Основы гетерогенного катализа
Производство этилового спирта и серной кислоты, используемое сырье. Недостатки методов гидролиза концентрированными кислотами. Схема гидролиза растительного сырья разбавленной серной кислотой. Конструкция печи для обжига колчедана в кипящем слое.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 30.10.2016 |
Размер файла | 636,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Производство этилового спирта
2. Производство серной кислоты
3. Сырье для производства серной кислоты
4. Технология производства серной кислоты контактным способом
5. Колчедан, его активность
6. Механизм действия серной кислоты, как катализатора
Библиографический список
1. Производство этилового спирта
Гидролиз полисахаридов растительной ткани в холодной воде практически не наблюдается. При повышении температуры воды выше 100° гидролиз полисахаридов протекает, но настолько медленно, что практического значения такой процесс не имеет.
Удовлетворительные результаты получаются только при применении катализаторов, из которых производственное значение имеют лишь сильные минеральные кислоты: серная и реже соляная. Чем выше концентрация сильной кислоты в растворе и температура реакции, тем быстрее протекает гидролиз полисахаридов до моносахаридов. Однако присутствие таких катализаторов имеет и отрицательную сторону, так как они одновременно с реакцией гидролиза полисахаридов ускоряют и реакции распада моносахаридов, соответственно снижая этим их выход.
При распаде гексоз в этих условиях вначале образуется окси-метилфурфурол, который быстро разлагается далее с образованием конечных продуктов: левулиновой и муравьиной кислот. Пентозы в этих условиях превращаются в фурфурол.
В связи с этим, чтобы получить из полисахаридов растительной ткани моносахариды, необходимо обеспечить наиболее благоприятные условия для реакции гидролиза и максимально сократить возможности дальнейшего распада образующихся моносахаридов.
В этом заключается задача, которую решают исследователи и производственники при выборе оптимальных режимов гидролиза.
Из большого числа возможных вариантов концентрации кислоты и температуры реакции в настоящее время практически применяются только два: гидролиз разбавленными кислотами и гидролиз концентрированными кислотами. При гидролизе разбавленными кислотами температура реакции обычно составляет 160--190° и концентрация катализатора в водном растворе колеблется от 0,3 до 0,7% (H2SO4, HCl).
Реакцию проводят в автоклавах под давлением 10--15 атм. При гидролизе концентрированными кислотами концентрациясерной кислоты обычно составляет 70--80%, а соляной 37--42%. Температура реакции в этих условиях 15--40°.
Снизить потери моносахаридов легче при гидролизе концентрированными кислотами, вследствие чего выход сахара при этом методе может достигать почти теоретически возможного, т. е. 650--750 кг из 1 г абсолютно сухого растительного сырья.
При гидролизе разбавленными кислотами снизить потери моносахаридов вследствие их разложения значительно труднее и поэтому практически выход моносахаридов в этом случае обычно не превышает 450--500 кг из 1 т сухого сырья.
Ввиду малых потерь сахара при гидролизе концентрированными кислотами получающиеся водные растворы моносахаридов -- гидролизаты отличаются повышенной чистотой, что имеет большое значение при их последующей переработке.
Серьезным недостатком методов гидролиза концентрированными кислотами до последнего времени был большой расход минеральной кислоты на тонну получаемого сахара, что приводило к необходимости регенерации части кислоты или использования ее в других производствах; это осложняло и удорожало строительство и эксплуатацию таких заводов.
Большие трудности возникали также при подборе для аппаратуры материалов, стойких в агрессивных средах. По этой причине основная масса действовавших гидролизных заводов была построена по методу гидролиза разбавленной серной кислотой.
Рис. 1. Схема гидролиза растительного сырья разбавленной серной кислотой: 1--транспортер; 2 -- направляющая воронка; 3 -- гидролизаппарат; 4 -- фильтр; 5, 7, 9, 10, 12, 14, 21, 23, 26, 28 -- трубы; 5, 8 --испарители гидролизата; 11,13 -- решоферы; 15 - насос; 16 -- бак оборотной воды; 17-- смеситель воды и кислоты; 18 -- кислотный насос; 19 -- мерник кислоты; 20 -- клапан; 22 -- циклон для лигнина; 24 -- транспортер для лигнина; 25 -- вращающаяся мешалка; 57 -- водогрейная колонна; 29 --диски; 30 -- весомер, 31 -- боковая дверца.
Измельченная хвойная древесина со склада сырья по транспортеру 1 поступает в направляющую воронку 2 и далее в горловину гидролизаппарата 5. Это вертикальный стальной цилиндр с верхним и нижним конусами и горловинами. Внутреннюю поверхность такого гидролизаппарата покрывают кислотоупорными керамическими или графитовыми плитками или кирпичом, укрепленным на слое бетона толщиной 80--100 мм. Швы между плитками заполняются кислотоупорной замазкой. Верхняя и нижняя- горловины гидролизаппарата с внутренней стороны защищены от действия горячей разбавленной серной кислоты слоем кислотоупорной бронзы. Полезный объем таких гидролизаппаратов обычно составляет 30--37 м3, но иногда применяются также гидролизаппараты объемом 18, 50 и 70м3. Внутренний диаметр таких гидролизаппаратов составляет около 1,5, а высота 7--13 м. В верхний конус гидролизаппарата во время гидролиза по трубе 5 подается нагретая до 160--200° разбавленная серная кислота.
В нижнем конусе установлен фильтр 4 для отбора полученного гидролизата. Гидролиз в таких аппаратах производится периодически.
Как уже указывалось выше, гидролизаппарат загружают измельченным сырьем через направляющую воронку. При загрузке сырья через трубу 5 поступает нагретая до 70--90° разбавленная серная кислота, которая смачивает сырье, способствуя его уплотнению. При таком методе загрузки в 1 м3 гидролизаппарата помещается- около 135 кг опилок или 145--155 кг щепы, в пересчете на абсолютно сухую древесину. По окончании загрузки содержимое гидролизаппарата подогревается острым паром, поступающим в нижний конус его. Как только будет достигнута температура 150--170°, в гидролизаппарат по трубе 5 начинает поступать 0,5--0,7%-ная серная кислота, нагретая до 170--200°. Одновременно образующийся гидролизат через фильтр 4 начинает выводиться в испаритель 6. Реакция гидролиза в щдролизаппарате продолжается от 1 до 3 часов. Чем короче время гидролиза, тем выше температура и давление вгидролизаппарате.
В процессе гидролиза полисахариды древесины переходят в соответствующие моносахариды, растворяющиеся в горячей разбавленной кислоте. Для предохранения этих моносахаридов от разложения при высокой температуре содержащий их гидролизат непрерывно в течение всей варки выводят через фильтр 4 и быстро охлаждают в испарителе 6. Так как по условиям процесса гидролизуемое растительное сырье в гидролизаппарате все время должно быть залито жидкостью, заданный уровень ее поддерживается горячей кислотой, поступающей по трубе 5.
Такой метод работы носит название перколяция. Чем быстрее идет перколяция, т. е. чем быстрее через гидролизаппарат протекает горячая кислота, тем быстрее образующийся сахар выводится из реакционного пространства и тем меньше он разлагается. С другой стороны, чем быстрее идет перколяция, тем больше расходуется на варку горячей кислоты и тем меньше получается концентрация сахара в гидролизате и соответственно больше расход пара и кислоты на варку.
Практически для получения достаточно высоких выходов сахара (при экономически приемлемой концентрации его в гид-ролизате) приходится выбирать некоторые средние условия пер-коляции. Обычно останавливаются на выходе сахара в 45--50% от веса абсолютно сухой древесины при концентрации сахара в гидролизате 3,5--3,7%. Эти оптимальные условия реакции соответствуют отбору через нижний фильтр из гидролиз аппарата 12--15 м3 гидролизата на 1 т абсолютно сухой древесины^ загруженной в гидролизаппарат. Количество гидролизата, отбираемого за варку на каждую тонну гидролизуемого сырья, называют гидромодулем вытекания, и он является одним из основных-показателей примененного -на заводе режима гидролиза. этиловый серный гидролиз колчедан
В процессе перколяции между верхней и нижней горловинами гидролизаппарата возникает некоторая разность давлений, способствующая сжатию сырья -по мере растворения содержащихся в нем полисахаридов.
Сжатие сырья приводит к тому, что в конце варки остающийся нерастворенным лигнин занимает объем около 25% начального объема сырья. Поскольку по условиям реакции жидкость должна покрывать сырье, уровень ее в процессе варки соответственно снижается. Контроль за уровнем жидкости в процессе варки осуществляется при помощи весомера 30, показывающего изменение суммарного веса сырья и жидкости в гидролиз-аппарате.
По окончании варки в аппарате остается лигнин, содержащий на 1 кг сухого вещества 3 кг разбавленной серной кислоты, нагретой до 180--190 С.
Из гидролизаппарата лигнин выгружают в циклон 22 по трубе 21. Для этой цели быстро открывают клапан 20, соединяющий внутреннее пространство гидролизаппарата с циклоном 22. Благодаря быстрому снижению давления между кусочками лиг-: нина содержащаяся в нем перегретая вода мгновенно вскипает, образуя большие объемы пара. Последний рвет лигнин и увлекает его в виде взвеси по трубе 21 в циклон 22. Труба 21 подходит к циклону по касательной, благодаря чему струя пара с лигнином, врываясь в циклон, движется вдоль стенок, совершая вращательное движение. Лигнин центробежной силой отбрасывается к боковым стенкам и, теряя скорость, падает на дно циклона. Освобожденный от лигнина пар через центральную трубу 23 выбрасывается в атмосферу.
Циклон 22 обычно представляет собой вертикальный стальной цилиндр объемом около 100 м.3, снабжённый боковой дверцей 31 и вращающейся мешалкой 25, которая помогает при выгрузке лигнина со дна циклона на ленточный или скребковый транспортер 24.
Для предохранения от коррозии внутренняя поверхность циклонов иногда защищается слоем кислотоупорного бетона Как уже указывалось выше, в процессе перколяции в верхний конус гидролизаппарата подается нагретая разбавленная серная кислота. Ее приготовляют путем смешивания в кислотоупорном смесителе 17 перегретой воды, подаваемой по трубе 28, с холодной концентрированной серной кислотой, поступающей из мерного бачка 19 через поршневой кислотный насос 18.
Поскольку холодная концентрированная серная кислота слабо коррозирует железо и чугун, эти металлы широко используют для изготовления баков, насосов и трубопроводов, предназначенных для ее хранения и транспортировки к смесителю. Аналогичные материалы применяются и для подвода перегретой воды к смесителю. Для защиты стенок смесителя от коррозии применяют фосфористую бронзу, графит или пластическую массy -- фторопласт 4. Последние два используются для внутренней футеровки смесителей и дают наилучшие результаты.
Готовый гидролизат из гидролизаппарата поступает в испаритель 6 высокого давления. Это -- стальной сосуд, работающий под давлением и футерованный внутри керамическими плитками, как и гидролизаппарат. В верхней части испарителя емкостью 6--8 м3 имеется крышка. В испарителе поддерживается давление на 4--5 атм ниже, чем в гидролизаппарате. Благодаря этому попадающий в него гидролизат мгновенно вскипает, частично испаряясь, и охлаждается до 130--140°. Образующийся пар отделяется от капель гидролизата и по трубе 10 поступает в решофер (теплообменник) 11, где конденсируется. Частично охлажденный гидролизат из испарителя 6 по трубе 7 поступает в испаритель 8 низкого давления, где охлаждается до 105--110° в результате вскипания при более низком давлении, обычно не превышающем одной атмосферы. Образующийся в этом испарителе пар по трубе 14 подается во второй решофер 13, где также конденсируется. Конденсаты из решоферов 11 и 13 содержат 0,2--0,3% фурфурола и используются для его выделения на специальных установках, которые будут рассмотрены ниже.
Тепло, содержащееся в паре, который выходит из испарителей 6 и 8, используется для нагрева воды, поступающей в смеситель 17. Для этой цели из бака 16 оборотной воды насосом 15 теплую воду, полученную из ректификационного отделения гидролизного завода, подают в решофер низкого давления 13, где она нагревается с 60--80° до 100--110°. Затем по трубе 12 подогретая вода проходит решофер высокого давления 11, где паром при температуре 130--140° подогревается до 120--130°. Дальше температуру воды повышают до 180--200° в водогрейной колонне 27. Последняя представляет собой вертикальный стальной цилиндр с дном и верхней крышкой, рассчитанными на рабочее давление 13--15 атм.
Пар в водогрейную колонку подают по вертикальной трубе 26, на конце которой укреплены 30 горизонтальных дисков 29. Пар из трубы 26 проходит через щели между отдельными дисками в колонну, заполненную водой. Последняя непрерывно подается в колонну через нижний штуцер, смешивается с паром, нагревается до заданной температуры и по трубе 28 поступает в смеситель 17.
Гидролизаппараты устанавливают на специальном фундаменте в ряд по 5--8 шт. На больших заводах число их удваивают и устанавливают их в два ряда. Трубопроводы для гидролизата изготовляют из красной меди или латуни. Арматура, состоящая из вентилей и клапанов, изготовляется из фосфористой или паспортной бронзы.
2. Производство серной кислоты
Безводная серная кислота (моногидрат) -- тяжелая маслянистая жидкость (плотность при 20 °С 1830 кг/м3; температура кипения 296,2 °С при атмосферном давлении; температура кристаллизации 10,45 °С). Она смешивается с водой в любых соотношениях со значительным выделением теплоты (образуются гидраты). В серной кислоте растворяется оксид серы. Такой раствор, состав которого характеризуется содержанием свободного SО3(100%-я H2SO4), называется олеумом.
Серная кислота используется для производства удобрений -- суперфосфата, аммофоса, сульфата аммония и др. Значителен ее расход при очистке нефтепродуктов, а также в цветной металлургии, при травлении металлов. Особо чистая серная кислота используется в производстве красителей, лаков, красок, лекарственных веществ, некоторых пластических масс, химических волокон, многих ядохимикатов, взрывчатых веществ, эфиров, спиртов и т. п.
Производится серная кислота двумя способами: контактным и нитрозным (башенным). Контактным способом получают около 90 % от общего объема производства кислоты, так как при этом обеспечивается высокая концентрация и чистота продукта.
3. Сырье для производства серной кислоты
В качестве сырья для производства серной кислоты применяются элементарная сера и серный колчедан; кроме того, широко используются серосодержащие промышленные отходы.
Серный колчедан характеризуется содержанием серы 35...50 %. В залежах серного колчедана часто присутствуют сульфидные руды, которые используются в производстве цветных металлов (Си, Zn, Pb и др.).
Сульфидные руды подвергаются обжигу, в процессе которого образуются сернистые газы, используемые для производства серной кислоты. В настоящее время сырьем для ее производства служат сероводородные газы, образующиеся при переработке нефти, коксовании углей, а также получаемые при очистке природного газа.
Наиболее просто производство серной кислоты из серы, выделяемой из самородных руд или из побочных продуктов ряда производств (газовой серы). Однако стоимость кислоты, получаемой из серы, выше, чем из колчедана. Кроме того, сера необходима для производства резины, спичек, сероуглерода, ядохимикатов, лекарственных препаратов и т. д.
На современном этапе обеспечение промышленности серосо-держащим сырьем предусматривается за счет разработки природной и получения попутной серы. В цветной и черной металлургии, газовой и нефтехимической промышленности серу получают из газоконденсатов. Поэтому увеличивается выпуск флотационного колчедана на предприятиях цветной металлургии.
Разрабатывается технология переработки новых видов сырья: сульфатизирующий обжиг коллективного сульфидного концентрата Соколовско-Сарбайского комплекса и обжиг некондиционного колчедана.
4. Технология производства серной кислоты контактным способом
Производство серной кислоты контактным способом включает четыре стадии: получение диоксида серы; очистку газа от примесей; получение триоксида серы; абсорбцию триоксида серы.
Первая стадия связана с получением диоксида из колчедана, который обжигают в печах, где протекает необратимая реакция
4FeS2+llO2 = 2Fe2O3 + 8SO2 + Q
Ускорение этой реакции, а следовательно, интенсификация процесса обеспечивается тонким измельчением сырья, тщательным его перемешиванием и избытком воздуха или обогащением воздуха кислородом.
Измельченный серный колчедан обжигают в печах механических полочных, пылевидного обжига и со взвешенным (кипящим) слоем колчедана (рис. 2.1.). Последние печи более эффективны.
Образующийся при обжиге колчедана огарок характеризуется содержанием железа до 50 % и после соответствующей подготовки может быть использован для производства чугуна. Из 1 т колчедана получается 0,72...0,75 т огарка.
Печные газы, получаемые при обжиге колчедана, содержат много пыли, для улавливания которой применяют циклоны и электрофильтры (вторая стадия производства серной кислоты). В циклонах пыль оседает под действием центробежных сил. Электрофильтры представляют собой конденсаторы высокого напряжения (60000... 70000 В). Запыленный газ проходит между пластинами электрофильтра, где пылинки заряжаются и оседают на противоположно заряженных пластинах. При встряхивании пластин осевшая пыль падает в бункер электрофильтра, из которого затем удаляется.
В электрофильтрах газ очищается до остаточного содержания пыли примерно 0,2 г/м3,чего вполне достаточно для переработки сернистых газов в серную кислоту нитрозным способом. Контактный способ требует более тщательной очистки не только от пыли, но и от газообразных примесей "отравляющих" катализатор, использующийся при окислении доксида серы.
Обжиговый газ после пылеочистки в электрофильтрах имеет температуру около 350 °С и содержит остатки пыли, а также газообразные примеси соединений мышьяка (As2O3), селена (SeO2) и других элементов, способные разрушать катализатор.
Рис. 2.1. Печь для обжига колчедана в кипящем слое
5. Колчедан, его активность
Примеси селена целесообразно извлекать из газа и как необходимый промышленности материал. Для очистки газа предусматривается система промывных башен, электрофильтров и сушильных башен. Третья стадия производства серной кислоты является основной. Сухой очищенный газ поступает на контактное окисление SO2 до S03, которое происходит по обратимой экзотермической реакции, протекающей с уменьшением объема газа:
Равновесие данной реакции сдвигается в сторону образования SO3 при снижении температуры и увеличении давления газовой среды. Однако, поскольку в обжиговом газе концентрация сернистого газа и кислорода невелика (содержание балластного азота в газе превышает 80%), увеличение давления в сернокислотном производстве нецелесообразно, в связи с чем основным регулятором равновесия реакции окисления сернистого газа является температура.
Скорость процесса окисления SO2 при отсутствии катализатора даже при высоких температурах мала.
На сернокислотных заводах нашей страны в качестве катализатора используют главным образом ванадиевые контактные массы с содержанием V205 примерно 7 %, а также включающие оксиды щелочных металлов и высокопористые алюмосиликаты в качестве носителя.
Для достижения максимальной скорости окисления SO2 в SO3 процесс следует начинать при температуре около 600 °С и заканчивать при 400 °С. Конструкции современных полочных контактных аппаратов обеспечивают эти условия. При тщательной очистке газа контактная масса сохраняет активность на протяжении нескольких лет. Самая высокая активность катализатора и выгодные температурные условия процесса катализа достигаются в аппаратах со взвешенным (кипящим) слоем.
Контактное отделение (рис. 2.2) включает трубчатый теплообменник 6 и контактный аппарат 7. Сухой и холодный очищенный газ подается турбокомпрессором 5 в межтрубное пространство теплообменника 6 для предварительного нагрева. Подогретый газ,проходя между трубками теплообменников, расположенных в контактном аппарате между полками с контактной массой, нагревается до 450 °С и поступает на верхний слой катализатора.
Рис. 2.2. Схема производства серной кислоты контактным способом: 1, 2--промывные башни (полая и с насадкой); 3 -- электрофильтр; 4 -- башня с насадкой; 5 - турбокомпрессор; 6 - теплообменник; 7 -- контактный аппарат; 8 - холодильный; 9 -- башня для абсорбера; 10 - башня для орошения; 11 -- кислотный холодильник; 12 -- сборник; 13 -центробежный насос.
Олеум в результате реакции теплоты температура газа повышается до 590...600 °С. Затем газ направляется во внутренний теплообменник, где охлаждается до 450...490 °С. Охлажденная смесь SO2 + SO3 подается через второй слой катализатора, на котором продолжается дальнейшее окисление SO2 в SОз. Обычно газ проходит через 3...5 решетчатых полок с контактной массой и расположенными между ними теплообменниками, в результате чего 97...98 % SO2 превращается в SОз. Окисленный газ, имеющий при выходе из контактного аппарата температуру 400...430 °С, поступает в теплообменник 6, где охлаждается до 200 °С, а затем в холодильник 8, где его температура снижается до 60...80 °С. Автотермичность процесса окисления SO2 в SОз позволяет эффективно использовать теплоту, выделяющуюся в ходе реакции.
В четвертой стадии процесса производства серной кислоты охлажденный окисленный газ направляется в абсорбционное (поглотительное) отделение цеха. Абсорбцию триоксида водой осуществлять нецелесообразно, так как реакция SO3 + H2O-->H2SO4 + Q будет протекать в газовой фазе (за счет выделяющейся теплоты вода превращается в пар) с образованием мельчайших капелек кислоты (тумана), который очень трудно улавливается. Поэтому SОз поглощается концентрированной серной кислотой в две стадии.
6. Механизм действия серной кислоты, как катализатора
Катализатор -- это вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции. Количество катализатора, в отличие от других реагентов, после реакции не изменяется. Обеспечивая более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно (до миллиона раз) повторяется.
Катализаторы - это вещества, изменяющие скорость химической реакции или вызывающие ее, но не входящие в состав продуктов.
Получение этилового спирта из этилена было подробно изучено A.M. Бутлеровым. Он получал этанол гидратацией этилена в присутствии того же катализатора - концентрированной серной кислоты, который применяется и для обратной реакции - получения этилена из спирта. А.М.Бутлеров показал, что эта реакция является общей для получения спиртов из непредельных углеводородов, и предсказал ее промышленное значение.
Сейчас реакция гидратации непредельных углеводородов широко используется в промышленности для получения различных спиртов. В связи с необходимостью замены пищевого сырья и утилизации газов крекинга нефти этанол в больших количествах получают из этилена.
Опыт сернокислотной гидратации, в соответствии с промышленным его осуществлением, состоит из двух частей. Сначала растворяют этилен в концентрированной серной кислоте, при этом образуется моноэтиловый эфир серной кислоты:
Затем растров разбавляют водой, при этом образуется этанол и освобождается серная кислота:
Понятно, что при изучении этого процесса в классе дается лишь суммарное уравнение реакции:
H2C=CH2 + H2O ---H2SO4---> H3C-CH2-OH
Серная кислота рассматривается как растворитель этилена и катализатор реакции (без указания механизма каталитического действия).
Библиографический список
1) Электронный источник: http://carbon-tech.ru/info/statii/proizvodstvo-etilovogo-spirta-iz-drevesiny-chast-1
2) Электронный источник: http://fan-5.ru/better/article-184912.php
3) Электронный источник: http://www.ximicat.com/info.php?id=171
Размещено на Allbest.ru
...Подобные документы
Применение, физические и химические свойства концентрированной и разбавленной серной кислоты. Производство серной кислоты из серы, серного колчедана и сероводорода. Расчет технологических параметров производства серной кислоты, средства автоматизации.
дипломная работа [1,1 M], добавлен 24.10.2011Расчет материального баланса печи кипящего слоя в процессе обжига колчедана, теплового баланса печи обжига колчедана. Вычисление концентраций в обжиговом газе перед контактным аппаратом. Сравнительное описание катализаторов производства серной кислоты.
контрольная работа [94,4 K], добавлен 18.10.2012Применение серной кислоты. Природные серосодержащие соединения. Обжиг пирита, контактное окисление SO2 в SO3, абсорбция триоксида серы. Устройство печи для обжига в "кипящем слое". Очистка от крупной и мелкой пыли. Теплообменник и контактный аппарат.
презентация [2,0 M], добавлен 10.05.2015Общая схема сернокислотного производства. Сырьевая база для производства серной кислоты. Основные стадии процесса катализа. Производство серной кислоты из серы, из железного колчедана и из сероводорода. Технико-экономические показатели производства.
курсовая работа [7,1 M], добавлен 24.10.2011Физические и химические свойства серной кислоты, методы ее получения. Сырьевые источники для сернокислотного производства. Технологический расчет печи обжига колчедана, котла-утилизатора и контактного аппарата. Техника безопасности на производстве.
дипломная работа [9,5 M], добавлен 25.05.2012Производство серной кислоты. Материальный тепловой баланс печи для обжига колчедана. Система двойного контактирования и абсорбции. Обжиг серного колчедана, окисление диоксида серы, абсорбция триоксида серы. Влияние температуры на степень выгорания серы.
курсовая работа [907,6 K], добавлен 05.02.2015Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.
презентация [759,6 K], добавлен 27.04.2015Серная кислота: физико-химические свойства, применение, основные способы получения. Характеристика исходного сырья. Производство серной кислоты из железного колчедана. Материальный и тепловой баланс. Охрана окружающей среды, связанная с производством.
курсовая работа [2,2 M], добавлен 24.10.2013Химические свойства и области применения серной кислоты, используемое сырье и этапы ее производства. Процесс получения серной кислоты контактным методом из серного (железного) колчедана. Расчет параметров работы четырехслойного контактного аппарата.
контрольная работа [159,5 K], добавлен 07.08.2013Свойства, области использования, сырье и технология изготовления серной кислоты, а также характеристика прогрессивных способов и перспектив развития ее производства. Анализ динамики трудозатрат при развитии технологического процесса серной кислоты.
контрольная работа [228,6 K], добавлен 30.03.2010Виды сырья, используемого в производстве, и его классификация. Технологическая схема, химическая, функциональная и структурная система производства серной кислоты контактным способом. Основные физико-химические процессы производства серной кислоты.
курсовая работа [143,9 K], добавлен 26.12.2011Товарные и определяющие технологию свойства серной кислоты. Сырьевые источники. Современные промышленные способы получения серной кислоты. Пути совершенствования и перспективы развития производства. Процесса окисления сернистого ангидрида. Катализатор.
автореферат [165,8 K], добавлен 10.09.2008Технология получения серной кислоты контактным методом. Разработка технологической схемы включающей, сжигания серы, окисления диоксида серы и его абсорбции с получением товарной серной кислоты. Выбор и расчет основного аппарата – контактного аппарата.
дипломная работа [551,2 K], добавлен 06.02.2013Понятия катализа, катализатора и каталитического процесса, их различные определения. Механизмы ускорения реакций катализаторами. Химический (небиологический) катализ. Синтез диэтилового эфира из спирта при участии серной кислоты. Теории катализа.
реферат [314,9 K], добавлен 26.01.2009Конструктивно-технологическая характеристика процесса получения серной кислоты. Функциональная схема автоматизации по контурам. Расчет автоматической системы регулирования. Выбор закона регулирования и расчет оптимальных параметров настройки регулятора.
курсовая работа [123,2 K], добавлен 22.07.2012Анализ технологического процесса производства серной кислоты. Получение обжигового газа из серы. Контактное окисление диоксида серы. Материальный баланс для печи сжигания серы. Расчет сушильной башни, моногидратного абсорбера, технологических показателей.
курсовая работа [1,1 M], добавлен 03.06.2014Описание промышленных способов получения серной кислоты. Термодинамический анализ процесса конденсации и окисления диоксида серы. Представление технологической схемы производства кислоты. Расчет материального и теплового баланса химических реакций.
реферат [125,1 K], добавлен 31.01.2011Основные сведения о серной кислоте. Сырье, топливо, основные и вспомогательные материалы. Описание и параметры технологического процесса, получение обжигового газа из руды. Инструкция по эксплуатации и обслуживанию нагнетателя и контактного аппарата.
курсовая работа [264,0 K], добавлен 22.10.2011Исходное сырье для производства этилового спирта и способы его получения. Физико-химическое обоснование основных процессов производства этилового спирта. Описание технологической схемы процесса производства, расчет основных технологических показателей.
курсовая работа [543,6 K], добавлен 04.01.2009Методика отбора проб технической серной кислоты и олеума - раствора триоксида серы в серной кислоте. Методы анализа технической улучшенной аккумуляторной кислоты и олеума: определение моногидрата, свободного серного ангидрида, железа, мышьяка, меди.
реферат [49,1 K], добавлен 05.01.2011