Витамин E
История открытия, физико-химические свойства витамина Е или группы природных соединений производных токола. Метаболизм и роль витамина Е в организме (иммуномодулятор, антиоксидант). Пищевые добавки. Гиповитаминоз (недостаточность токоферола). Синтез.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 23.12.2016 |
Размер файла | 119,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оглавление
Введение
История открытия
Физико-химические свойства
Метаболизм
Роль
Гиповитаминоз
Пищевые добавки
Гиповитаминоз
Вывод
Введение
Витамимн E -- группа природных соединений производных токола. Важнейшими соединениями являются токоферолы и токотриенолы. Жирорастворим.
Имеет множество функций, например, участие в процессах размножения млекопитающих, является хорошим иммуномодулятором и антиоксидантом.
Впервые был выделен в 1922 году, а в 1938 был синтезирован химическим путём.
История открытия
химический витамин метаболизм синтез
Ещё в экспериментах Томаса Осборна было показано, что полуочищенная диета, содержащая также и витамины А, B, C и D, поддерживает рост.
Однако, открытие самого витамина Е произошло в 1922 году Гербертом Эвансом и Кэтрин Скотт Бишоп. В своих экспериментах они показали, что крысы, которые питались лишь смесью казеина, сала, молочного жира, соли и дрожжей, были бесплодными. Репродуктивную функцию можно было восстановить, добавив листья салата или масло из зародышей пшеницы. Добавление рыбьего жира или муки не приводило ни к каким улучшениям. Из этого был сделан вывод, что «фактор X», содержащийся в определённых растительных маслах, был очень важным составляющим пищи.
В 1931 году Маттилл и Олкотт описали антиоксидантную функцию витамина E. В том же году было выяснено, что недостаток витамина E вызывает мышечную недостаточность и энцефаломаляцию.
В 1936 году б-токоферол был впервые выделен Эвансом. Название токоферол (от др.-греч. фькпт -- «потомство, деторождение», и цЭсщ -- «несу») было предложено Джорджем Калхауном, профессором греческого языка Калифорнийского университета.
В 1938 году была описана химическая структура б-токоферола, а Пауль Каррер смог его синтезировать.
Первое терапевтическое использование витамина E было проведено в 1938 году Виденбауэром, который использовал масло зародышей пшеницы как добавку для 17 недоношенных новорожденных младенцев, страдающих от нарушений роста. Одиннадцать из них выздоровели и смогли возобновить нормальные темпы роста.
Физико-химические свойства
Название |
Химическая структура |
|
Альфа-токоферол |
||
Бета-токоферол |
||
Гамма-токоферол |
||
Дельта-токоферол |
Обобщённая химическая структура токотриенолов. Заместители R1, R2, R3 -- атом водорода (H) или метильная группа (Me). У альфа-токотриенола: R1 = Me, R2 = Me, R3 = Me; у бета-токотриенола: R1 = Me, R2 = H, R3 = Me; у гамма-токотриенола: R1 = H, R2 = Me, R3 = Me; у дельта-токотриенола: R1 = H, R2 = H, R3 = Me.
Соединения группы витамина E представляют собой светло-желтые вязкие жидкости. Не растворимы в воде, хорошо растворимы в хлороформе, эфирах, гексане, хуже -- в ацетоне и этаноле.
Растворы интенсивно флуоресцируют (максимум поглощения 295 нм, максимум излучения -- 320--340 нм).
Устойчивы к действию минеральных кислот и щелочей. При взаимодействии с O2 и другими окислителями превращаются в хиноны.
Сложные эфиры этих веществ значительно более устойчивы к окислению. Разлагаются при действии ультрафиолетового излучения. В атмосфере инертного газа стабильны при нагревании до 100 °C.
Важнейшие биологически активные соединения, относящиеся к группе витамина E: токоферолы и токотриенолы.
Токотриенолы значительно менее биологически активны и отличаются от токоферолов тремя двойными связями в линейной части молекулы в положениях 3?, 7? и 11?.
Все асимметричные центры природных токоферолов имеют R-конфигурацию. Натуральный токоферол обозначают как RRR-б-токоферол (раньше также использовалось наименование d-б-токоферол), а полученный синтетически называют all-rac-б-токоферол, он является смесью восьми стереоизомеров, семь из которых в природе не найдены.
Если в качестве исходного вещества для синтеза используется фитол, то образуется смесь RRR-б-токоферола и 2S, 4?R, 8?R-б-токоферола (2-epi-б-токоферола) и называется 2-ambo-б-токоферол (раньше dl-б-токоферол).
Все изомеры этих веществ являются активными антиоксидантами, однако только изомеры с 2R-конфигурацией имеют высокую биологическую активность.
Метаболизм
Витамин E поступает в желудочно-кишечный тракт в составе масел, гидролиз которых липазой и эстеразой приводит к высвобождению витамина. Затем он всасывается и в составе хиломикронов поступает в лимфатическую систему, а затем в кровь. В печени витамин связывается с токоферолсвязывающими белками, причём наибольшим сродством обладает RRR-б-токоферол. Другие токоферолы выделяются из печени с жёлчными кислотами. Эти белки доставляют витамин в кровь в составе ЛПОНП. В плазме крови происходит обмен токоферолом между ЛПОНП и другими липопротеинами крови. Обмен между фракциями липопротеинов (особенно между ЛПНП и ЛПВП) и эритроцитами обеспечивает равновесие концентраций токоферола в крови.
Витамин поступает в экстрапеченочные ткани в составе ЛПНП, которые захватываются соответствующими рецепторами. Кроме такого рецепторно-опосредованного механизма, имеется и другой, зависящий от активности липопротеинлипазы: фермент высвобождает токоферол из хиломикронов и ЛПОНП, после чего витамин поступает в ткани путём пассивной диффузии. Благодаря пассивной диффузии через клеточную мембрану концентрация RRR-a-токоферола увеличивается во всех тканях организма, особенно в мозге. Структурная организация фосфолипидов в клеточных мембранах способна узнавать хиральную форму RRR-a-токоферола, благодаря чему витамин задерживается в мембране, где и выполняет свою функцию (синтетические токоферолы в составе мембраны обеспечивают меньшую её защиту от оксидативного стресса).
Не всосавшиеся в кишечнике токоферолы выводятся с калом. Продукты метаболизма витамина -- токофериновая кислота и её водорастворимые глюкурониды -- выводятся с мочой.
Роль
Витамин Е является универсальным протектором клеточных мембран от окислительного повреждения. Он занимает такое положение в мембране, которое препятствует контакту кислорода с ненасыщенными липидами мембран (образование гидрофобных комплексов). Это защищает биомембраны от их перекисной деструкции. Антиоксидантные свойства токоферола обусловлены также способностью подвижного гидроксила хроманового ядра его молекулы непосредственно взаимодействовать со свободными радикалами кислорода (О2·, НО·, НО2·), свободными радикалами ненасыщенных жирных кислот (RO·, RO2·) и перекисями жирных кислот. Мембраностабилизирующее действие витамина проявляется и в его свойстве предохранять от окисления SH-группы мембранных белков. Его антиоксидантное действие заключается также в способности защищать от окисления двойные связи в молекулах каротина и витамина A. Витамин E (совместно с аскорбатом) способствует включению селена в состав активного центра глутатионпероксидазы, тем самым он активизирует ферментативную антиоксидантную защиту (глутатионпероксидаза обезвреживает гидропероксиды липидов).
Токоферол является не только антиоксидантом, но и актигипоксантом, что объясняется его способностью стабилизировать митохондриальную мембрану и экономить потребление кислорода клетками. Следует отметить, что из всех клеточных органелл митохондрии наиболее чувствительны к повреждению, так как в них содержится больше всего легко окисляющихся ненасыщенных липидов. Вследствие мембраностабилизируюшего эффекта витамина Е в митохондриях увеличивается сопряженность окислительного фосфорилирования, образование АТФ и креатинфосфата. Важно также отметить, что витамин контролирует биосинтез убихинона -- компонента дыхательной цепи и главного антиоксиданта митохондрий.
Окисленная форма витамина может реагировать с донорами водорода (например, с аскорбиновой кислотой) и таким образом вновь переходит в восстановленную форму.
Так как окисленные формы в организме восстанавливаются, то их обычно не находят in vivo. In vitro были найдены следующие продукты окисления:
Токотриенолы проявляют сильные нейропротекторные, антиоксидантные свойства, снижают риск заболевания раком. Микромолярные количества токотриенолов уменьшают активность 3-гидрокси-3-метилглютарил-кофермент А редуктазы, отвечающей за синтез холестерина, таким образом снижая его уровень в организме.
Токоферол контролирует синтез нуклеиновых кислот (на уровне транскрипции), К0 энзима Q, миозиновой АТФ-азы (необходимой для сокращения) кальциевой АТФ-азы (необходимой для захвата кальция в саркоплазматический ретикулум при расслаблении), каталазы и пероксидазы (участвующих в ликвидации перекисей), а также гема (таким образом увеличивая эритропоэз), входящего в состав цитохромов (P-450, цитохром-С-редуктазы), гемоглобина и миоглобина. Под его влиянием происходит синтез следующих белков: коллагена в подкожной клетчатке и костях, сократительных белков в скелетных, гладких мышцах и миокарде, белков слизистых оболочек и плаценты, ферментов печени, креатинфосфокиназы, вазопрессиназы и гонадотропных гормонов.
Витамин Е обладает способностью угнетать активность фосфолипазы А2 лизосом, разрушающей фосфолипиды мембран. Повреждение мембран лизосом приводит к выходу в цитозоль протеолитических ферментов, которые и повреждают клетку.
Витамин Е является эффективным иммуномодулятором, способствующим укреплению иммунозащитных сил организма.
Гиповитаминоз
Недостаточность токоферола -- весьма распространенное явление, особенно у людей, проживающих на загрязненных радионуклидами территориях, а также подвергающихся воздействию химических токсикантов. Глубокий гиповитаминоз встречается редко -- преимущественно у недоношенных детей (проявляется гемолитической анемией).
При Е-витаминной недостаточности наблюдается частичный гемолиз эритроцитов, в них снижается активность ферментов антиоксидантной защиты. Повышение проницаемости мембран всех клеток и субклеточных структур, накопление в них продуктов ПОЛ -- главное проявление гиповитаминоза. Именно этим обстоятельством объясняется разнообразие симптомов недостаточности токоферола -- от мышечной дистрофии и бесплодия вплоть до некроза печени и размягчения участков мозга, особенно мозжечка. Увеличение активности выходящих из поврежденных тканей ферментов в сыворотке крови (креатинфосфокиназы, аланинаминотрансферазы и других) и увеличение содержания в ней продуктов ПОЛ наблюдается уже на ранних стадиях Е-гиповитаминоза[1].
При недостатке витамина E у младенцев и маленьких детей с мальабсорбцией атаксия протекает намного быстрее, чем у взрослых. Это означает, что нервной системе необходимо достаточное количество витамина для нормального развития[7].
Дефицит витамина E в организме сопровождается снижением содержания иммуноглобулинов E. После его введения нормализуется численность Т- и В-лимфоцитов в периферической крови и восстанавливается функциональная активность Т-клеток.
Пищевые добавки
В конце XX века, когда витамин E позиционировался в средствах массовой информации как мощнейший антиоксидант, снижающий риск возникновения разнообразных болезней, многие жители западных стран стали принимать препараты с высоким содержанием токоферолов. Последующие исследования показали, что регулярный приём таких добавок ассоциируется с повышенной смертностью. В 2012 году японские исследователи заявили, что избыток витамина ведёт к остеопорозу[13]. Положительный эффект добавок с витамином E доказан только в отношении недостаточности токоферола.
Специалисты клиники Майо рекомендуют относиться к приёму препаратов, содержащих витамин E, с повышенной осторожностью. Ситуация осложняется тем, что подобные препараты часто содержат также витамин A, что затрудняет решение вопроса о том, избыток какого из этих витаминов вызывает негативный эффект в том или ином случае.
Гиповитаминоз
Недостаточность токоферола -- весьма распространенное явление, особенно у людей, проживающих на загрязненных радионуклидами территориях, а также подвергающихся воздействию химических токсикантов. Глубокий гиповитаминоз встречается редко -- преимущественно у недоношенных детей (проявляется гемолитической анемией).
При Е-витаминной недостаточности наблюдается частичный гемолиз эритроцитов, в них снижается активность ферментов антиоксидантной защиты. Повышение проницаемости мембран всех клеток и субклеточных структур, накопление в них продуктов ПОЛ -- главное проявление гиповитаминоза. Именно этим обстоятельством объясняется разнообразие симптомов недостаточности токоферола -- от мышечной дистрофии и бесплодия вплоть до некроза печени и размягчения участков мозга, особенно мозжечка. Увеличение активности выходящих из поврежденных тканей ферментов в сыворотке крови (креатинфосфокиназы, аланинаминотрансферазы и других) и увеличение содержания в ней продуктов ПОЛ наблюдается уже на ранних стадиях Е-гиповитаминоза.
При недостатке витамина E у младенцев и маленьких детей с мальабсорбцией атаксия протекает намного быстрее, чем у взрослых. Это означает, что нервной системе необходимо достаточное количество витамина для нормального развития.
Дефицит витамина E в организме сопровождается снижением содержания иммуноглобулинов E. После его введения нормализуется численность Т- и В-лимфоцитов в периферической крови и восстанавливается функциональная активность Т-клеток.
Размещено на Allbest.ru
...Подобные документы
История открытия витамина Е. Строение токоферолов, их физическо-химические свойства. Биологическая активность витамина Е. Методы выделения токоферолов из природных объектов. Промышленные методы синтеза триметилгидрохинона из псевдокумола сульфированием.
контрольная работа [26,7 K], добавлен 07.12.2013Физико-химические свойства витамина В3. Процесс соединения бета-аланина, пантолактона и их конденсация как основные стадии синтеза пантотеиноиновой кислоты. Способы асимметрического гидрирования и биосинтеза - пути получения медицинского витамина В3.
курсовая работа [1,3 M], добавлен 09.12.2010Химическое строение, свойства и биологическое значение витамина С. Суточная потребность в нем. Экспериментальное йодометрическое определение, количественные и химические методы анализа содержания витамина в пищевых продуктах и витаминных препаратах.
курсовая работа [1,0 M], добавлен 18.03.2013Химическая природа витамина Р (флавоноиды), его свойства и распространение в природе. Роль и значение витамина Р для нормальной работы человеческого организма. Хроматографические методы идентификации флавоноидов. Окисление дубильных веществ KMnO4.
курсовая работа [643,8 K], добавлен 16.04.2014Химическая структура витамина В12, его источники и действие в организме. Описание и применение биологических и физико-химических (колориметрический, спектрофотометрический, хроматография) методов определения цианокобаламина в биологических организмах.
курсовая работа [544,2 K], добавлен 06.07.2011Значение витамина С для организма человека. Строение и физико-химические свойства аскорбиновой кислоты, химическая схема производства. Характеристика стадий технологической схемы производства аскорбиновой кислоты. Выбор рационального способа производства.
курсовая работа [2,9 M], добавлен 12.12.2010Изучение информации о свойствах и содержании витамина С и антивитамина аскорбатоксидазы в овощах и фруктах. Анализ данных о строение молекул витамина и антивитамина; механизм их взаимодействия. Разработка рекомендаций по сохранению витамина С в продуктах.
реферат [251,9 K], добавлен 28.09.2014Описание витамина В1, история его получения, химическая формула, источники, производные. Роль тиамина в процессах метаболизма углеводов, жиров и протеинов; его действие на функции мозга, циркуляцию крови. Симптомы гиповитаминоза и гипервитаминоза.
презентация [423,5 K], добавлен 12.05.2016Витамины как группа органических соединений простого строения и разнообразной химической природы, функциональные особенности и значение в организме человека. Количественное определение содержания витамина С в продуктах питания йодометрическим методом.
контрольная работа [23,9 K], добавлен 24.01.2014Химическая природа витамина С. Обмен веществ. Авитаминоз. Гипоавитаминоз. Кулинарная обработка продуктов, содержащих витамин С. Потребность в поступлении извне готовых молекул витаминов. Содержание витамина С в некоторых продуктах и потребность в нем.
реферат [51,5 K], добавлен 29.09.2008Характеристика витамина Q - жирорастворимого витаминоподобного вещества, находящегося в клеточных структурах - митохондриях. Биохимизм действия и полезные функции убихинона. Содержание витамина в различных тканях организма. Симптомы гиповитаминоза.
реферат [33,6 K], добавлен 01.12.2012Латинское и русское название, формула никотиновой кислоты, ее фармакологическое действие, физические и химические свойства. Основные способы добычи витамина РР. Контроль качества лекарственного сырья, определение подлинности и применение в медицине.
курсовая работа [2,4 M], добавлен 25.11.2016Химическое строение, кислотный и щелочной гидролиз витамина В12, роль в синтезе нуклеиновых кислот. Участие кобаламина в биохимических восстановительных процессах, клиническое применение. Противотоксическое действие витамина В15 (пангамовая кислота).
реферат [62,6 K], добавлен 11.01.2010Классификация витаминов, их роль в жизнедеятельности организма. Изучение особенностей строения и свойств витамина В1. Распространение в природе и применение. Количественное определение тиамина потенциометрическим титрованием и аргентометрическим методом.
курсовая работа [354,5 K], добавлен 10.03.2015Общая характеристика, краткие сведения об истории открытия элементов и их распространённости в природе. Физико-химические свойства железа, кобальта и никеля. Свойства соединений железа в степенях окисления. Цис-, транс-изомерия соединений платины.
реферат [36,7 K], добавлен 21.09.2019Молекулярная формула, физические и химические свойства 3,5-дифенилпиразолина, анализ методик его получения: синтез пиразольных соединений из гидразина или его производных, синтез пиразолов из алифатических диазосоединений. Уравнение основных реакций.
курсовая работа [1,8 M], добавлен 09.04.2017История и становление химии витамина В12. Строение кобаламинов, их биологические функции и химические модификации. Реакции, с участием центрального атома кобальта. Модификации фрагмента рибозы в молекуле кобаламина. Очистка производных кобаламинов.
реферат [981,5 K], добавлен 29.10.2016Хиназолины и основные методы их синтеза. Химические свойства хиназолинов и их производных. Общие синтетические подходы для получения 4-оксохиназолинов. Взаимодействие антраниловой кислоты с изоцианатами. Процесс получения новых производных хиназолина.
дипломная работа [1,4 M], добавлен 23.07.2015Строение РНК, ее синтез и роль в передаче наследственности. Формула незаменимых аминокислот; структура холестерина, его источники и функции в организме. Распад и всасывание углеводов в желудочно-кишечном тракте; ферменты. Витамин В3; строение жиров.
контрольная работа [1,1 M], добавлен 01.06.2012Цепочка химического синтеза Mg(NO3)2-MgO-MgCl2. Физико-химические характеристики веществ, участвующих в химических реакциях при синтезе MgCl2 из Mg(NO3)2, их химические свойства и методы качественного и количественного анализа соединений магния.
практическая работа [81,6 K], добавлен 22.05.2008