VIIIB группы и их соединений, в частности, соединений железа. Анализ комплексных соединений железа (II) и железа (III) с различными лигандами с точки зрения теории кристаллического поля. Строение цианидных комплексов железа.
курсовая работа [1,3 M], добавлен 24.02.2011Преимущество электрохимического метода синтеза комплексных соединений. Выбор неводного растворителя. Принципиальная схема синтеза и конструкция электрохимической ячейки. Основные методы исследования состава синтезированных комплексных соединений.
курсовая работа [1,2 M], добавлен 09.10.2013