Химические и физические свойства белков

Роль белков в живом организме. Общая характеристика и элементы структуры белков. Аминокислотный состав и молекулярная масса белков. Ферменты, ускоряющие гидролиз белков и полипептидов в тканях. Обнаружение и определение белков, их классификация.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 19.10.2016
Размер файла 26,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ОГЛАВЛЕНИЕ

Введение

Глава 1. Общая характеристика и элементы структуры белков

Глава 2. Обнаружение и определение белков, их классификация

Заключение

Список использованных источников

ВВЕДЕНИЕ

Белки - высокомолекулярные азотистые органические вещества, построенные из аминокислот и играющие фундаментальную роль в структуре и жизнедеятельности организмов. Белки - основная и необходимая составная часть всех организмов. Именно Белки осуществляют обмен веществ и энергетические превращения, неразрывно связанные с активными биологическими функциями. Сухое вещество большинства органов и тканей человека и животных, а также большая часть микроорганизмов состоят главным образом из белков (40-50%), причем растительному миру свойственно отклонение от этой средней величины в сторону понижения, а животному - повышения. Микроорганизмы обычно богаче белком (некоторые же вирусы являются почти чистыми белками).

Таким образом, в среднем можно принять, что 10% биомассы на Земле представлено белком, то есть его количество измеряется величиной порядка 1012 - 1013 тонн. Белковые вещества лежат в основе важнейших процессов жизнедеятельности. Так, например, процессы обмена веществ (пищеварение, дыхание, выделение, и другие) обеспечиваются деятельностью ферментов , являющихся по своей природе белками. К белкам относятся и сократительные структуры, лежащие в основе движения, например сократительный белок мышц ( актомиозин), опорные ткани организма (коллаген костей, хрящей, сухожилий) , покровы организма ( кожа, волосы, ногти и т.п.) , состоящие главным образом из коллагенов, эластинов, кератинов, а также токсины, антигены и антитела, многие гормоны и другие биологически важные вещества.

Роль белков в живом организме подчеркивается уже самим их названием «протеины» ( в переводе с греческого protos - первый, первичный), предложенным в 1840 голландским химиком Г. Мульдером, который обнаружил , что в тканях животных и растений содержатся вещества, напоминающие по своим свойствам яичный белок.

Постепенно было установлено, что белки представляют собой обширный класс разнообразных веществ, построенных по одинаковому плану. Отмечая первостепенное значение белков для процессов жизнедеятельности, Энгельс определил, что жизнь есть способ существования белковых тел, заключающийся в постоянном самообновлении химических составных частей этих тел.

В природе существует примерно 1010-1012 различных белков, обеспечивающих жизнедеятельность организмов всех степеней сложности от вирусов до человека, они обеспечивают жизнь более 2 млн. видам организмов.

Белками являются ферменты, антитела, многие гормоны и другие биологические активные вещества. Необходимость постоянного обновления белков лежит в основе обмена веществ. Именно поэтому белки и явились тем исключительным материалом , который послужил основой возникновения жизни на Земле. Ни одно вещество из всех веществ биологического происхождения не имеет столь большого значения и не обладает столь многогранными функциями в жизни организма как белки.

Ф. Энгельс писал: „Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом и повсюду, где мы встречаем какое-либо белковое тело, которое не находится в процессе разложения, мы без исключения встречаем и явления жизни“.

ГЛАВА 1. ОБЩАЯ ХАРАКТЕРИСТИКА И ЭЛЕМЕНТЫ СТРУКТУРЫ БЕЛКОВ

белки аминокислотный гидролиз

Белки играют особую роль, так как они представляют собой один из незаменимых компонентов живого. Во всех явлениях роста и воспроизведения решающую роль играют белки и нуклеиновые кислоты.

Как это следует из самого названия белков, или протеинов, в течении долгого времени в них видели основной компонент живой материи.

Основной химического строения белков весьма прост: они состоят из длинных цепей остатков аминокислот, соединенных между собой пептидными связями. Усложнение структуры белков возникает в следствие наличия в пептидных цепях около 20 различных видов аминокислотных остатков, вследствие большой длины этих цепей, содержащих до нескольких сот аминокислотных остатков, а также из-за особых конформаций пептидных цепей, т.е. их специфического сворачивания, приводящего к возникновению определённой трёхмерной структуры. Если бы даже белки представляли собой прямые пептидные цепи, лишённые изгибов, то и тогда они обладали бы практически бесконечным разнообразием - только за счёт различной последовательности 20 аминокислот в длинных цепях. Но ведь любая из таких цепей может принимать бесконечное число конформаций, поэтому не удивительно, что каждый вид растений или животных обладает своими собственными белками, специфичными для данного вида.

В настоящее время известно огромное число белков с самыми разнообразными свойствами. Неоднократно делались попытки создать классификацию белков. В основе одной из классификаций лежит растворимость белков в различных растворителях. Белки, растворимые при 50% насыщения сульфата аммония, были названы альбуминами; белки же, которые в этом растворе выпадают в осадок были названы глобулинами. Последний класс был подразделён на эуглобулины, нерастворимые в воде, свободной от солей, и на псевдоглобулины, которые растворимы в этих условиях. Однако растворимость белков в солевых растворах зависит не только от концентрации солей, но и от рН, температуры и других факторов.

Аминокислотный состав белков. Белки подвергаются гидролизу, действуя на них кислотами, основаниями и ферментами. Чаще всего их кипятят с соляной кислотой. При постоянной температуре кипит только 20,5%-ная НСI; поэтому концентрированную соляную кислоту разводят. Для полного гидролиза нужно кипятить белок с соляной кислотой в течение 12-70 часов.

Полный гидролиз белков осуществляют также, нагревая их с гидроксидом бария или с гидроксидами щелочных металлов. Преимущество гидролиза с Ва(ОН)2 заключается в том, что его избыток можно осадить эквивалентным количеством серной кислоты. Щелочные гидролизаты бесцветны и не содержат гумина. Однако щелочной гидролиз страдает рядом недостатков: происходит рацемизация аминокислот, дезаминирование некоторых из них, а так же разложение аргинина на орнитин и мочевину и разрушение цистина и цистеина.

Наконец, полный гидролиз белков проводят при помощи протеолитических ферментов в очень мягких условиях. В ферментативных гидролизатах содержится не только трептофан, но также глутамин и аспарагин. Ферментативный гидролиз особенно ценен в тех случаях, когда требуется получить промежуточные пептиды в результате частичного гидролиза.

Термин “первичная структура” обычно употребляется для обозначения химической формулы белков, т.е. последовательности, в которой аминокислоты соединены пептидными связями. Это понятие не учитывает ни электростатического взаимодействия между положительно и отрицательно заряженными группами белков, ни вандерваальсовых сил. Дисульфидные связи цистина, способные образовывать “мостики” между различными участками одной пептидной цепи или разных пиптидных цепей, менее стабильны, чем углерод-углеродные связи или даже пептидные связи. Дисульфидные мостики могут размыкаться и вновь замыкаются на других участках пептидной цепи, вовлекая другие сульфгидрильные группы. Таким образом, их роль в структуре белков можно назвать промежуточной между ролью более прочных ковалентных связей и вышеупомянутых боле слабых связей. Дисульфидные мостики затрудняют анализ последовательности аминокислот в белках.

Первый этап в изучении первичной структуры белков и пептидов заключается в определении N-концевой аминокислоты, т.е. аминокислоты со свободной a -аминогруппой. Эту аминокислоту можно при помощи какого-либо подходящего метода отщепить, выделить и идентифицировать. Повторяя процесс несколько раз, можно осуществить ступенчатый гидролиз пептидной цепи с N-конца и установить в нём аминокислотную последовательность.

Размеры и формы молекул белков. Молекулярный вес небольших молекул можно определить по понижению точки замерзания или по повышению точки кипения их растворов, а так же по понижению давления пара растворителя.

Первые определения молекулярного веса белков были основаны на химическом определении тех элементов или аминокислот, которые содержатся в белке в очень небольших количествах.

Молекулярная масса белков колеблется от нескольких тысяч до нескольких миллионов (большинство белков имеет молекулярную массу в пределах десятков - сотен тысяч). Белки большей частью растворимы в воде или солевых растворов, образуя растворы, обладающие свойствами коллоидов. В живых тканях белки в той или иной степени гидратированы. В растворах белки весьма неустойчивы и легко выпадают в осадок при нагревании или других воздействиях, нередко теряя при этом нативные свойства, в т.ч. растворимость в исходном растворителе (свёртывание, денатурация).

Являясь полимерами аминокислот, белки содержат свободные кислотные (карбоксильные) и основные (гидратированные аминные) группы, благодаря чему молекулы белков несут как отрицательные, так и положительные заряды. В растворах белки ведут себя как биполярные (амфатерные) ионы. В зависимости от преобладания кислотных или основных свойств белки реагируют как слабые кислоты или как слабые основания. При понижении рН (подкислении) раствора кислотная диссоциация подавляется, а щелочная - усиливается, вследствие чего общий заряд белковой частицы становится положительным и в электрическом поле она стремится к катоду. При повышении рН (подщелачивании) происходит подавление щелочной диссоциации и усиление кислотной, благодаря чему частица белка заряжается отрицательно. При определённом рН, называемом изоэлектрической точкой, кислотная диссоциация равна щелочной и частица в целом становится неподвижной в электрическом поле.

Значение изоэлектрической точки характерно для каждого данного белка и зависит главным образом от соотношения кислотных и основных групп, а также от их диссоциации, обусловливаемой строением белковой молекулы. У большинства белков изоэлектрическая точка лежит в слабокислой среде, однако имеются белки и с резким преобладанием щелочных свойств. В изоэлектрической точке вследствие потери заряда и уменьшения гидратации белковые частицы наименее устойчивы в растворе и легче свёртываются при нагревании, а также осаждаются спиртом или другими агентами.

Под действием кислот, щелочей или протеолитических ферментов белки подвергаются гидролизу, т.е. распадаются с присоединением элементов воды. Продуктами полного гидролиза белков являются аминокислоты. В качестве промежуточных продуктов гидролиза образуются пептиды и полипептиды. Начальные высокомолекулярные продукты гидролиза белков - альбумозы (протеозы) и пептоны - химически не охарактеризованы и, по-видимому, представляют собой высокомолекулярные полипептиды.

В молекуле белка остатки аминокислот соединены между собой при помощи пептидных связей -СО-NН-. Соответственно этому такие соединения называют пептидами или полипептидами (если аминокислотных остатков много). Полипептидные цепочки являются основой строения белковой молекулы. Поскольку полипептиды могут быть построены из различных аминокислот, повторяющихся разное число раз и расположенных в различной последовательности, и, учитывая, что в состав белков входит более 20 аминокислот, возможное число различных индивидуальных белков практически бесконечно.

Реакционная способность белков также очень разнообразна, т.к. в их состав входят радикалы различных аминокислот, несущие весьма активные химические группы. Присутствие ряда атомных группировок, расположенных в той или иной последовательности на определённой структуре белковой молекулы, обуславливает уникальные и чрезвычайно специфичные свойства индивидуальных белков, играющие важную биологическую роль.

Молекула белка построена из одной или нескольких полипептидных цепочек, иногда замкнутых в кольцо при помощи пептидных, дисульфидных или других связей и соединённых между собой.

Пептидные цепочки обычно закручены в спирали и часто соединены в более крупные агрегаты. Так, молекула панкреатической рибонуклеазы состоит из одной полипептидной цепочки, содержащей 124 аминокислотных остатка.

Последовательность аминокислот в полипептидной цепочке определяет первичную структуру белка. Пространственно полипептидные цепочки расположены в виде определённых спиралей, конфигурация которых поддерживается при помощи водородных связей. Из таких спиралей наиболее распространена a -спираль, в которой 3,7аминокислотных остатка приходится на один виток. Это пространственное расположение цепочки называют вторичной структурой белка. Отдельные участки полипептидных цепей могут быть соединены между собой дисульфидными или другими связями, как это имеет место в молекуле рибонуклеазы между 4 парами остатков цистеина, благодаря чему вся цепочка может быть свёрнута в клубок или иметь определённую сложную конфигурацию. Это складывание или закручивание спирали, имеющей вторичную структуру, называют третичной структурой. Наконец, образование агрегатов между частицами, имеющими третичную структуру, рассматривают как четвертичную структуру белка.

Первичная структура является основой белковой молекулы и часто определяет биологические свойства белка, а также вторичную и третичную его структуры. С другой стороны, растворимость белка и многие физико-химические и биологические свойства зависят от вторичной и третичной структур. Наличие структур высшего порядка не обязательно: они могут обратимо появляться и исчезать. Так, многие белки волокнистого характера, например кератины волос, коллагены соединительной ткани, фиброин шелка и др., имеют волокнистое строение и называются фибриллярными белками. У глобулярных белков частица свёрнута в клубок. В ряде случаев переход из глобулярного в фибриллярное состояние обратим. Например, белок мышечных волокон актомиозин при изменении концентрации солей в растворе легко переходит из фибриллярной в глобулярную форму и обратно.

Денатурация белка сопровождается потерей белком нативных свойств (биологической активности, растворимости). Денатурация происходит при нагревании растворов белков или воздействии на них ряда агентов. Денатурация белка заключается в потере ими вторичной и третичной структуры белка.

Катаболизм белков. Белки, как и другие органические вещества, из которых состоит организм, постоянно обновляются. В среднем период полупревращения белков организма человека составляет около 80 суток, причём эта величина значительно варьирует в зависимости от типа белка и его функции. Различают долгоживущие белки, гидролиз которых проходит только в лизосомах в присутствии специальных ферментов; короткоживущие белки, разрушение которых происходит в отсутствие лизосомных ферментов; аномальные белки период плупревращения которых не превышает 10-12 мин. В норме в организме взрослого человека за сутки обновляется до 2% от общей массы белков, т.е. 30-40г. Распаду подвергаются в основном мышечные белки. Большая часть аминокислот, образующихся при гидролизе белков (около 80%), вновь используется для биосинтеза белков, значительно меньшая часть расходуется в синтезе специализированных продуктов: например, некоторых медиаторов, гормонов и др. Не включающиеся в анаболические процессы аминокислоты разрушаются, как правило, до конечных продуктов окисления. В составе мочевины организм человека теряет ежедневно 5-7 г. азота, входящего в состав ранее синтезированных белков. Аминокислоты, поступающие с белком пищи, в отличии от моносахаридов и жирных кислот в организме не депонируются. Для постоянно идущего процесса синтеза белков нужно необходимое поступление аминокислот в организм. Это обуславливает особую ценность белков как пищевых продуктов. При белковом дефиците развивается кахексия. Детская дистрофия, характерная для ряда районов Западной Африки и обусловленная резким сокращением поступления белков после перевода с грудного питания на преимущественно углеводную диету, получила название “квашиоркор”. Избыточное количество аминокислот используется в качестве энергодативных веществ.

Ферменты, ускоряющие гидролиз белков и полипептидов в тканях, называются тканевыми протеиназами (катепсинами); они обладают специфичностью действия: катепсин А, например, является ферментом с эктопептидазной, а катепсин В- с эндопептидазной активностью. Наибольшая активность протеиназ наблюдается в печени, селезёнке, почках.

Регулируемая активность тканевых протеиназ обеспечивает обновляемость белков на необходимом организму уровне, гидролиз диффектных и чужеродных белков, а также частичный протеолиз, необходимый для активации некоторых ферментов (песина и трепсина) и гормонов (инсулина).

ГЛАВА 2. ОБНАРУЖЕНИЕ И ОПРЕДЕЛЕНИЕ БЕЛКОВ, ИХ КЛАССИФИКАЦИЯ

Присутствие белков в биологических или других жидкостях может быть установлено рядом качественных реакций. Из реакций осаждения наиболее характерны свёртывание при кипячении, осаждение спиртом или ацетоном, кислотами, особенно азотной кислотой. Весьма характерно осаждение белков трихлоруксусной или сульфосалициловой кислотами. Последние два реактива особенно употребительны как для обнаружения белков, так и для количественного осаждения их из биологических жидкостей. Из цветных реакций на белки наиболее характерна биуретовая реакция: фиолетовое окрашивание с солями меди в щелочном растворе (пептидные связи белков дают комплексное соединение с медью). Другая характерная реакция на белки - ксантопротеиновая: желтое окрашивание в осадке белка от добавления концентрированной азотной кислоты. Реакция Миллона (с солями ртути в азотной кислоте, содержащей азотистую) протекает с фенольным остатком тирозина, и поэтому красное окрашивание дают только белки, содержащие тирозин. Остаток триптофана в белке даёт реакцию Адамкевича: фиолетовое окрашивание с концентрированной уксусной кислотой в концентрированной серной кислоте; реакция обязана глиоксиловой кислоте, находящейся в уксусной в качестве примеси, и получается также с дркгими альдегидами. Белки дают ряд других реакций, зависящих от находящихся в них радикалов аминокислот.

Классификация белков в значительной мере условна и построена на различных, часто случайных, признаках. Белки разделяют на животные, растительные и бактериальные, на фибриллярные и глобулярные, мышечные, нервной ткани и т.п. Учитывая исключительное многообразие белков, ни одну классификацию нельзя считать удовлетворительной, поскольку многие индивидуальные белки не подходят ни к одной группе. Обычно принято делить белки на простые (протеины), состоящие только из остатков аминокислот, и сложные (протеиды), содержащие также простетические (небелковые) группы.

Простые белки делятся на: альбумины, глобулины, проламины, глютелины, склеропротеины, протамины, гистоны.

Сложные белки делятся на: нуклеопротеиды, мукопротеиды, фосфопротеиды, металлопротеиды, липопротеиды.

Обмен и биосинтез. Белки играют важнейшую роль в питании человека и животных, являясь источником азота и незаменимых аминокислот. В пищеварительном тракте белки перевариваются до аминокислот, в виде которых всасываются в кровь и подвергаются дальнейшим превращениям. Ферменты, действующие на белки сами являются белками. Каждый из них специфически расщепляет определённые пептидные свёзи в белковой молекуле. К протеолитическим ферментам пищеварительного тракта относятся: пепсин желудочного сока, трипсин поджелудочного сока и ряд пептидаз поджелудочного и кишечного соков.

Биосинтез белков в организме - важнейший процесс, лежащий в основе нормального и патологического роста и развития, а также регуляции обмена веществ путём образования определённых ферментов. Через биосинтез белков осуществляется и передача биологической информации, в частности наследственных признаков.

Ряд белков и белковых продуктов находит лечебное применение. Прежде всего это касается лечебного (диетического) питания. Гидролизаты белков и смеси аминокислот используются для парэнтерального питания. Белки сыворотки крови применяются для общего укрепления организма и повышения его защитных свойств. Наконец, многие гормоны (инсулин, адренокортикотропный и другие гормоны гипофиза) и ферменты (пепсин, трипсин, химотрепсин, плазмин) находят широкое лечебное применение.

Белки в питании человека нельзя заменить другими пищевыми веществами. Недостаток белка в пище приводит к нарушению здоровья, вызываемому расстройством синтеза ряда жизненно важных белков, ферментов и гормонов.

При безбелковом питании человек весом 65 кг выделяет 3,1-3,6 г азота в сутки, что соответствует распаду 23-25 г тканевых белков. Эта величина отражает внутренние траты белков взрослым человеком. Однако потребность человека в пищевом белке значительно выше указанной величины. Это связано с тем, что аминокислоты белков пищи потребляются не только для синтеза белка, но значительная их часть используется в качестве энергетического материала.

ЗАКЛЮЧЕНИЕ

В данной работе были рассмотрены химические и физические свойства белков. Состав и строение белков, разнообразные функции белков, а также их значения.

Доказано, что белки - обязательная составная часть все живых клеток, играют исключительно важную роль в живой природе, являются главным наиболее ценным и незаменимым компонентом питания. Это связано с той огромной ролью, которую они играют в процессах развития и жизни человека.

Белки являются основой структурных элементов и тканей, поддерживают обмен веществ и энергии, участвуют в процессах роста и размножения, обеспечивают механизмы движений, развитие иммунных реакций, необходимы для функционирования всех органов и систем организма. «Жизнь - это форма существования белка».

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Биохимия. Краткий курс с упражнениями и задачами /под редакцией Северина Е.С. и Николаева А.Я. - М.: Гэотар-Мед, 2001. - 448 с.

2. Филлипович, Ю.Б. Основы биохимии Ю.Б.Филипович. - М.: Мир, 2000. - 640 с.

3. Фримантл, М. Химия в действии. В 2 ч./ М.Фримантл. -М.: Мир, 1991. - 1020 с.

4. Комов, В.П.. Биохимия / В.П.Комов, В.Н.Шведова. В.П. Комов, В.Н. Шведова. М.: Дрофа, 2006. - 639 с.

5. Молекулярная биология / С.Б. Бокуть [и др.]. - Минск. 2005. - 463 с.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика белков как высокомолекулярных соединений, их структура и образование, физико–химические свойства. Ферменты переваривания белков в пищеварительном тракте. Всасывание продуктов распада белков и использование аминокислот в тканях организма.

    реферат [66,2 K], добавлен 22.06.2010

  • Оценка сложившегося административно-территориального устройства России. Исследование белков. Классификация белков. Состав и строение. Химические и физические свойства. Химический синтез белков. Значение белков.

    реферат [537,6 K], добавлен 13.04.2003

  • Роль в живой природе. Состав и свойства белков. Классификация белков. Определение строения белков. Определение наличия белка. Идентификация белков и полипептидов. Синтез пептидов. Искусственное получение белка. Аминокислоты.

    реферат [16,2 K], добавлен 01.12.2006

  • Общая характеристика, классификация, строение и синтез белков. Гидролиз белков с разбавленными кислотами, цветные реакции на белки. Значение белков в приготовлении пищи и пищевых продуктов. Потребность и усвояемость организма человека в белке.

    курсовая работа [29,7 K], добавлен 27.10.2010

  • Изучение биохимической ценности молока и функций его белков. Анализ химических изменений белков молока при гидролизе. Аминокислотный, липидный, витаминный, углеводный, минеральный состав молока. Химические свойства казеина. Молоко в питании человека.

    курсовая работа [61,1 K], добавлен 28.12.2010

  • Общие пути обмена аминокислот. Значение и функции белков в организме. Нормы белка и его биологическая ценность. Источники и пути использования аминокислот. Азотистый баланс. Панкреатический сок. Переваривание сложных белков. Понятие трансаминирования.

    презентация [6,6 M], добавлен 05.10.2011

  • Строение и общие свойства аминокислот, их классификация и химические реакции. Строение белковой молекулы. Физико-химические свойства белков. Выделение белков и установление их однородности. Химическая характеристика нуклеиновых кислот. Структура РНК.

    курс лекций [156,3 K], добавлен 24.12.2010

  • Общие принципы препаративной химии белков, особенности их выделения. Удаление небелковых примесей, разделение между собой собственно белковых компонентов. Характерные свойства белков, на которых основано разделение, гель-хроматография (гель-фильтрация).

    научная работа [1,8 M], добавлен 17.12.2009

  • Общий анализ взаимодействия поверхностно-активных веществ (ПАВ) с полимерами. Особенности дифильности белков. Относительная вязкость растворов желатина в зависимости от концентрации добавленного додецилсульфата натрия. Роль взаимодействий белков с ПАВ.

    реферат [709,8 K], добавлен 17.09.2009

  • Основные химические элементы, входящие в состав белков. Белки - полимеры, мономерами которых являются аминокислоты. Строение аминокислот, уровни организации белковых молекул. Структуры белка, основные свойства белков. Денатурация белка и ее виды.

    презентация [1,7 M], добавлен 15.01.2011

  • Пути внедрения ферментативных методов синтеза в химическое производство. Способ определения содержания аминокислот триптофана и цистеина в составе белков. Специфика строения и состава структурных белков биологической мембраны. Характеристика видов РНК.

    контрольная работа [522,0 K], добавлен 18.05.2011

  • Определение белков и их составных частей – аминокислот. Структура и функции белков в организме. Роль в обеспечении воспроизводства основных структурных элементов органов и тканей, а также образовании таких веществ, как, например, ферментов и гормонов.

    курсовая работа [735,6 K], добавлен 16.12.2014

  • Белки как высокомолекулярные природные соединения, состоящие из остатков аминокислот, которые соединены пептидной связью. Качественный состав белков, их структура и функции. Процессы гидролиза (кислотно-основного, ферментативного) и денатурация белков.

    презентация [212,1 K], добавлен 11.02.2015

  • Понятие и основатели химии белка. Состав, уровень организации, структура белка. Денатурация, биуретовая реакция, гидролиз белков. Полноценные и неполноценные белки. Белки, жиры и углеводы - основа питания, их необходимое количество для человека.

    презентация [7,4 M], добавлен 26.01.2011

  • Химический состав белков - органических высокомолекулярных азотистых соединений. Их классификация по химическим свойствам, форме молекулы, структуре. Изменения белкового состава при онтогенезе и болезнях. Наследственные и приобретенные типы протеинопатии.

    презентация [124,1 K], добавлен 24.10.2013

  • Аминокислоты, входящие в состав пептидов и белков. Моноаминодикарбоновые кислоты и их амиды. Энантиомерия аминокислот, образование солей. Мезомерия и строение пептидной связи. Методы выделения и анализа белков. Электрофорез в полиакриламидном геле.

    презентация [351,2 K], добавлен 16.12.2013

  • Белки – высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Наследственная информация сосредоточена в молекуле ДНК. С помощью белков реализуется генетическая информация. Классификация аминокислот.

    реферат [21,6 K], добавлен 17.01.2009

  • Строение и свойства белков. Различия в строении аминокислот. Пространственная организация белковой молекулы. Типы связей между аминокислотами в молекуле белка. Основные факторы, вызывающие денатурацию белков. Методы определения первичной структуры белка.

    реферат [354,6 K], добавлен 15.05.2010

  • Строение и основные свойства белков, их роль в живой природе. Пространственное строение белков. Качественные реакции на белки. Образование сгустков крови при ее свертывании. Белковые компоненты крови. Процесс образования и свертывания казеина.

    презентация [1,2 M], добавлен 01.10.2012

  • Электрохимические методы анализа веществ. Общие физико-химические свойства аминокислот и белков, их функции в клетках живых организмов. Использование методов полярографии и амперометрии в исследовании кинетики химических процессов в аминокислотах.

    курсовая работа [2,5 M], добавлен 18.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.