Роль окислительно-восстановительных реакций в организме
Анализ механизма активации кислорода во время окисления различных субстратов дыхания. Влияние окислительно-восстановительных процессов на обмен веществ. Применение тиосульфата натрия в качестве универсального антидота. Изучение химического состава воды.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 09.01.2017 |
Размер файла | 23,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство здравоохранения Республики Беларусь
Учреждение образования
«Гомельский государственный медицинский университет»
Кафедра общей и биоорганической химии
Реферат
Роль окислительно-восстановительных реакций в организме
Выполнил:
Купрейчик В. В.
Проверил:
Одинцова М. В.
Гомель 2016
Содержание
Введение
1. Краткая история
2. ОВР в организме
3. ОВР в медицине и фармации
4. Окислительно-восстановительный потенциал
Заключение
Список используемой литературы
Введение
Биологическое окисление имеет огромное значение для живых организмов. Большая часть энергии, необходимой для жизнедеятельности, образуется в результате окислительно-восстановительных реакций.
Окисление веществ может осуществляться следующими способами: а) отщеплением водорода от субстрата, который окисляется (процесс дегидрирования), б) отдачей субстратом электрона в) присоединением кислорода к субстрату. В живых клетках встречаются все перечисленные типы окислительных реакций, катализируемых соответствующими ферментами - ок-сидоредуктазамы. Процесс окисления происходит не изолированно, он связан с реакцией восстановления: одновременно происходят реакции присоединения водорода или электрона, т.е. осуществляются окислительно-восстановительные реакции. Окислением называют все химические реакции, при которых происходит отдача электронов, что сопровождается увеличением положительных валентностей. Но одновременно с окислением одного вещества должно происходить и восстановление, т.е. присоединения электронов в другое вещество.
Таким образом, биологическое окисление и восстановление - это ответные реакции переноса электронов, происходящих в живых организмах, а тканевое дыхание - такой вид биологического окисления, при котором акцептором электрона является молекулярный кислород.
1. Краткая история
Изучение процессов биологического окисления начал в XVIII в. А. Лавуазье. Он обратил внимание на наличие определенной тождественности процессов горения органических веществ вне организма и дыханием животных. Оказалось, что при дыхании, как и при горении, поглощается кислород и образуются CO2 и H2O, однако процесс «горения» в организме идет очень медленно, к тому же, без пламени.
После работ А. Лавуазье в науке в течение длительного времени господствовало мнение о тождестве явлений горения и медленного окисления питательных веществ в организме. Однако оставалось неясным, почему это особое медленное «горения» в организме происходит при необычных условиях. при определенной низкой температуры (36-37 ° C), без возникновения пламени (как это имеет место при горении) и в присутствии воды, содержание которой достигает в тканях 75-80% от общей массы и которая в обычных условиях горению мешает. Это указывало на то, что медленное окисление органических веществ в организме по своему механизму резко отличается от обычного горения в воздухе органических веществ (дерева, угля и т.д.), хотя конечными продуктами в обоих случаях CO2 и вода.
Причину такого своеобразного течения окислительных процессов в живых организмах ученые сначала пытались объяснить «активацией» кислорода в клетках организма.
Одна из первых теорий биологического окисления, связанных с «активацией» кислорода, была развита русским ученым О.М.Бахом (1897), который считал, что молекула кислорода способна действовать как окислитель органических веществ только после своей активации результате разрыва одного из н "связей в его молекуле (-OO-). Активация происходит, в частности, если в среде присутствуют соединения, которые легко окисляются (например, имеющих двойные связи), при участии ферментов оксигеназ.
Соединения легко окисляются, например, ненасыщенные жирные кислоты, взаимодействуя с кислородом, образуют пероксиды. В этих реакциях окисление параллельно с восстановлением. Таким образом О.М. Бах впервые сформулировал идею о сопряженность окислительно-восстановительных процессов при дыхании. Теория А.Н. Баха получила название «перекисной теории» активации кислорода.
Однако истинный механизм активации кислорода во время окисления различных субстратов дыхания оказался другим.
Значительную роль в развитии теории биологического окисления сыграли работы другого российского ученого - В.И. Палладина (1907). Он развил представление о дыхании как систему ферментативных процессов и особое значение придавал окислению субстратов путем отщепления водорода (процесс дегидрирования).
Изучая окисление субстратов в растениях, В.И. Палладин установил, что оно может происходить без кислорода, если в среде имеются вещества, способные присоединять отщепленным при окислении водород. Такими веществами могут быть пигменты или хромогены и другие вещества, которые выполняют функцию промежуточных переносчиков водорода. Присоединяя водород от субстратов при этом окисляются, хромогены восстанавливаются и становятся бесцветными. Таким образом, В.И. Палладин придавал большое значение процесса окисления как процесса дегидрирования, а также указывал на важную роль кислорода как акцептора водорода в процессах биологического окисления.
Исследования В.И. Палладина были подтверждены работами Г. Виланда, который установил на примере окисления альдегидов, что процесс дегидрирования субстратов является основным процессом, который лежит в основе биологического окисления, и кислород взаимодействует уже с активированными атомами водорода. Таким образом, была создана концепция окисления веществ путем их дегидрирования, которая стала называться теорией Пал-Ладина-Виланда. Большую роль в подтверждении этой теории сыграло открытие и изучение целого ряда ферментов-дегидрогеназ, катализирующих отщепление атомов водорода от различных субстратов.
В дальнейшем были изучены: связь дыхания с другими процессами обмена веществ, в том числе и с процессом фосфорилирования; свойства ферментов, катализирующих реакции биологического окисления; локализация этих ферментов в клетке; механизм аккумуляции и преобразования энергии и т.п..
Значительный вклад в изучение биологического окисления сделали О. Варбург, Д. Кейлин, Г. Кребс, П. Митчелл, Д. Грин, А. Ленинджер, Б. Чанс, Э. Рекер, В.О. Энгельгардт, В.А. Белицер, С.Е. Северин, В.П. Скулачев и др..
2. ОВР в организме
Окислительно-восстановительные реакции играют исключительную роль в обмене веществ и энергии, происходящем в организме человека и животных. Реакция окисления неотделима от реакции восстановления, и оба эти процесса необходимо рассматривать в неразрывном единстве. При любой окислительно-восстановительной реакции алгебраическая сумма степеней окисления атомов остается неизменной. Многие окислительно-восстановительные реакции сводятся только к взаимодействию окислителя и восстановителя. Но чаще всего, если реакция осуществляется в водной среде, на ход окислительно-восстановительного процесса оказывает большое влияние взаимодействие реагентов с ионами водорода и гидроксила воды, а также присутствующих в растворе кислот и щелочей. Иногда влияние среды на ход окислительно-восстановительного процесса столь велико, что некоторые реакции могут осуществляться только в кислой или щелочной среде. От кислотно-щелочного баланса среды зависит направление окислительно-восстановительной реакции, количество электронов, присоединяемых молекулой (ионом) окислителя и отдаваемых молекулой (ионом) восстановителя и т. д. Например, реакция между иодидами и иодатами с выделением элементов иода протекает только в присутствии сильных кислот, а в сильно щелочной среде при нагревании может протекать обратная реакция.
Обмен веществ, в котором окислительно-восстановительные процессы играют столь значительную роль, имеет две стороны: 1) пластическую, сводящуюся к синтезу сложных органических веществ, необходимых организму в качестве «строительных материалов» для обновления тканей и клеток, из веществ, которые поступают главным образом с пищей (это анаболические процессы, или процессы ассимиляции, требующие затрат энергии) -- 2) энергетическую, сводящуюся к распаду (окислению) сложных высокомолекулярных веществ, играющих роль биологического топлива, до более простых -- в оды, диоксида углерода и т. д. (это катаболические процессы, или процессы диссимиляции, сопровождающиеся освобождением энергии).
Окислительно-восстановительные реакции являются необходимыми звеньями в сложной цепи как анаболических, так и катаболических процессов, но их роль особенно велика как основных источников энергии для живого организма. Организмы, существующие в аэробных условиях (т. е. в окислительной атмосфере кислорода воздуха), получают эту энергию за счет процесса дыхания, в результате которого поступающие в организм питательные вещества в клетках и тканях окисляются до диоксида углерода, воды, аммиака, мочевины и других продуктов жизнедеятельности, характеризующихся сравнительно небольшими значениями энергии и высокими значениями энтропии (от греч. -- поворот, превращение -- это мера беспорядка системы, состоящей из многих элементов).
В основе процессов дыхания лежит окислительно-восстановительная реакция, при которой молекула диатомного кислорода образует две молекулы воды. В процессе внешнего дыхания кислород воздуха связывается с гемоглобином и в форме оксигемоглобина доставляется с потоком крови к капиллярам тканей. В процессе тканевого, или клеточного дыхания, ткани и клетки поглощают этот кислород, за счет которого осуществляется окисление поступивших в организм из внешней среды белков, жиров и углеводов. одновременно образующийся диоксид углерода с потоком венозной крови направляется в легкие и там, диффундируя через стенки альвеол, оказывается в составе выдыхаемого воздуха. Но в этих процессах биологического окисления субстратами, непосредственно подвергающихся действию кислорода, являются не те высокомолекулярные соединения, которые первоначально находились в составе пищи, а образовавшиеся в результате гидролитического расщепления в желудочно-пищевом тракте более простые, низкомолекулярные продукты.
На первой стадии диссимиляции в результате гидролиза сложные углеводы -- крахмал, сахароза, гликоген и другие при участии амилаз превращаются в глюкозу и другие моносахариды. Жиры при участии липаз превращаются в жирные кислоты и глицерин. Белки под действием протеолитических ферментов превращаются в низкомолекулярные пептиды и аминокислоты. На этой стадии освобождается энергия, составляющая не более 1% от общей химической энергии пищевых веществ. Часть продуктов, возникших на первой стадии диссимиляции, организм человека использует в качестве исходных веществ для анаболических реакций, связанных с получением материалов для застройки тканей и клеток, а также как запас химического топлива.
Другая часть продуктов гидролиза подвергается окислению, при котором наряду с диоксидом углерода, водой, аммиаком, мочевиной и т. д. образуются также продукты неполного окисления.
На второй стадии диссимиляции освобождается около 1/3 общего количества энергии, но еще не происходит аккумулирование выделившейся энергии путем образования высокоэргических веществ.
На третьей стадии диссимиляции происходит полное окисление всех образовавшихся во второй стадии промежуточных продуктов: воды, диоксида углерода, аммиака, мочевины и т. д. и освобождаются остальные 2/3 химической энергии, полученные организмом из пищевых веществ. Это сложный химический процесс, включающий десять последовательно протекающих реакций, каждая из которых катализируется соответствующим ферментом, называется циклом трикарбоновых кислот или циклом Кребса. Ферменты, необходимые для осуществления этих последовательных реакций, локализуются в мембранных структурных элементах клеток -- митохондриях. окисление тиосульфат антидот вода
На третьей стадии диссимиляции освобождается 40?60% энергии, которая используется организмом для синтеза высокоэргических веществ.
Таким образом, рассмотренные стадии диссимиляции в организме питательных веществ показывает, что энергоснабжение организма на 99% обеспечивается протеканием в нем окислительно-восстановительных процессов.
Кроме того, с помощью окислительно-восстановительных реакций в организме разрушаются некоторые токсические вещества, образующиеся в ходе метаболизма. Именно таким путем организм избавляется от вредного влияния промежуточных продуктов биохимического окисления.
3. ОВР в медицине и фармации
Сведения относительно окислительно-восстановительных свойств различных лекарственных препаратов позволяют решать вопросы о совместимости при одновременном их назначении больному, а также о допустимости их совместного хранения. С учетом этих данных становятся понятными несовместимость ряда лекарственных средств (например, таких как ио-дид калия и нитрит натрия, перманганат калия и тиосульфат натрия, пероксид водорода и ио-диды и т. д.).
Во многих случаях фармацевтические свойства медицинских препаратов находятся в непосредственной связи с их окислительно-восстановительными свойствами. Так, например, многие из антисептических, противомикробных и дезинфицирующих средств, (иод, перманганат калия, пероксид водорода, соли меди, серебра и ртути) являются в то же время и сильными окислителями.
Применение тиосульфата натрия в качестве универсального антидота (противоядия) основано на его способности участвовать в окислительно-восстановительных реакциях в роли как окислителя, так и восстановителя. В случае отравлений соединениями мышьяка, ртути и свинца, прием внутрь раствора тиосульфата натрия приводит к образованию труднорастворимых и потому практически неядовитых сульфатов. При отравлениях синильной кислотой или цианидами тиосульфат натрия дает возможность превратить эти токсичные вещества в менее ядовитые роданистые соединения. При отравлении галогенами и другими сильными окислителями антитоксическое действие триосульфата натрия обусловлено его умеренными восстановительными свойствами.
4. Окислительно-восстановительный потенциал
Говоря об окислительно-восстановительных процессах, нужно отметить, что во время окислительных или восстановительных реакций изменяется электрический потенциал окисляемого или восстанавливаемого вещества: одно вещество, отдавая свои электроны и заряжаясь положительно, окисляется, другое, приобретая электроны и заряжаясь отрицательно, -восстанавливается. Разность электрических потенциалов между ними есть окислительновосстановительный потенциал (ОВП).
Окислительно-восстановительный потенциал является мерой химической активности элементов или их соединений в обратимых химических процессах, связанных с изменением заряда ионов в растворах. Это означает, что ОВП, называемый также, редокс-потенциал (от английского RedOx -- Reduction/Oxidation), характеризует степень активности электронов в окислительно-восстановительных реакциях, т. е. в реакциях, связанных с присоединением или передачей электронов. При измерениях (в электрохимии) величина этой разности обозначается как Eh и выражается в милливольтах. Чем выше концентрация компонентов, способных к окислению, к концентрации компонентов, могущих восстанавливаться, тем выше показатель редокс-потенциала . Такие вещества, как кислород и хлор, стремятся к принятию электронов и имеют высокий электрический потенциал, следовательно, окислителем может быть не только кислород, но и другие вещества (в частности, хлор), а вещества типа водорода, наоборот, охотно отдают электроны и имеют низкий электрический потенциал. Наибольшей окислительной способностью обладает кислород, а восстановительной -- водород, но между ними располагаются и другие вещества, присутствующие в воде и менее интенсивно выполняющие роль либо окислителей, либо восстановителей.
Значение ОВП для каждой окислительно-восстановительной реакции может иметь как положительное, так и отрицательное значение.
Так, например, в природной воде значение Eh колеблется от -400 до +700 мВ, что определяется всей совокупностью происходящих в ней окислительных и восстановительных процессов. В условиях равновесия значение ОВП определенным образом характеризует водную среду, и его величина позволяет делать некоторые общие выводы о химическом составе воды.
В биохимии величины редокс-потенциала выражаются не в милливольтах, а в условных единицах rH (reduction Hydrogenii).
Шкала условных единиц rH содержит 42 деления.
«0» -- означает чистый водород,
«42» -- чистый кислород,
«28» -- нейтральная среда.
pH и rH тесно взаимосвязаны.
Окислительные процессы понижают показатель кислотно-щелочного равновесия (чем выше rH, тем ниже pH), восстановительные -- способствуют повышению pH. В свою очередь показатель pH влияет на величину rH.
В организме человека энергия, выделяемая в ходе окислительно-восстановительных реакций, расходуется на поддержание гомеостаза (относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма) и регенерацию клеток организма, т. е. на обеспечение процессов жизнедеятельности организма.
ОВП внутренней среды организма человека, измеренный на платиновом электроде относительно хлорсеребряного электрода сравнения, в норме всегда меньше нуля, т. е. имеет отрицательные значения, которые обычно находятся в пределах от -100 до -200 милливольт. ОВП питьевой воды, измеренный таким же способом практически всегда больше нуля, обычно находится в пределах от +100 до +400 мВ. Это справедливо практически для всех типов питьевой воды, той, которая течет из водопроводных кранов во всех городах мира, которая продается в стеклянных и пластиковых бутылках, которая получается после очистки в уста-
новках обратного осмоса и большинства разнообразных больших и малых водоочистительных систем.
Указанные различия ОВП внутренней среды организма человека и питьевой воды означают, что активность электронов во внутренней среде организма человека намного выше, чем активность электронов в питьевой воде.
Активность электронов является важнейшей характеристикой внутренней среды организма, поскольку напрямую связана с фундаментальными процессами жизнедеятельности.
Когда обычная питьевая вода проникает в ткани человеческого (или иного) организма, она отнимает электроны от клеток и тканей, которые состоят из воды на 80?90%. В результате этого биологические структуры организма (клеточные мембраны, органоиды клеток, нуклеиновые кислоты и другие) подвергаются окислительному разрушению. Так организм изнашивается, стареет, жизненно-важные органы теряют свою функцию. Но эти негативные процессы могут быть замедлены, если в организм с питьем и пищей поступает вода, обладающая свойствами внутренней среды организма, т. е. обладающая защитными и восстановительными свойствами.
Для того, чтобы организм оптимальным образом использовал в обменных процессах питьевую воду с положительным значением окислительно-восстановительного потенциала, ее ОВП должен соответствовать значению ОВП внутренней среды организма. Необходимое изменение ОВП воды в организме происходит за счет затраты электрической энергии клеточных мембран, т. е. энергии самого высокого уровня, энергии, которая фактически является конечным продуктом биохимической цепи трансформации питательных веществ.
Количество энергии, затрачиваемой организмом на достижение биосовместимости воды, пропорциональна ее количеству и разности ОВП воды и внутренней среды организма.
Если поступающая в организм питьевая вода имеет ОВП близкий к значению ОВП внутренней среды организма человека, то электрическая энергия клеточных мембран (жизненная энергия организма) не расходуется на коррекцию активности электронов воды и вода тотчас же усваивается, поскольку обладает биологической совместимостью по этому параметру. Если питьевая вода имеет ОВП более отрицательный, чем ОВП внутренней среды организма, то она подпитывает его этой энергией, которая используется клетками, как энергетический резерв антиокси-дантной защиты организма от неблагоприятного влияния внешней среды.
Заключение
Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд других химических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления-восстановления.
Получение элементарных веществ (железа, хрома, марганца, золота, серебра, серы, хлора, иода и т. д.) и ценных химических продуктов (аммиака, щелочей, азотной, серной и других кислот) основана на окислительно-восстановительных реакциях.
На окислении-восстановлении в аналитической химии основаны методы объемного анализа: перманганатометрия, йодометрия, броматометрия и другие, играющие важную роль при контролировании производственных процессов и выполнении научных исследований.
Таким образом, большинство химических процессов, протекающих в природе и осуществляемых человеком в его практической деятельности, представляют собой окислительно-восстановительные реакции. Эти реакции являются основными процессами, обеспечивающими жизнедеятельность любого организма и имеют огромное значение в теории и практике.
Глубокое знание сущности и закономерностей протекания химических реакций дает возможность управлять ими и использовать для синтеза новых веществ. Усвоение общих закономерностей протекания химических реакций необходимо для последующего изучения свойств неорганических и органических веществ, что важно для понимания процессов, происходящих в организме человека.
Список используемой литературы
1. Глинка Н.Л. Общая химия: Учебное пособие для вузов. / Под ред. А.И. Ермакова. - М.: Интеграл-Пресс, 2002. - 728 с.
2. Общая химия. Биофизическая химия. Химия биогенных элементов. / Под ред. Ершова Ю.А. - 3-е изд., М.: Высш.шк., 2002. - 560
3. Энциклопедический словарь юного химика. / Сост. Крицман В.А., Станцо В.В. - 2-е изд. - М.: Педагогика, 1990. - 320 с.
Размещено на Allbest.ru
...Подобные документы
Сущность и виды окисления - химических реакций присоединения кислорода или отнятия водорода. Ознакомление с методами восстановления металлов в водных и соляных растворах. Изучение основных положений теории окислительно-восстановительных реакций.
реферат [130,1 K], добавлен 03.10.2011Определение водородного и гидроксильного показателей. Составление окислительно-восстановительных реакций и электронного баланса. Изменение степени окисления атомов реагирующих веществ. Качественные реакции на катионы различных аналитических групп.
практическая работа [88,2 K], добавлен 05.02.2012Важнейшие окислители и восстановители. Cоставление уравнений окислительно-восстановительных реакций и подбор стехиометрических коэффициентов. Влияние различных факторов на протекание реакций. Окислительно-восстановительный эквивалент, сущность закона.
лекция [72,5 K], добавлен 22.04.2013Методы окислительно-восстановительного титрования. Основные окислители и восстановители. Факторы, влияющие на окислительно-восстановительные реакции. Применение реакции окисления-восстановления в анализе лекарственных веществ. Растворы тиосульфата натрия.
презентация [1,0 M], добавлен 21.10.2013Составление уравнений окислительно-восстановительных реакций методом электронного баланса. Степень окисления как условный заряд атома элемента. Распространённые восстановители. Свободные неметаллы, переходящие в отрицательные ионы. Влияние концентрации.
презентация [498,5 K], добавлен 17.05.2014Характеристика окислительных и восстановительных процессов. Правила определения степени окисления атомов химических элементов, терминология и правила определения функции соединения в ОВР. Методы составления уравнений: электронного баланса, полуреакций.
презентация [63,2 K], добавлен 20.03.2011Важнейшие окислители и восстановители. Правила определения CO. Составление уравнений окислительно-восстановительных реакций и подбор стехиометрических коэффициентов. Влияние различных факторов на протекание ОВР. Электрохимический ряд напряжений металлов.
презентация [72,4 K], добавлен 11.08.2013Отличительные признаки окислительно-восстановительных реакций. Схема стандартного водородного электрода. Уравнение Нернста. Теоретические кривые титрования. Определение точки эквивалентности. Окислительно-восстановительные индикаторы, перманганатометрия.
курсовая работа [319,6 K], добавлен 06.05.2011Классификация окислительно-восстановительных реакций в органической и неорганической химии. Химические процессы, результат которых - образование веществ. Восстановление альдегидов в соответствующие спирты. Процессы термической диссоциации водного пара.
реферат [55,9 K], добавлен 04.11.2011Положения теории окислительно-восстановительных реакций. Важнейшие окислители и восстановители. Кислородсодержащие соли элементов. Гидриды металлов. Метод электронного баланса. Особенности метода полуреакций. Частное уравнение восстановления ионов.
презентация [219,3 K], добавлен 20.11.2013Проведение качественных опытов, раскрывающих окислительные и восстановительные свойства отдельных веществ. Приобретение навыков составления окислительно-восстановительных уравнений методом электронного баланса. Техника безопасности при проведении опытов.
методичка [29,8 K], добавлен 09.03.2009Составление уравнении окислительно-восстановительных реакций, расчет их эквивалентных масс. Методы измерения электродвижущих сил гальванических элементов. Характеристика электролиза на основе закона Фарадея. Изучение процессов коррозии металлов.
методичка [245,6 K], добавлен 07.11.2011Понятие титраметрического анализа. Окислительно-восстановительное титрование, его виды и условия проведения реакций. Расчет точек кривой титрования, потенциалов, построение кривой титрования. Подборка индикатора, расчет индикаторных ошибок титрования.
курсовая работа [399,3 K], добавлен 10.06.2012Химические свойства элементов d-блока периодической системы, их содержание и биологическая роль в организме. Рассмотрение кислотно-основных и окислительно-восстановительных реакций 3d-элементов. Механизмы действия карбоангидраза и алькогольдегидрогеназа.
реферат [979,7 K], добавлен 26.11.2010Бионеметаллы и биометаллы, биолиганды. Биологическая роль неорганических соединений. Транспорт ионов металлов. Металлосодержащие ферменты. Ферментативный катализ окислительно-восстановительных реакций. Бионеорганическая химия и охрана окружающей среды.
реферат [1,3 M], добавлен 12.11.2008Особенности методов окислительно-восстановительного титрования. Основные требования к реакциям, константа равновесия. Характеристика видов окислительно-восстановительного титрования, его индикаторы и кривые. Приготовление и стандартизация растворов.
курсовая работа [1,7 M], добавлен 25.12.2014Понятие окисления и восстановления. Типичные восстановители и окислители. Методы электронного и электронно-ионного баланса. Восстановление металлов из оксидов. Химические источники тока. Окислительно-восстановительные и стандартные электродные потенциалы.
лекция [589,6 K], добавлен 18.10.2013Положение цинка, фосфата кадмия и ртути в периодической системе Д.И. Менделеева. Распространение их в природе, физические и химические свойства. Получение фосфорнокислого цинка. Синтезирование и изучение окислительно-восстановительных свойств цинка.
курсовая работа [25,6 K], добавлен 12.10.2014Окислительно-восстановительные реакции, при которых происходит процесс переноса электронов от одних атомов к другим. Направление самопроизвольного протекания реакций. Виды потенциалов и механизмы их возникновения, а также ряд напряжений металлов.
презентация [104,9 K], добавлен 18.05.2014Классификация методов окислительно-восстановительного титрования. Индикаторы окислительно-восстановительного титрования. Перманганатометрия, йодометрия и дихроматометрия. Окраска окисленной и восстановленной формы. Фиксирование точки эквивалентности.
реферат [24,7 K], добавлен 23.02.2011