Применение метанола, этиленгликоля
Рассмотрение гомологизации метанола. Обзор метанола в качестве топлива. Анализ недостатков метанола. Определение нахождения в природе метанола. Изучение техники безопасности при работе с метанолом и этиленгликолем. Физические характеристики этиленгликоля.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 21.12.2016 |
Размер файла | 22,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки РФ
ФГБОУ ВПО “Сочинский государственный университет”
Среднее профессиональное образование
Университетский экономико-технологический колледж
Реферат по химии на тему
“Применение метанола, этиленгликоля
Техника безопасности при работе с ними”
Студента 16 КТП-2
Шония Максим Геннадьевич
Содержание
Получение
Применение
Гомологизация метанола
Метанол в качестве топлива
Недостатки метанола
Нахождение в природе метанола
Токсичность метанола
Техника безопасности при работе с метанолом
Физические характеристики этиленгликоля
Методы получения этиленгликоля
Области применения этиленгликоля
Техника безопасности при работе с этиленгликолем
гомологизация метанол этиленгликоль топливо
Получение
До 1960-х годов метанол синтезировали только на цинкхромовом катализаторе при температуре 300--400 °C и давлении 25--40 МПа (= 250--400 Бар = 254,9--407,9 кгс/смІ). Впоследствии распространение получил синтез метанола на медьсодержащих катализаторах (медьцинкалюмохромовом, медь-цинкалюминиевом или др.) при 200--300 °C и давлении 4--15 МПа (= 40--150 Бар = 40,79--153 кгс/смІ).
Современный промышленный метод получения -- каталитический синтез из оксида углерода(II) (CO) и водорода (2H2) при следующих условиях:
температура -- 250 °C,
давление -- 7МПа (= 70 атм = 70 Бар = 71,38 кгс/смІ),
катализатор -- смесь ZnO (оксид цинка) и CuO (оксид меди(II)):
До промышленного освоения каталитического способа получения метанол получали при сухой перегонке дерева (отсюда его название «древесный спирт»). В данное время этот способ имеет второстепенное значение.
Также известны схемы использования с этой целью отходов нефтепереработки, коксующихся углей.
CO2 + 3H2 <--> CH3OH + H2O + 49.53 кДж/моль
H2O + CO <--> CO2 + H2 + 41.2 кДж/моль
Молекулярная формула -- CH4O или CH3--OH, В настоящее время метиловый спирт получают синтетическим способом из монооксида углерода и водорода при температуре 300--400 °C и давления 300--500 атм в присутствии катализатора -- смеси оксидов цинка, хрома и др. Сырьем для синтеза метанола служит синтез-газ (CO + H2), обогащенный водородом: :CO + 2 H2 > CH3OH[2]
Применение
В органической химии метанол используется в качестве растворителя.
Метанол используется в газовой промышленности для борьбы с образованием гидратов (из-за низкой температуры замерзания и хорошей растворимости). В органическом синтезе метанол применяют для выпуска формальдегида, формалина, уксусной кислоты и ряда эфиров (например, МТБЭ и ДМЭ), изопрена и др.
Наибольшее его количество идёт на производство формальдегида, который используется для производства карбамидоформальдегидных и фенолформальдегидных смол. Значительные количества CH3OH используют в лакокрасочной промышленности для изготовления растворителей при производстве лаков. Кроме того, его применяют (ограниченно из-за гигроскопичности и отслаивания) как добавку к жидкому топливу для двигателей внутреннего сгорания. Используется в топливных элементах.
Благодаря высокому октановому числу, что позволяет увеличить степень сжатия до 16 и большей на 20 % энергетической мощностью заряда на основе метанола и воздуха, метанол используется для заправки гоночных мотоциклов и автомобилей. Метанол горит в воздушной среде, и при его окислении образуется двуокисьуглерода и вода
Для получения биодизеля растительное масло переэтерифицируется метанолом при температуре 60 °C и нормальном давлении приблизительно так: 1 т масла + 200 кг метанола + гидроксид калия или натрия.
Во многих странах метанол применяется в качестве денатурирующей добавки к этанолу при производстве парфюмерии. В России использование метанола в потребительских товарах запрещено.
При добыче газа гидраты могут образовываться в стволах скважин, промысловых коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли).
Работа топливных элементов основана на реакции окисления метанола на катализаторе в диоксид углерода. Вода выделяется на катоде. Протоны (H+) проходят через протонообменную мембрану к катоду где они реагируют с кислородом и образуют воду. Электроны проходят через внешнюю цепь от анода к катоду снабжая энергией внешнюю нагрузку.
Реакции:
На аноде CH3OH + H2O > CO2 + 6H+ + 6e?
На катоде 1.5O2 + 6H+ + 6e? > 3H2O
Общая для топливного элемента: CH3OH + 1,5O2 > CO2 + 2H2O
Получение диметилового эфира дегидратацией метанола при 300--400 °C и 2-3 МПа в присутствии гетерогенных катализаторов -- алюмосиликатов -- степень превращения метанола в диметиловый эфир -- 60 % или цеолитов -- селективность процесса близка к 100 %. Диметиловый эфир (C2H6O) -- экологически чистое топливо без содержания серы, содержание оксидов азота в выхлопных газах на 90 % меньше, чем у бензина. Цетановое число диметилового дизеля более 55, при том что у классического нефтяного 38-53
Метил-трет-бутиловый эфир получается при взаимодействии метанола с изобутиленом в присутствии кислых катализаторов Метил-трет-бутиловый эфир (C5H12O) применяется в качестве добавки к моторным топливам, повышающей октановое число бензинов (антидетонатор). Максимальное законодательное содержание МТБЭ в бензинах Европейского союза -- 15 %, в Польше -- 5 %. В России в среднем составе бензинов содержание МТБЭ составляет до 12 % для АИ92 и до 15 % для АИ95, АИ98.
Гомологизация метанола
Гомологизация, то есть превращение органического соединения в свой гомолог путём внедрения одной или нескольких метиленовых групп, для спиртов была впервые осуществлена в 1940 году -- на основе метанола каталитическим путём под воздействием высокого давления был синтезирован этанол[3]
Реакция гомологизации по своему механизму близка реакции гидроформилирования алкенов и в настоящее время с помощью модифицированных катализаторов кобальта и рутения и добавления йодид-ионов в качестве промоторов удаётся добиться 90 % выхода по этанолу[3]
Исходный метанол также получают из окиси углерода (катализаторы на основе оксидов меди и цинка, давление 5-10 МПа, температура 250 °C)[3Побочными продуктами реакции в случае синтеза этанола будут ацетальдегид, этилен и диэтиловый эфир.
В 1940 году впервые была осуществлена катализируемая оксидом кобальта при давлении 600 атм реакция метанола с синтез-газом с образованием в качестве основного продукта этанола… Впоследствии эта реакция, названная гомологизацией, вызвала огромный интерес у химиков. Ее привлекательность связана с возможностью получения этилена из угольного сырья Применение в качестве катализаторов карбонила кобальта Со2(СО)8 позволило понизить давление до 250 атм, при этом степень превращения метанола составила 70 %, а основной продукт -- этанол образовывался с селективностью 40 %. В дальнейшем были предложены более селективные катализаторы на основе соединений кобальта и рутения с добавками фосфиновых лигандов и было установлено, что реакцию можно ускорить с помощью введения промоторов -- иодид-ионов. В настоящее время удалось достичь селективности по этанолу 90 %. Хотя механизм гомологизации до конца не установлен, можно считать, что он близок к механизму карбонилирования метанола.
Метанол в качестве топлива
При применении метанола в качестве топлива следует отметить, что объемная и массовая энергоемкость (теплота сгорания) метанола (удельная теплота сгорания = 22,7 МДж/кг) на 40--50 % меньше, чем бензина, однако при этом теплопроизводительность спиртовоздушных и бензиновых топливовоздушных смесей при их сгорании в двигателе различается незначительно по той причине, что высокое значение теплоты испарения метанола способствует улучшению наполнения цилиндров двигателя и снижению его теплонапряженности, что приводит к повышению полноты сгорания спиртовоздушной смеси. В результате этого рост мощности двигателя повышается на 10--15 %. Двигатели гоночных автомобилей работающих на метаноле с более высоким октановым числом чем бензин имеют степень сжатия, превышающую 15:1, в то время как в обычном ДВС с искровым зажиганием степень сжатия для неэтилированного бензина как правило, не превышает 11,5:1. Метанол может использоваться как в классических двигателях внутреннего сгорания, так и в специальных топливных элементах для получения электричества.
Недостатки
Метанол травит алюминий. Проблемным является использование алюминиевых карбюраторов и инжекторных систем подачи топлива в ДВС. Это относится в основном к метанолу-сырцу, содержащему значительные количества примесей муравьиной кислоты и формальдегида. Технически чистый метанол, содержащий воду, начинает реагировать с алюминием при температуре выше 50 °C, а с обычной углеродистой сталью не реагирует вовсе.
Гидрофильность. Метанол втягивает воду, что является причиной расслоения топливных смесей бензин-метанол.
Метанол, как и этанол, повышает пропускную способность пластмассовых испарений для некоторых пластмасс (например, плотного полиэтилена). Эта особенность метанола повышает риск увеличения эмиссии летучих органических веществ, что может привести к уменьшению концентрации озона и усилению солнечной радиации.
Уменьшенная летучесть при холодной погоде: моторы, работающие на чистом метаноле, могут иметь проблемы с запуском при температуре ниже +10 °C и отличаться повышенным расходом топлива до достижения рабочей температуры. Данная проблема однако, легко решается добавлением в метанол 10--25 % бензина.
Низкий уровень примесей метанола может быть использован в топливе существующих транспортных средств с использованием надлежащих ингибиторов коррозии. Т. н. европейская директива качества топлива (European Fuel Quality Directive) позволяет использовать до 3 % метанола с равным количеством присадок в бензине, продаваемoм в Европе. Сегодня в Китае используется более 1000 млн галлонов метанола в год в качестве транспортного топлива в смесях низкого уровня, используемых в существующих транспортных средств, а также высокоуровневые смеси в транспортных средствах, предназначенных для использования метанола в качестве топлива.
Помимо применения метанола в качестве альтернативы бензина существует технология применения метанола для создания на его базе угольной суспензии которая в США имеет коммерческое наименование «метакол» (methacoal[7]). Такое топливо предлагается как альтернатива мазута, широко используемого для отопления зданий (Топочный мазут). Такая суспензия в отличие от водоуглеродного топлива не требует специальных котлов и имеет более высокую энергоемкость. С экологической точки зрения такое топливо имеет меньший «углеродный след»[8], чем традиционные варианты синтетического топлива получаемого из угля с использованием процессов, где часть угля сжигается во время производства жидкого топлива.
Нахождение в природе
В свободном состоянии[9] метиловый спирт встречается в природе лишь изредка и в очень небольших количествах (например в эфирных маслах), но производные его распространены довольно широко. Так, например, многие растительные масла содержат сложные эфиры метилового спирта: масла гаултерии -- метиловый эфир салициловой кислоты С6H4(OH)COOCH3, масло жасмина -- метиловый эфир антраниловой кислоты С6H4(NH2)COOCH3. Простые эфиры метилового спирта чрезвычайно часто встречаются среди природных веществ, например природных красителей, алкалоидов и т. п.
В промышленности метиловый спирт раньше получали исключительно путём сухой перегонки дерева. В жидких погонах, так называемом «древесном уксусе», наряду с уксусной кислотой (10 %), ацетоном (до 0,5 %), ацетальдегидом, аллиловым спиртом, метилацетатом, аммиаком и аминами содержится также 1,5-3 % метилового спирта. Для отделения уксусной кислоты продукты сухой перегонки пропускают через горячий раствор известкового молока, задерживающий её в виде уксуснокислого кальция. Значительно труднее отделить метиловый спирт от ацетона, так как температуры кипения их очень близки (ацетон, т.кип.56,5°; метиловый спирт, т.кип. 64,7°). Все же путём тщательной ректификации на соответствующих колоннах в технике удается почти полностью отделить метиловый спирт от сопутствующего ему ацетона. Неочищенный метиловый спирт называется также «древесным спиртом».
Токсичность
Метанол -- яд, действующий на нервную и сосудистую системы. Токсическое действие метанола обусловлено так называемым «летальным синтезом» -- метаболическим окислением в организме до очень ядовитого формальдегид.
Приём внутрь 5--10 мл метанола приводит к тяжёлому отравлению (одно из последствий -- слепота), а 30 граммов и более -- к смерти. Предельно допустимая концентрация метанола в воздухе равна 1 мг/мі (у изопропилового спирта 10 мг/мі[10], у этанола - 5 мг/мі)[11].
Наиболее легкая форма отравления характеризуется наличием головной боли, общей слабостью, недомоганием, ознобом, тошнотой, рвотой. Поэтому опасен для жизни не только метанол, но и жидкости, содержащие этот яд даже в сравнительно небольшом количестве.
Особая опасность метанола связана с тем, что по запаху и вкусу он неотличим от этилового спирта, из-за чего и происходят случаи его употребления внутрь. В домашних условиях метанол можно отличить следующим способом: свернуть из толстой медной проволоки спираль и накалить ее на огне до красного свечения; при опускании спирали в метанол происходит его каталитическое окисление с выделением формальдегида, обладающего весьма резким запахом; этанол же такого эффекта не дает (будет напоминать запах прелых яблок). Второй способ - йодоформная реакция: с этиловым спиртом выпадет йодоформ желтого цвета, а с метанолом ничего не выпадает (реакция не подходит для определения содержания метанола в растворе этанола)[12]. Как указано в руководстве для врача скорой медицинской помощи, при отравлении метанолом антидотом является этанол, который вводится внутривенно в форме 10 % раствора капельно или 30--40 % раствора перорально из расчёта 1--2 грамма раствора на 1 кг веса в сутки.[13] Полезный эффект в этом случае обеспечивается отвлечением АДГ I на окисление экзогенного этанола.[14] Следует учесть, что при недостаточно точном диагнозе за отравление метанолом можно принять алкогольную интоксикацию, отравление дихлорэтаном или четырёххлористым углеродом -- в этом случае введение дополнительного количества этилового спирта опасно.[13]
Техника безопасности при работе с метанолом
Метанол (метиловый спирт, древесный спирт, карбанол) - бесцветная прозрачная жидкость, по запаху и вкусу близка к винному (этиловому) спирту. Плотность метанола - 0,791 г/см3, температура кипения - 64,7°С, пределы воспламенения паров в воздухе - 6,7 - 36,5% (по объему), ПДК в воздухе рабочей зоны (санитарная) - 5 мг/м3 .С водой смешивается во всех отношениях. Метанол - сильный яд, действующий преимущественно на нервную и сосудистую системы. В организм человека может проникнуть через дыхательные пути и даже через не поврежденную кожу. Прием 5 - 10 г метанола во внутрь может вызвать тяжелое отравление, а 30 г являются смертельной дозой. Симптомы отравления: головная боль, головокружение, тошнота, рвота, боль в желудке, общая слабость, раздражение слизистых оболочек, мелькание в глазах, а в тяжелых случаях - потеря зрения и смерть. Все работы, связанные с транспортировкой, переливами, хранением и применением метанола следует выполнять согласно требованиям «Инструкции о порядке получения от поставщиков, перевозки, хранения, отпуска и применения метанола на объектах газовой промышленности» на основе которой, ЛПУМГ разрабатывает - инструкцию по транспортировке, хранению и использованию метанола с учетом местных условий на своих объектах и инструкцию по безопасной эксплуатации передвижных или стационарных метанольных установок.
Физические характеристики этиленгликоля
Применение этиленгликоля объясняется наличием ряда свойств, которые присущи многоатомным спиртам. Это отличительные черты, характерные только для данного класса органических соединений. Самое важно из свойств - это неограниченная способность смешиваться с Н2О. Вода + этиленгликоль даёт раствор, обладающий уникальной характеристикой: температура его замерзания, в зависимости от концентрации диола, ниже на 70 градусов, чем у чистого дистиллята. Важно отметить, что зависимость эта нелинейная, и по достижении определённого количественного содержания гликоля начинается обратный эффект - температура замерзания повышается при увеличении процентного содержания растворяемого вещества. Эта особенность нашла применение в области производства различных антифризов, жидкостей «незамерзаек», которые кристаллизуются при крайне низких термических характеристиках окружающей среды. Кроме как в воде, процесс растворения отлично протекает в спирте и ацетоне, но не наблюдается в парафинах, бензолах, эфирах и тетрахлорметане. В отличие от своего алифатического родоначальника - такого газообразного вещества, как этилен, этиленгликоль - это сиропоподобная, прозрачная, с незначительным желтым оттенком жидкость, сладковатая по вкусу, с нехарактерным запахом, практически нелетучая. Замерзание стопроцентного этиленгликоля происходит при - 12,6 градусах Цельсия, а кипение - при +197,8. В нормальных условиях плотность составляет 1,11 г/см3.
Методы получения
Этиленгликоль можно получить несколькими способами, некоторые из них сегодня имеют лишь историческое или препаративное значение, а другие активно используются человеком в промышленных масштабах и не только. Следуя в хронологическом порядке, рассмотрим самые важные Выше уже был описан первый метод получения этиленгликоля из дибромэтана. Формула этилена, двойная связь которого разорвана, а свободные валентности заняты галогенами, - главного исходного вещества в данной реакции - помимо углерода и водорода имеет в своём составе два атома брома. Образование промежуточного соединения на первой ступени процесса возможно как раз благодаря их отщеплению, т. е. замещению ацетатными группами, которые при дальнейшем гидролизе превращаются в спиртовые. В процессе дальнейшего развития науки стало возможным получение этиленгликоля прямым гидролизом любых этанов, замещенных двумя галогенами у соседних атомов карбона, с помощью водных растворов карбонатов металлов из щелочной группы или (менее экологичный реагент) Н2О и диоксида свинца. Реакция довольно «трудоёмкая» и протекает лишь при значительно повышенных температурах и давлении, но это не помешало немцам в периоды мировых войн использовать этот метод для производства этиленгликоля в промышленных масштабах. Свою роль в становлении органической химии сыграл и способ получения этиленгликоля из этиленхлоргидрина путём его гидролиза угольными солями металлов щелочной группы. При повышении температуры реакции до 170 градусов выход целевого продукта достигал 90 %. Но был значительный недостаток - гликоль нужно было как-то извлекать из раствора соли, что непосредственно сопряжено с рядом трудностей. Учёные решили этот вопрос, разработав метод с тем же исходным веществом, но разбив процесс на две стадии. Гидролиз этиленгликольацетатов, являясь ранее завершающей стадией метода Вюрца, стал отдельным способом, когда сумели получить исходный реагент окислением этилена в уксусной кислоте кислородом, то есть без применения дорогих и совсем неэкологичных соединений галогенов.
Области применения
Применение этиленгликоля не ограничивается какой-то одной областью. Так, в качестве сырья его используют в производстве органических растворителей, искусственных смол и волокон, жидкостей, замерзающих при отрицательных температурах. Он задействован во многих промышленных отраслях, таких как автомобильная, авиационная, фармацевтическая, электротехническая, кожевенная, табачная. Неоспоримо весомо его значение для органического синтеза. Важно помнить, что гликоль - это токсичное соединение, которое может нанести непоправимый вред здоровью человека. Поэтому его хранят в герметичных сосудах из алюминия или стали с обязательным внутренним слоем, защищающим ёмкость от коррозии, только в вертикальных положениях и помещениях, не снабженных отопительными системами, но с хорошей вентиляцией. Срок - не более пяти лет
Техника безопасности при работе с этиленгликолем
Этиленгликоль -своеобразная бесцветная жидкость без запаха ,предел взрываемости 3,2-6,35%.Действует на центральную нервную систему и почки. Подвергнувшись парам гликоля -раздражение глаз ,вялость и потеря аппетита, заболевание почек ,верхних дыхательных путей. Для защиты применяется противогаз
Размещено на Allbest.ru
...Подобные документы
Синтез метанола из оксида углерода и водорода. Технологические свойства метанола (метиловый спирт). Применение метанола и перспективы развития производства. Сырьевые источники получения метанола: очистка синтез-газа, синтез, ректификация метанола-сырца.
контрольная работа [291,5 K], добавлен 30.03.2008Физико-химические свойства метанола, области применения, текущее состояние рынка данного продукта. Производство, переработка метанола в России и перспективы его использования. Метанол как альтернативный энергоноситель. Новое топливо из природного газа.
курсовая работа [2,1 M], добавлен 05.10.2011Товарные и определяющие технологию свойства метанола, области применения в химической технологии. Сырьевые источники получения метанола. Перспективы использования различных видов сырья. Промышленный синтез метилового спирта и его основные стадии.
контрольная работа [42,6 K], добавлен 10.09.2008Отличие условий синтеза метанола от условий синтеза высших спиртов. Стадии процесса и их тепловой эффект. Влияние вида катализатора на параметры, скорость и глубину процесса. Синтез метанола на цинк-хромовом катализаторе. Схемы синтеза метанола.
реферат [748,6 K], добавлен 15.06.2010Актуальность производства метанола. Физические и химические свойства. Подготовка углеводородного сырья. Производство синтез-газа. Получение целевого продукта. Структурный анализ затрат. Формы отравления метаноловым спиртом. Применение метанола в мире.
презентация [863,6 K], добавлен 15.11.2015Особенности использования метанола в органическом синтезе. Промышленные способы получения и схема производства метанола. Влияние параметров управления на на равновесие и скорость химической реакции. Оптимизация работы реактора по экономическим критериям.
курсовая работа [552,7 K], добавлен 23.02.2012Достижения Московских нефтехимических НИИ по внедрению диметилового эфира в качестве альтернативы дизельному топливу. Исследование каталитических систем на основе аморфного алюмофосфата с SiO2 в процессе дегидратации метанола до диметилового эфира.
дипломная работа [3,6 M], добавлен 04.01.2009Выбор метода производства готового продукта. Характеристика исходного сырья, вспомогательных материалов и продукции. Способы получения уксусной кислоты из метанола. Уравнение реакции карбонилирования метанола. Катализаторы, носители, поглотители.
дипломная работа [136,8 K], добавлен 03.11.2013Обоснование источников сырья, энергоресурсов, географической точки строительства для производства метанола. Параметры технологического процесса. Синтез и анализ химической, структурной, операторной схемы. Пути использования вторичных энергоресурсов.
курсовая работа [112,1 K], добавлен 13.01.2015Совмещенное дегидрирование и окисление метанола. Получаемые и побочные продукты. Условия проведения процесса. Оформление реакционного узла. Получение формальдегида дегидрированием или окислением первичных спиртов. Дегидрирование первичных спиртов.
реферат [496,5 K], добавлен 27.02.2009Физические свойства этиленгликоля. Горючесть вещества, температура кипения, плавления. Пределы воспламенения паров в воздухе. Плотность этиленгликоля в зависимости от температуры. Токсичность для человека, реакции обнаружения. Получение и применение.
презентация [543,6 K], добавлен 25.10.2012Химические свойства и основные области применения формальдегида. Технологическая схема производства формалина. Абсорбция формальдегидсодержащих реакционных газов. Окисление метанола воздуха в присутствии серебряных или молибденовых катализаторов.
реферат [1,1 M], добавлен 04.02.2015Метан — бесцветный газ без запаха, первый член гомологического ряда насыщенных углеводородов; получение и химические свойства. Процесс высокотемпературной конверсии метана для производства метанола; определение углеродного эквивалента исходного газа.
курсовая работа [87,3 K], добавлен 12.12.2012Технология производства уксусной кислоты из метанола и оксида углерода. Материальный баланс реактора и стадии синтеза уксусной кислоты. Получение уксусной кислоты окислением ацетальдегида, н-бутана, н-бутенов, парафинов С4-С8. Применение уксусной кислоты.
курсовая работа [207,3 K], добавлен 22.12.2010Восстановление СО на гетерогенных металлосодержащих катализаторах приводит к образованию различных продуктов – СН4. Синтезы углеводородов по Фишеру-Тропшу и метанола. Реакции образования углеводородов из СО и Н2 являются экзотермическими процессами.
реферат [112,7 K], добавлен 28.01.2009Описание технологической схемы производства и автоматизация технологического процесса. Материальный баланс установки. Организация основного и вспомогательного производства. Расчет материального баланса технологической установки производства метанола.
дипломная работа [362,8 K], добавлен 18.05.2019Обзор вариантов промышленного получения этиленгликоля из окиси этилена. Описание технологической схемы и сырья, используемого в производстве многотонажного синтеза этиленгликоля (окись этилена, вода), побочных продуктов (этиленгликоль, диэтиленгликоль).
курсовая работа [38,0 K], добавлен 06.04.2010Сущность процесса, особенности и стадии оксосинтеза, его катализаторы. Различные реакции с участием оксида углерода. Уравнение гидроформилирования. Механизм гидрокарбалкоксилирования ацетилена. Процессы карбонилирования метанола до уксусной кислоты.
реферат [73,4 K], добавлен 28.01.2009Характеристика преимуществ использования микрокаталитических систем. Метанол как источник водорода для мобильных устройств. Схема реактора полного смешения. График зависимости производительности по водороду от объема реактора при различных давлениях.
курсовая работа [1,3 M], добавлен 09.02.2013Исследование возможности применения синтез–газа в виде альтернативного нефти сырья, его роль в современной химической технологии. Получение метанола, суммарная реакция образования. Продукты синтеза Фишера–Тропша. Механизм гидроформилирования олефинов.
реферат [1,6 M], добавлен 27.02.2014