Углеводы и их роль в живой природе
Углеводы как обширный наиболее распространённый на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных. Их классификация и биологическая роль. Обмен углеводов в организме человека.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 20.06.2016 |
Размер файла | 22,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ КЕМЕРОВСКОЙ ОБЛАСТИ
Государственное казенное профессиональное образовательное учреждение
Томь-Усинский энерготранспортный техникум
(ГК ПОУ ТУ ЭТТ)
РЕФЕРАТ
тема "Углеводы и их роль в живой природе"
по дисциплине "Химия"
выполнил Павлов Н.А
обучающийся группы ЭССС 1-15
проверила Чудинова Любовь Евгеньевна
2016
Содержание
Введение
1. Классификация
2. Биологическая роль
3. Обмен
Заключение
Список используемой литературы
Введение
углевод органический соединение организм
Углеводы - обширный наиболее распространённый на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных, растений и микроорганизмов. Углеводы являются первичными продуктами фотосинтеза, в кругообороте углерода они служат своеобразным мостом между неорганическими и органическими соединениями.
Углеводы и их производные во всех живых клетках выполняют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов для специфических биохимических процессов.
Сахарам -- другое название низкомолекулярных углеводов (моносахаридов, дисахаридов и полисахаридов).
Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.
1. Классификация
Углеводы -- весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2--3 % массы животных
Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы -- дисахариды, от двух до десяти единиц -- олигосахариды, а более десяти -- полисахариды. Моносахариды быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.
Моносахариды (от греческого monos -- единственный, sacchar --сахар) -- простейшие углеводы, не гидролизующиеся с образованием более простых углеводов -- обычно представляют собой бесцветные, легко растворимые в воде, плохо -- в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения, одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы. Моносахариды -- стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.
В природе в свободном виде наиболее распространена D-глюкоза (C6H12O6) -- структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов.
Дисахаримды (от di -- два, sacchar -- сахар) -- сложные органические соединения, одна из основных групп углеводов, пригидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных.
Омлигосахаримды (от ?лЯгпт -- немногий) -- углеводы, молекулы которых синтезированы из 2--10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных -- гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.
Среди природных трисахаридов наиболее распространена рафиноза -- невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы -- в больших количествах содержится в сахарной свёкле и во многих других растениях.
Полисахаримды -- общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров --моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.
Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения.
Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.
Крахмамл (C6H10O5)n -- смесь двух гомополисахаридов: линейного --амилозы и разветвлённого -- амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде. Молекулярная масса 105--107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10--30%, амилопектина -- 70--90 %. Молекула амилозы содержит в среднем около 1000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20--30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации -- декстрины (C6H10O5)p, а при полном гидролизе --глюкоза.
Гликогемн (C6H10O5)n -- полисахарид, построенный из остатков альфа-D-глюкозы -- главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105--108 Дальтон и выше. В организмах животных является структурным и функциональным аналогом полисахарида растений -- крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован -- сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100--120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.
Целлюломза (клетчамтка) -- наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном -- D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу.
Хитимн -- структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих -- насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой.
Пектимновые веществам -- полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид».
Мурамимн (лат. mъrus -- стенка) -- полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе.
Декстрамны -- полисахариды бактериального происхождения -- синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»:Полиглюкин и другие).
2. Биологическая роль
В живых организмах углеводы выполняют следующие функции:
· Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
· Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК) Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
· Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин -- у растений.
· Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100--110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
· Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.
3. Обмен
Обмен углеводов в организме человека и высших животных складывается из нескольких процессов:
· Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
· Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
· Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз -- пути расщепления глюкозы в организме.
· Взаимопревращение гексоз.
· Аэробное окисление продукта гликолиза -- пирувата (завершающая стадия углеводного обмена).
· Глюконеогенез -- синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, 0аминокислоты и другие органические соединения).
Заключение
Таким образом: углеводы играют огромную роль в жизни живых организмов на планете ученые считают, что примерно когда появилось первое соединение углевода, появилась и первая живая клетка.
Список используемой литературы
1. http://anti-school.ru/referaty/biologiya/uglevody-rol-v-zhiznedeyatelnosti-cheloveka.html
2. https://ru.wikipedia.org/wiki/%D
3. ory/chemistry/biochemistry/classification_of_carbohydrates.html
4. http://www.zdravplus.ru/mir-mlm/286
Размещено на Allbest.ru
...Подобные документы
Общая формула углеводов, их первостепенное биохимическое значение, распространенность в природе и роль в жизни человека. Виды углеводов по химической структуре: простые и сложные (моно- и полисахариды). Произведение синтеза углеводов из формальдегида.
контрольная работа [602,6 K], добавлен 24.01.2011Биологическая роль углеводов, действие ферментов пищеварительного тракта на углеводы. Процесс гидролиза целлюлозы (клетчатки), всасывание продуктов распада углеводов. Анаэробное расщепление и реакция гликолиза. Пентозофосфатный путь окисления углеводов.
реферат [48,6 K], добавлен 22.06.2010Углеводы, их химический состав, биологическая роль, характеристика классов, процесс обмена в организме при мышечной деятельности, расщепление в процессе пищеварения и их всасывание в кровь. Уровень глюкозы в крови, его регуляция и влияние на организм.
реферат [4,1 M], добавлен 18.11.2009Углеводы - важнейшие химические соединения живых организмов. В растительном мире составляют 70-80% из расчета на сухое вещество. Функции углеводов: энергетическая – главный вид клеточного топлива, функция запасных питательных веществ, защитная, регуляторн
реферат [20,7 K], добавлен 17.01.2009Классификация углеводов (моносахариды, олигосахариды, полисахариды) как самых распространенных органических соединений. Химические свойства вещества, его роль в питании как основного источника энергии, характеристика и место глюкозы в жизни человека.
реферат [212,0 K], добавлен 20.12.2010Биологическая роль азота и его соединений для живой материи; распространенность, свойства. Факторы, влияющие на круговорот азота в антропогенных биоценозах. Токсикология и "физиологическая необходимость" азота для организма человека, животных и растений.
курсовая работа [82,8 K], добавлен 22.11.2012Белки и углеводы: классификация, свойства, функции. Структурно-пространственная организация белковых молекул. Обменные процессы биомолекул в живом организме. Метаболические пути глюконеогенеза. Действие концентрированных кислот на белки и углеводы.
курсовая работа [637,6 K], добавлен 07.04.2016Изучение состава чая, вещества, образующиеся и накапливающиеся в чайном листе. Применение и свойства кофеина и фенольных соединений. Углеводы - важная группа химических соединений, входящих в состав чайного растения. Содержание и роль минеральных веществ.
реферат [427,2 K], добавлен 30.07.2010Химический состав и органические вещества клетки. Общая формула углеводов как группы органических соединений, особенности их получения, классификация, значение и функции, а также специфика их применения. Строение молекул моно-, олиго- и полисахаридов.
презентация [537,7 K], добавлен 23.05.2010Роль углеродов в живой природе. Распространение в природе. Физические и химические свойства. Роль углеводов в живой природе. Крупные достижения в изучении обмена веществ и круговорота углерода в природе. Механизмы биосинтеза белка.
реферат [12,0 K], добавлен 06.10.2006Углеводы - гидраты углерода. Простейшие углеводы называют моносахаридами, а при гидролизе которых образуются две молекулы моносахаридов, называют дисахаридами. Распространенным моносахаридом является D-глюкоза. Превращение углеводов - эпимеризацией.
реферат [90,0 K], добавлен 03.02.2009Физиологическая роль основных ионов в организме, характер их действия и значение для поддержания жизнедеятельности. Электролитный обмен, его принципы и результаты, причины и симптомы нарушения. Проблемы, вызываемые нарушением электролитного обмена.
реферат [28,7 K], добавлен 03.05.2015Содержание и биологическая роль химических элементов в организме человека. Биогенные элементы – металлы и неметаллы, входящие в состав организма человека. Элементы-органогены: углерод, кислород, водород, азот, фосфор, сера. Основные причины их дефицита.
реферат [362,5 K], добавлен 11.10.2011Формула углеводов, их классификация. Основные функции углеводов. Синтез углеводов из формальдегида. Свойства моносахаридов, дисахаридов, полисахаридов. Гидролиз крахмала под действием ферментов, содержащихся в солоде. Спиртовое и молочнокислое брожение.
презентация [487,0 K], добавлен 20.01.2015Химическая связь в органических молекулах. Классификация химических реакций. Кислотные и основные свойства органических соединений. Гетерофункциональные производные бензольного ряда. Углеводы, нуклеиновые кислоты, липиды. Гетероциклические соединения.
учебное пособие [1,9 M], добавлен 29.11.2011Класс органических соединений, содержащих карбоксильные и аминогруппы, обладают свойствами и кислот, и оснований. Участвуют в обмене азотистых веществ всех организмов (исходное соединение при биосинтезе гормонов, витаминов, алкалоидов).
доклад [20,6 K], добавлен 06.10.2006Строение РНК, ее синтез и роль в передаче наследственности. Формула незаменимых аминокислот; структура холестерина, его источники и функции в организме. Распад и всасывание углеводов в желудочно-кишечном тракте; ферменты. Витамин В3; строение жиров.
контрольная работа [1,1 M], добавлен 01.06.2012Биологическая роль цереброзиидов - природных органических соединений из группы сложных липидов (сфинголипиды), впервые обнаруженых в составе мозга. Галактоцереброзид - один из простейших гликолипидов. Глюкоцереброзид. Место локализации цереброзидов.
реферат [15,2 K], добавлен 18.03.2016Общие аспекты токсичности тяжелых металлов для живых организмов. Биологическая и экологическая роль р-элементов и их соединений. Применение их соединений в медицине. Токсикология оксидов азота, нитритов и нитратов. Экологическая роль соединений азота.
курсовая работа [160,8 K], добавлен 06.09.2015Органические вещества, в состав которых входит углерод, кислород и водород. Общая формула химического состава углеводов. Строение и химические свойства моносахаридов, дисахаридов и полисахаридов. Основные функции углеводов в организме человека.
презентация [1,6 M], добавлен 23.10.2016