Способы промышленного получения водорастворимых витаминов
Физиологическое значение, описание водорастворимых витаминов, их синтез и производство. Содержание аскорбиновой кислоты в некоторых пищевых продуктах и растениях. Недостаток и неусвояемость витаминов, врождённые дефекты ферментов в организме человека.
Рубрика | Химия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 06.02.2017 |
Размер файла | 708,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
[Введите текст]
Министерство образования и науки РФ
Московский политехнический университет (МАМИ)
НОЦ ХимБиотех
КУРСОВАЯ РАБОТА
по дисциплине «Биохимия»
Тема: «Способы промышленного получения водорастворимых витаминов»
Студента группы (7-ХЗ-О)
Мухин Алексей Анатольевич
Преподаватель Горшина Елена Сергеевна
Москва, 2016г.
Содержание
Введение
1. Физиологическое значение, описание водорастворимых витаминов
2. Синтез и производство витаминов
Список литературы
Введение
Слова «витамины - источник здоровья» знакомы нам с детства, и мы настолько привыкли к ним, что перестаем придавать им значение. А напрасно! Ведь на самом деле без витаминов обеспечить полноценное здоровье совершенно невозможно. Кто весной не испытывал быструю утомляемость и сонливость? Наверное, многие замечали, что в этот период люди чаще страдают от головных болей, головокружений, простудных заболеваний, болезней желудочно-кишечного тракта (например, язвенных). Все это в значительной мере обусловлено недостатком весной некоторых витаминов, особенно витамина С, который в значительных количествах содержится в свежих овощах и фруктах.
За лето и осень организм в определенной степени насыщается витаминами (например, запас витамина С в печени может сохраняться и расходоваться в течение 2-6 месяцев). За зимние месяцы, если не было необходимого дополнительного поступления, эти запасы истощаются и наступает так называемый гиповитаминоз, т.е. недостаточность одного или нескольких витаминов в организме человека.
К неспецифическим признакам гиповитаминоза (недостаточность витамина); авитаминоз полное его отсутствие, относятся слабость, быстрая утомляемость, плохой аппетит (не всегда), снижение работоспособности, сопротивляемости простудным и другим заболеваниям, угнетенное состояние духа, апатия. Но такие симптомы отмечаются при многих заболеваниях.
Витамины играют очень важную роль в процессах усвоения пищевых веществ и во многих биохимических реакциях организма. Большая часть витаминов поступает с пищей, некоторые из них синтезируются микробной флорой кишечника и всасываются в кровь, поэтому даже при отсутствии таких витаминов в пище организм не испытывает в них потребности.
Поступление витаминов в организм может быть недостаточным в результате неправильной кулинарной обработки продуктов питания: нагревания, консервирования, копчения, высушивания, замораживания или вследствие национального, одностороннего питания.
Многие витамины быстро разрушаются и не накапливаются в организме в нужных количествах, поэтому человек нуждается в постоянном поступлении их с пищей. Это в особенности относится к витаминам А, D, B1 и B2, PP и C.
Науке в настоящее время известно большое количество витаминов, но мы остановимся только на основных, имеющих особое значение в питании населения нашей страны.
Ко второй половине XIX столетия было установлено, что пищевая ценность продуктов питания определяется содержанием в них белков, жиров, углеводов, минеральных солей и воды.
Однако практический опыт врачей и клинические наблюдения, а также история морских и сухопутных путешествий указывали на возникновение ряда специфических заболеваний (цинга, бери-бери), связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям.
Важный вклад в развитие учения о витаминах был сделан отечественным врачом Н.И. Луниным в опытах на мышах. Одна группа мышей (контрольная) получала натуральное молоко, а вторая - смесь компонентов молока: белок, жир, молочный сахар, минеральные соли и вода. Спустя некоторое время мыши опытной группы погибали, а мыши контрольной группы развивались нормально. Отсюда следовал вывод о наличии в молоке дополнительных веществ, необходимых для нормальной жизнедеятельности.
Подтверждением правильности вывода Лунина явилось установление причины бери-бери. Оказалось, что люди, употребляющие в пищу неочищенный рис, оставались здоровыми, в отличие от больных бери-бери, которые питались полированным рисом. В 1911 г. польский учёный К. Функ выделил из рисовых отрубей вещество, которое оказывало хороший лечебный эффект при этом заболевании. Поскольку это органическое вещество содержало в своём составе аминогруппу, Функ назвал это вещество витамином, или амином жизни (от лат. vita - жизнь). В настоящее время известно около двух десятков витаминов, которые обеспечивают нормальный рост организма и нормальное протекание физиологических и биохимических процессов. Многие из них входят в состав коферментов (В1, В2, РР и другие); некоторые витамины выполняют специализированные функции (витамины A, D, Е, К).
Витамины - низкомолекулярные органические соединения различной химической природы и различного строения, синтезируемые главным образом растениями, частично - микроорганизмами. Для человека витамины - незаменимые пищевые факторы.
Недостаток поступления витаминов с пищей, нарушение их всасывания или нарушение их использования организмом приводит к
развитию патологических состояний, называемых гиповитаминозами.
Основные причины гиповитаминозов
· Недостаток витаминов в пище;
· Нарушение всасывания в ЖКТ;
· Врождённые дефекты ферментов, участвующих в превращениях витаминов;
· Действие структурных аналогов витаминов (антивитамины).
Потребность человека в витаминах зависит от пола, возраста, физиологического состояния и интенсивности труда. Существенное влияние на потребность человека в витаминах оказывают характер пищи (преобладание углеводов или белков в диете, количество и качество жиров), а также климатические условия.
1. Физиологическое значение, описание водорастворимых витаминов
Водорастворимые витамины при их избыточном поступлении в организм, будучи хорошо растворимыми в воде, быстро выводятся из организма. витамин аскорбиновый неусвояемость фермент
· Витамин В1 (тиамин);
· Витамин В2 (рибофлавин);
· Витамин РР (никотиновая кислота, никотинамид, витамин В3);
· Пантотеновая кислота (витамин В5);
· Витамин В6 (пиридоксин);
· Биотин (витамин Н);
· Фолиевая кислота (витамин Вс, В9);
· Витамин В12 (кобаламин);
· Витамин С (аскорбиновая кислота);
· Витамин Р (биофлавоноиды).
1.Витамин B1 (тиамин). Структура витамина включает пиримидиновое и тиазоловое кольца, соединённые метановым мостиком.
· Источники. Витамин В1 - первый витамин, выделенный в кристаллическом виде К. Функом в 1912 г. Он широко распространён в продуктах растительного происхождения (оболочка семян хлебных злаков и риса, горох, фасоль, соя и др.). В организмах животных витамин В1, содержится преимущественно в виде дифосфорного эфира тиамина (ТДФ); он образуется в печени, почках, мозге, сердечной мышце путём фосфорилирования тиамина при участии тиаминкиназы иАТФ.
· Суточная потребность взрослого человека в среднем составляет 2-3 мг витамина В1. Но потребность в нём в очень большой степени зависит от состава и общей каяорийнос-ти пищи, интенсивности обмена веществ и интенсивности работы. Преобладание углеводов в пище повышает потребность организма в витамине; жиры, наоборот, резко уменьшают эту потребность.
· Биологическая роль витамина В, определяется тем, что в виде ТДФ он входит в состав как минимум трёх ферментов и ферментных комплексов: в составе пируват- и ос-кетоглутаратдегидрогеназных комплексов он участвует в окислительном декарбоксилировании пирувата и ос-кетоглутарата; в составе транскетолазы ТДФ участвует в пентозофосфатном пути превращения углеводов.
· Основной, наиболее характерный и специфический признак недостаточности витамина В1- полиневрит, в основе которого лежат дегенеративные изменения нервов. Вначале развивается болезненность вдоль нервных стволов, затем - потеря кожной чувствительности и наступает паралич (бери-бери). Второй важнейший признак заболевания - нарушение сердечной деятельности, что выражается в нарушении сердечного ритма, увеличении размеров сердца и в появлении болей в области сердца. К характерным признакам заболевания, связанного с недостаточностью витамина В1относят также нарушения секреторной и моторной функций ЖКТ; наблюдают снижение кислотности желудочного сока, потерю аппетита, атонию кишечника.
2. Витамин В2 (рибофлавин). В основе структуры витамина В2 лежит структура изоаллоксазина, соединённого со спиртом рибитолом.
Рибофлавин представляет собой кристаллы жёлтого цвета (от лат. flavos - жёлтый), слабо растворимые в воде.
· Главные источники витамина В2 - печень, почки, яйца, молоко, дрожжи. Витамин содержится также в шпинате, пшенице, ржи. Частично человек получает витамин В2 как продукт жизнедеятельности кишечной микрофлоры.
· Суточная потребность в витамине В2 взрослого человека составляет 1,8-2,6 мг.
· Биологические функции. В слизистой оболочке кишечника после всасывания витамина происходит образование коферментов FMN и FAD по схеме:
· Коферменты FAD и FMN входят в состав флавиновых ферментов, принимающих участие в окислительно-восстановительных реакциях.
· Клинические проявления недостаточности рибофлавина выражаются в остановке роста у молодых организмов. Часто развиваются воспалительные процессы на слизистой оболочке ротовой полости, появляются длительно незаживающие трещины в углах рта, дерматит носогубной складки. Типично воспаление глаз: конъюнктивиты, васкуляризация роговицы, катаракта. Кроме того, при авитаминозе В2 развиваются общая мышечная слабость и слабость сердечной мышцы.
3. Витамин РР (никотиновая кислота, никотинамид, витамин B3)
· Источники. Витамин РР широко распространён в растительных продуктах, высоко его содержание в рисовых и пшеничных отрубях, дрожжах, много витамина в печени и почках крупного рогатого скота и свиней. Витамин РР может образовываться из триптофана (из 60 молекул триптофана может образоваться 1 молекула никотинамида), что снижает потребность в витамине РР при увеличении количества триптофана в пище.
· Суточная потребность в этом витамине доставляет для взрослых 15-25 мг, для детей - 15 мг.
· Биологические функции. Никотиновая кислота в организме входит в состав NAD и NADP, выполняющих функции коферментов различных дегидрогеназ (см. раздел 2). Синтез NAD в организме протекает в 2 этапа:
· NADP образуется из NAD путём фосфорилирования под действием цитоплазматической NAD-киназы.
NAD+ + АТФ > NADP+ + АДФ
· Недостаточность витамина РР приводит к заболеванию "пеллагра", для которого характерны 3 основных признака: дерматит, диарея, деменция ("три Д"), Пеллагра проявляется в виде симметричного дерматита на участках кожи, доступных действию солнечных лучей, расстройств ЖКТ (диарея) и воспалительных поражений слизистых оболочек рта и языка. В далеко зашедших случаях пеллагры наблюдают расстройства ЦНС (деменция): потеря памяти, галлюцинации и бред.
4. Пантотеновая кислота (витамин B5)
Пантотеновая кислота состоит из остатков D-2,4-дигидрокси-3,3-диметилмасляной кислоты и в-аланина, соединённых между собой амидной связью:
Пантотеновая кислота - белый мелкокристаллический порошок, хорошо растворимый в воде. Она синтезируется растениями и микроорганизмами, содержится во многих продуктах животного и растительного происхождения (яйцо, печень, мясо, рыба, молоко, дрожжи, картофель, морковь, пшеница, яблоки). В кишечнике человека пантотеновая кислота в небольших количествах продуцируется кишечной палочкой. Пантотеновая кислота - универсальный витамин, в ней или её производных нуждаются человек, животные, растения и микроорганизмы.
· Суточная потребность человека в пантотеновой кислоте составляет 10-12 мг.
· Биологические функции. Пантотеновая кислота используется в клетках для синтеза кофермен-тов: 4-фосфопантотеина и КоА (рис.1). 4-фосфопантотеин - коферменг пальмитоилсинтазы. КоА участвует в переносе ацильных радикалов в реакциях общего пути катаболизма, активации жирных кислот, синтеза холестерина и кетоновьж тел, синтеза ацетилглюкозаминов, обезвреживания чужеродных веществ в печени.
· Клинические проявления недостаточности витамина. У человека и животных развиваются дерматиты, дистрофические изменения желёз внутренней секреции (например, надпочечников), нарушение деятельности нервной системы (невриты, параличи), дистрофические изменения в сердце, почках, депигментация и выпадение волос и шерсти у животных" потеря аппетита, истощение. Низкий уровень пантотената в крови у людей часто сочетается с другими гиповитаминозами (В.,, В2) и проявляется как комбинированная форма гиповитаминоза.
5. Витамин В6(пиридоксин, пиридоксаль,
пиридоксамин)
В основе структуры витамина В6 лежит пиридиновое кольцо. Известны 3 формы витамина В6, отличающиеся строением замещающей группы у атома углерода в п-положении к атому азота. Все они характеризуются одинаковой биологической активностью.
Рис.1. Строение КоА и 4'-фосфопантотеина. 1 - тиоэтаноламин; 2 - аденозил-3'-фосфо-5'-дифосфат; 3 - пантотеновая кислота; 4 - 4'-фосфопантотеин (фосфорилированная пантотеновая кислота, соединённая с тиоэтаноламином).
Все 3 формы витамина - бесцветные кристаллы, хорошо растворимые в воде.
· Источники витамина В6 для человека - такие продукты питания, как яйца, печень, молоко, зеленый перец, морковь, пшеница, дрожжи. Некоторое количество витамина синтезируется кишечной флорой.
· Суточная потребность составляет 2-3 мг.
· Биологические функции. Все формы витамина В6 используются в организме для синтеза кофер-ментов: пиридоксальфосфата и пиридоксаминфосфата. Коферменты образуются путём фос-форилирования по гидроксиметильной группе в пятом положении пиримидинового кольца при участии фермента пиридоксалькиназы и АТФ как источника фосфата.
· Пиридоксалевые ферменты играют ключевую роль в обмене аминокислот: катализируют реакции трансаминирования и декарбоксилирования аминокислот, участвуют в специфических реакциях метаболизма отдельных аминокислот: серина, треонина, триптофана, серосодержащих аминокислот, а также в синтезе тема.
· Клинические проявления недостаточности витамина. Авитаминоз В6 у детей проявляется повышенной возбудимостью ЦНС, периодическими судорогами, что связано, возможно, с недостаточным образованием тормозного медиатора ГАМК, специфическими дерматитами. У взрослых признаки гиповитаминоза В6 наблюдают при длительном лечении туберкулёза изониазидом (антагонист витамина В6). При этом возникают поражения нервной системы (полиневриты), дерматиты.
6. Биотип (витамин Н)
В основе строения биотина лежит тиофено-вое кольцо, к которому присоединена молекула мочевины, а боковая цепь представлена валерьяновой кислотой.
· Источники. Биотин содержится почти во всех продуктах животного и растительного происхождения. Наиболее богаты этим витамином печень, почки, молоко, желток яйца. В обычных условиях человек получает достаточное количество биотина в результате бактериального синтеза в кишечнике.
· Суточная потребность биотина у человека не превышает 10 мкг.
· Биологическая роль. Биотин выполняет коферментную функцию в составе карбоксилаз: он участвует в образовании активной формы СО2.
· В организме биотин используется в образовании малонил-КоА из ацетил-КоА, в синтезе пуринового кольца, а также в реакции карбоксили-рования пирувата с образованием оксало-ацетата. Клинические проявления недостаточности биотина у человека изучены мало, поскольку бактерии кишечника обладают способностью синтезировать этот витамин в необходимых количествах. Поэтому картина авитаминоза проявляется при дисбактериозах кишечника, например, после приёма больших количеств антибиотиков или сульфамидных препаратов, вызывающих гибель микрофлоры кишечника, либо после введения в рацион большого количества сырого яичного белка. В яичном белке содержится гликопротеин авидин, который соединяется с биотином и препятствует всасыванию последнего из кишечника. Авидин (молекулярная масса 70 000 кД) состоит из четырёх идентичных субъединиц, содержащих по 128 аминокислот; каждая субъединица связывает по одной молекуле биотина.
· При недостаточности биотина у человека развиваются явления специфического дерматита, характеризующегося покраснением и шелушением кожи, а также обильной секрецией сальных желёз (себорея). При авитаминозе витамина Н наблюдают также выпадение волос и шерсти у животных, поражение ногтей, часто отмечают,боли в мышцах, усталость, сонливость и депрессию.
7. Фолиевая кислота (витамин Вc, витамин B9)
Фолиевая кислота состоит из трёх структурных единиц: остатка птеридина (I), парааминобензойной (II) и глутаминовой (III) кислот.
Витамин, полученный из разных источников, может содержать 3-6 остатков глутаминовой кислоты. Фолиевая кислота была вьщелена в 1941 г. из зелёных листьев растений, в связи с чем и получила своё название (от лат. folium - лист).
· Источники. Значительное количество этого витамина содержится в дрожжах, а также в печени, почках, мясе и других продуктах животного происхождения.
· Суточная потребность в фолиевой кислоте колеблется от 50 до 200 мкг; однако вследствие плохой всасываемости этого витамина рекомендуемая суточная доза - 400 мкг.
· Биологическая роль фолиевой кислоты определяется тем, что она служит субстратом для синтеза коферментов, участвующих в реакциях переноса одноуглеродных радикалов различной степени окисленности: метальных, оксиметильных, формильных и других. Эти коферменты участвуют в синтезе различных веществ: пуриновых нуклеотидов, превращении с!УМФ в сПГМФ, в обмене глицина и серина.
· Наиболее характерные признаки авитаминоза фолиевой кислоты - нарушение кроветворения и связанные с этим различные формы малокровия (макроцитарная анемия), лейкопения и задержка роста. При гиповитаминозе фолиевой кислоты наблюдают нарушения регенерации эпителия, особенно в ЖКТ, обусловленные недостатком пуринов и пиримидинов для синтеза ДНК в постоянно делящихся клетках слизистой оболочки. Авитаминоз фолиевой кислоты редко проявляется у человека и животных, так как этот витамин в достаточной степени синтезируется кишечной микрофлорой. Однако использование сульфаниламидных препаратов для лечения ряда заболеваний может вызвать развитие авитаминозов. Эти препараты - структурные аналоги парааминобензойной кислоты, ингибирующие синтез фолиевой кислоты у микроорганизмов. Некоторые производные птеридина (аминоптерин и метотрексат) тормозят рост почти всех организмов, нуждающихся в фолиевой кислоте. Эти препараты находят применение в лечебной практике для подавления опухолевого роста у онкологических больных.
8. Витамин В12 (кобаламин)
Витамин В12 был выделен из печени в кристаллическом виде в 1948 г. В 1955 г. Дороти Ходжкен с помощью рештено-структурного анализа расшифровала структуру этого витамина. За эту работу в 1964 г. ей была присуждена Нобелевская премия. Витамин В12 - единственный витамин, содержащий в своём составе металл кобальт (рис.2).
· Источники. Ни животные, ни растения не способны синтезировать витамин В12. Это единственный витамин, синтезируемый почти исключительно микроорганизмами: бактериями, актиномицетами и сине-зелёными водорослями. Из животных тканей наиболее богаты витамином В12 печень и почки. Недостаточность витамина в тканях животных связана с нарушением всасывания кобала-мина из-за нарушения синтеза внутреннего фактора Касла, в соединении с которым он и всасывается. Фактор Касла синтезируется обкладочными клетками желудка. Это - гликопротеин с молекулярной массой 93 000 Д. Он соединяется с витамином В]2 при участии ионов кальция. Гипоавитаминоз В12 обычно сочетается с понижением кислотности желудочного сока, что может быть результатом повреждения слизистой оболочки желудка. Гипоавитаминоз В12 может развиться также после тотального удаления желудка при хирургических операциях.
· Суточная потребность в витамине В12 крайне мала и составляет всего 1-2 мкг.
· Витамин В12 служит источником образования двух коферментов: метилкобаламина в цитоплазме и дезоксиаденозилкобаламина в митохондриях.
· Метил-В12 - кофермент, участвующий в образовании метионина из гомоцистеина. Кроме того, метил-В12 принимает участие в превращениях производных фолиевой кислоты, необходимых для синтеза нуклеоти-дов - предшественников ДНК и РНК.
· Дезоксиаденозилкобаламин в качестве кофермента участвует в метаболизме жирных кислот с нечётным числом углеродных атомов и аминокислот с разветвлённой углеводородной цепью.
· Основной признак авитаминоза В12 - макроцитарная (мегалобластная) анемия. Для этого заболевания характерны увеличение размеров эритроцитов, снижение количества эритроцитов в кровотоке, снижение концентрации гемоглобина в крови. Нарушение кроветворения связано в первую очередь с нарушением обмена нуклеиновых кислот, в частности синтеза ДНК в быстроделящихся клетках кроветворной системы. Помимо нарушения кроветворной функции, для авитаминоза В12 специфично также расстройство деятельности нервной системы, объясняемое токсичностью метилмалоновой кислоты, накапливающейся в организме при распаде жирных кислот с нечётным числом углеродных атомов, а также некоторых аминокислот с разветвлённой цепью.
9. Витамин С (аскорбиновая кислота)
Аскорбиновая кислота - лактон кислоты, близкой по структуре к глюкозе. Существует в двух формах: восстановленной (АК) и окисленной (дегидроаскорбиновой кислотой, ДАК).
Рис.2. Структура витамина В12 (1) и его коферментные формы - метилкобаламин (2) и 5-дезоксиаденозилкобаламин (3).
Обе эти формы аскорбиновой кислоты быстро и обратимо переходят друг в друга и в качестве коферментов участвуют в окислительно-восстановительных реакциях. Аскорбиновая кислота может окисляться кислородом воздуха, пероксидом и другими окислителями. ДАК легко восстанавливается цистеином, глутатионом, сероводородом. В слабощелочной среде происходят разрушение лактонового кольца и потеря биологической активности. При кулинарной обработке пищи в присутствии окислителей часть витамина С разрушается.
Таблица 1. Содержание аскорбиновой кислоты в некоторых пищевых продуктах и растениях
Продукт |
Содержание витамина, мг/100 г |
|
Плоды шиповника |
2400 |
|
Облепиха |
450 |
|
Смородина чёрная |
300 |
|
Лимоны |
40 |
|
Апельсины |
30 |
|
Яблоки |
30 |
|
Картофель свежий |
25 |
|
Томаты |
20 |
|
Молоко |
2,0 |
|
Мясо |
0,9 |
· Источники витамина С - свежие фрукты, овощи, зелень (табл. 1).
· Суточная потребность человека в витамине С составляет 50-75 мг.
· Биологические функции. Главное свойство аскорбиновой кислоты - способность легко окисляться и восстанавливаться. Вместе с ДАК она образует в клетках окислительно-восстановительную пару с редокс-потенциалом +0,139 В. Благодаря этой способности аскорбиновая кислота участвует во многих реакциях гидроксилирования: остатков Про и Лиз при синтезе коллагена (основного белка соединительной ткани), при гидроксилировании дофамина, синтезе стероидных гормонов в коре надпочечников.
· В кишечнике аскорбиновая кислота восстанавливает Fe3+в Fe2+, способствуя его всасыванию, ускоряет освобождение железа из ферритина, способствует превращению фолата в коферментные формы. Аскорбиновую кислоту относят к природным антиоксидантам. Большое значение этой роли витамина С придавал известный американский учёный Л. Полинг, дважды лауреат Нобелевской премии. Он рекомендовал использовать для профилактики и лечения ряда заболеваний (например, простудных) большие дозы аскорбиновой кислоты (2-3 г).
· Клинические проявления недостаточности витамина С. Недостаточность аскорбиновой кислоты приводит к заболеванию, называемому цингой (скорбут). Цинга, возникающая у человека при недостаточном содержании в пищевом рационе свежих фруктов и овощей, описана более 300 лет назад, со времени проведения длительных морских плаваний и северных экспедиций. Это заболевание связано с недостатком в пище витамина С. Болеют цингой только человек, приматы и морские свинки. Главные проявления авитаминоза обусловлены в основном нарушением образования коллагена в соединительной ткани. Вследствие этого наблюдают разрыхление дёсен, расшатывание зубов, нарушение целостности капилляров (сопровождающееся подкожными кровоизлияниями). Возникают отёки, боль в суставах, анемия. Анемия при цинге может быть связана с нарушением способности использовать запасы железа, а также с нарушениями метаболизма фолиевой кислоты.
10. Витамин Р (биофлавоноиды)
В настоящее время известно, что понятие "витамин Р" объединяет семейство биофлавоноидов (катехины, флавононы, флавоны). Это очень разнообразная группа растительных полифенольных соединений, влияющих на проницаемость сосудов сходным образом с витамином С.
Наиболее богаты витамином Р лимоны, гречиха, черноплодная рябина, чёрная смородина, листья чая, плоды шиповника.
· Суточная потребность для человека точно не установлена.
· Биологическая роль флавоноидов заключается в стабилизации межклеточного матрикса соединительной ткани и уменьшении проницаемости капилляров. Многие представители группы витамина Р обладают гипотензивным действием.
· Клиническое проявление гипоавитаминоза витамина Р характеризуется повышенной кровоточивостью дёсен и точечными подкожными кровоизлияниями, общей слабостью, быстрой утомляемостью и болями в конечностях.
В таблице 2 перечислены суточные потребности, коферментные формы, основные биологические функции водорастворимых витаминов, а также характерные признаки авитаминозов.
Таблица 2. Водорастворимы® витамины
Название |
Суточная потребность, мг |
Коферментная форма |
Биологические функции |
Характерные признаки авитаминозов |
|
В1 (тиамин) |
2-3 |
ТДФ |
Декарбоксилирование а-кетокислот, перенос активного альдегида (транскетолаза) |
Полиневрит |
|
В2 (рибофлавин) |
1,8-2,6 |
FAD FMN |
В составе дыхательных ферментов, перенос водорода |
Поражение глаз (кератиты, катаракта) |
|
B5 (пантотеновая кислота) |
10-12 |
KoA-SH |
Транспорт ацильных групп |
Дистрофические изменения в надпочечниках и нервной ткани |
|
В6 (пиридоксин) |
2-3 |
ПФ (пиридоксальфосфат) |
Обмен аминокислот (трансаминирование, декарбоксилирование) |
Повышенная возбудимость нервной системы, дерматиты |
|
PP (ниацин) |
15-25 |
NAD NADP |
Акцепторы и переносчики водорода |
Симметричный дерматит на открытых участках тела, деменция и диарея |
|
Н (биотин) |
0,01-0,02 |
Биотин |
Фиксация СО2, реакции карбоксилирования (например, пирувата и ацетил-КоА) |
Дерматиты, сопровождающиеся усиленной деятельностью сальных желёз |
|
Вc (фолиевая кислота) |
0,05-0,4 |
Тетрагидро-фолиевая кислота |
Транспорт одноуглеродных групп |
Нарушения кроветворения (анемия, лейкопении) |
|
В12 (кобаламин) |
0,001-0,002 |
Дезоксиаденозил-и метилкобаламин |
Транспорт метальных групп |
Макроцитарная анемия |
|
С (аскорбиновая кислота) |
50-75 |
Гидроксилирование пролина, лизина (синтез коллагена), антиоксидант |
Кровоточивость дёсен, расшатывание зубов, подкожные кровоизлияния, отёки |
||
Р (рутин) |
Не установлена |
Вместе с витамином С участвует в окислительно-восстановительных процессах, тормозит действие гиалуронидазы |
Кровоточивость дёсен и точечные кровоизлияния |
2. Синтез и производство витаминов
К специфическим особенностям синтеза витаминов относятся:
· многостадийность процессов;
· значительная материалоёмкость, обусловливающая необходимость размещения предприятий В. п. вблизи сырьевых баз;
· применение специальной аппаратуры, предназначенной для работы с агрессивными средами;
· необходимость выработки высокочистой продукции.
Витаминные заводы -- специализированные предприятия. Преобладает предметная специализация -- осуществление синтеза витаминов на каждом предприятии по полной схеме их производства, включая и выпуск всех полупродуктов. С конца 60-х гг. расширяется более эффективная -- технологическая специализация производства полупродуктов.
Тиамин (витамин В1 )
Применяют в виде тиамина бромида и тиамина хлорида
Тиамина бромид |
Тиамина хлорид |
Тиамин содержиться в дрожжах, зародышах и оболочках семян злаковых культур 9пшеницы, овса, гречихи, кукурузы), а также в орехах, арахисе. Эти продукты могут служить источниками получения тиамина. Однако процесс извлечения сложен, а выход очень мал. Так, из 1 т дрожжей можно получить только 0,25 т тиамина.
Из многочисленных вариантов синтеза тиамина представляет интерес метод, состоящий из трех этапов: синтеза пиримидиновой части молекулы, синтеза тиазолового цикла и связывания их между собой.
Один из путей синтеза пиримидинового цикла основан на конденсации ацетамидина и цис-формы б-ацетоксиметилен-в-этоксипропионитрила:
ацетамидин б-ацетоксиметилен- 2-метил-4 амино-5- 2-метил-4-амино-5-бром - в-этоксипропионитрил этоксиметилпиримидин метилпиримидина гидробромид |
Тиазоловый цикл синтезтруют из тиоформамида и бромацетопропилацетата
4-метил-5в -ацетоксиэтилтиазол 4 -метил-5в- оксиэтилтиазол |
Связывают пиримидиновую и тиазолувую части в одну молекулу сплавлением полученных продуктов при Т=100-120°С, либо нагреванием в органическом растворителе, например, в бутиловом спирте:
тиамина бромида гидробромид |
Рибофлавин (витамин В2 )
Рибофлавин содержаться в дрожжах, молочной сыворотке, мясе, рыбе, печени, почках, яичном белке, зародышах и оболочках зерновых культур, горохе, овощах.
Рибофлавин можно получить из животного и растительного сырья, однако этот процесс трудоемок и дает очень низкий выход. Чтобы выделить 1 г рибофлавина, нужно переработать 5,4 т молочной сыворотки.
В промышленности рибофлавин синтезируют путем конденсации 3,4-диметиланилина с D-рибозой. Полученный имин гидрируют, затем через реакцию азосочетания (с восстановлением азогруппы) образуют арилрибамин и конденсируют с аллоксаном.
3,4-диметиланилин имин
Рибофлавин аллоксан
В настоящее время рибофлавин получают с помощью микробиологического синтеза. Использование современных достижений в области физиологии микроорганизмов и генной инженерии позволило увеличить выход на биосинтезе рибофлавина в 4-5 тысяч раз
Никотинамид, никотиновая кистлота (витамин РР)
Кислота никотиновая, или витамин РР, получена еще в 1867г, но ее специфическое витаминное действие установлено лишь в 1937 г. В медицинской практике применяют не только кислоту никотиновую, но и ряд лекарственных веществ, которые является ее производными.
Известны различные способы получения кислоты никотиновой, но промышленное значение имеет способ ее получения из в-пиколина.
Исходными продуктами для получения никотиновой кислоты являются содержащиеся в каменноугольной смоле жидкие вещества - пиколины. Пиколиновую фракцию подвергают фракционному разделению на б-,в-,г- пиколины.
Окислением в-пиколина получают никотиновую кислоту:
в-пиколин никотиновая кислота
Экономичный способ синтеза никотинамида основан на пропускании газообразного аммиака через смесь никотиновой кислоты и водного раствора аммиака при 180-185°С:
никотиновая кислота никотинамид
Пищевыми источниками никотиновой кислоты являются: мясо, печень, почки, рис, хлеб, картофель.
Пиридоксин (витамин В6 )
Группа витаминов В6 относится к производным пиримидина, или оксиметилпиримидиновых витаминов. Они содержаться в в различных растениях и органах животных. Наибольшее их количество находится в дрожжах, неочищенных зернах злаков, картофеле, овощах, мясе, рыбе, молоке, печени трески и крупного рогатого скота, яичном желтке.
Вещество, обладающее В6 -витамииной активностью, получено в нашей стране в 1937 г из дрожжей. Затем было установлено, что витамин В6 - это не одно, а несколько сходных по химической структуре веществ, способных взаимопревращаться друг в друга:
пиридоксин пиридоксаль пиридоксамин
Процесс обращения может идти в обратном направлении.
Основным лекарственным веществом витаминов группы В6 является пиридоксина гидрохлорид. Сравнительно несложная химическая структура позволила осуществить синтез пиридоксина из алифатических соединений. Известно много различных вариантов синтеза. Наиболее эффективный из них основан на циклизации N-формил-D,L-аланина, с последующей его циклоконденсации с эфиром 1,4-бутендионовой кислоты. Полученный бицикл в кислой среде расщепляется в производное пиридина, которое гидрируют до пиридоксина:
N-формил-D, L-аланин 4-метил- 5-этокси- 1,3-оксазол
пиридоксин
Кобаламин (витамин В12 )
Цианкобаламин синтезируется в природе микроорганизмами, главным образом бактериями, актиномицетами, сине-зелеными водорослями. В организме человека и животных биосинтез кобаламина осуществляется микрофлорой кишечника. Затем он накапливается в печени, почках, стенке кишечника жвачных животных. Биосинтезом в кишечнике потребность человека в этом витамине полностью не обеспечивается. Необходимо поступление цианкобаламина с пищей животного происхождения, так как в растительной пище он отсутствует.
Получение цианкобаламина из печени животных неэкономично вследствие малого выхода (из 1 т около 0,02г). В настоящее время промышленности получают цианкобаламин путем микробиологического синтеза как побочный продукт при производстве стрептомицина из культуральной жидкости актиномицета Streptomices griseus.выход того или другого вещества можно направленно регулировать, меняя условия проведения ферментативного процесса(температура, pH среды, компоненты и др.). повышает выход цианкобаламина внесение в культуральную жидкость солей кобальта. Цианкобаламин выделяют из культуральной жидкости тремя способами: экстракцией органическими растворителями, осаждением в виде труднорастворимых соединений и чаще всего сорбцией на ионообменных смолах с использованием карбоксильного катионита.
Структура цианкобаламина была установлена в 1955 г, а затем подтверждена синтезом, осуществленным в 1972 г В.Рудвордом в США и Н. Эшенмозером в Швейцарии. Молекула цианкобаламина состоит из двух связанных между собой частей: кобальтового комплекса нуклеотида бензимидазола и макроциклической корриновой системы.
В качестве ЛС применяется в медицине цианкобаламин и гидроксикобаламин(оксикобаламин). От цианкобаламина он отличается лишь тем, что вместо цианогруппы в его молекуле к иону кобальта присоединен гидроксил. Выпускают его в виде гидрохлорида.
Фолиевая кислота (витамин Вс )
Фолиевая кислота широко распространена в растительном мире, содержится во всех свежих овощах, особенно в зеленых листьях шпината, салата, бобах, злаках. Название «кислота фолиевая» произошло от лат.folium-лист и отображает основную локализацию этого витамина.
Химическая структура установлена в 1946 г.
Кислоту фолиевую получают конденсацией эквимолекулярных количеств 2,5,6-триамино-4-оксипиримидина; б,в-дибромпропионового альдегида и п-аминобензоил-L(+)-глутаминовой кислоты:
2,5,6-триамино- б,в-дибромпро- п-аминобензоил-L(+)-глутаминовая 4-оксипиримидин пионовый альдегид кислота |
|
5,6-дигидрофолиевая кислота |
|
Кислота фолиевая |
Аскорбиновая кислота (витамин С)
Кислота аскорбиновая содержится в свежих овощах (капусте, салате, томатах, картофеле), ягодах, фруктах, иглах хвои, плодах шиповника и т.д.
Кислоту аскорбиновую можно выделить из растительного сырья, в частности, из плодов шиповника. Вначале получают водные экстракты, сгущают их до сиропов в вакууме, осаждают сопутствующие вещества (спиртом и эфиром), а остаток очищают хроматографическим методом и перекристаллизовывают.
Промышленный способ получения кислоты аскорбиновой основан на синтезе D-глюкозы, которую восстанавливают в D-сорбит каталитическим гидрированием. Важным этапом синтеза является процесс глубинного бактериохимического окисления _брожжения) с помощью AcetobactersuboxydansD- сорбита до L-сорбозы. Последнюю подвергают ацетонированию и полученную диацетон-L-сорбозу окисляют до диацетонкетогулоновой кислоты. Затем осуществляют процесс омыления и лактонизацию 2-кето-L-гулоновой кислоты до:
Общая схема синтеза кислоты аскорбиновой
D-глюкоза D-сорбит L-сорбоза
диацетон L-сорбоза диацетонкетогулоновая 2-кетоL-гулоновая кислота кислота кислота аскорбиновая
Витамины группы Р
Витамины группы Р имеют различную структуру. Они содержаться во многих растениях, главным образом в плодах шиповника, цитрусовых, незрелых грецких орехах, ягодах черной смородины, рябине, зеленых листьях чая, винограде, гречихе и т.д.
К группе витаминов Р относится большое число веществ - флавоноидов, которые распространены в природе либо в свободном состоянии, либо в виде гликозидов.
Из индивидуальных веществ, обладающих Р-витаминной активностью, применяют ритозид (рутин),кверцетин, дигидрокверцетин.
рутин |
||
кверцетин |
дигидрокверцетин |
Рутин содержится в листьях руты пахучей, в почках и цветках софоры японской и других растений. Наиболее богатым его источником служит зеленая масса гречихи, из которой выделяют 1,5-6% рутина. Извлекают рутин водой, затем отделяют белки осаждением, и рутин перекристаллизовывают. При получении следует учитывать, что рутин в кислой среде, особенно при нагревании, легко гидролизуется с образованием кверцетина, рамнозы и глюкозы.
Кверцетин получают из рутина путем гидролиза. Дигидрокверцетин получают из древесины лиственницы сибирской и лиственницы Гмелина, или лиственницы даурской семейства сосновых.
Кальциферолы (витамины группы D)
К настоящему времени открыто несколько витаминов группы D:D2 , D3 , D4 , D5 , D6 , D7 . Природные витамины D2 (эргокальциферол) и D3 (холекальциферол) содержаться в небольших количествах в яичном желтке, икре, сливочном масле, молоке. Значительные количества этих витаминов сопутствуют ретинолу в печени и жировой ткани рыб (главным образом трески) и морских животных. При ультрафиолетовом облучении (в определенных дозах) содержание витаминов группы D в этих продуктах повышается.
кальциферол (витамин D2 ) |
дигидротахистерол |
Провитамином эргокальциферола служит эргостерин, который получают экстракцией из дрожжей. Дешевым источником эргостерина является мицелий - отход производства пенициллина, содержащий около 0,5% стеринов.
Механизм образования кальциферолов основан на фотохимической реакции, которой подвергают природные стерины (эргостерин, холестерин и др.). При ультрафиолетовом облучении (фотолизе) эргосерина образуется ряд продуктов, в том числе эргоальциферол:
эргостерин люмистерин
Тахистерин эргокальциферол
Выход эргокальциферола зависит от условий проведения фотолиза: источника облучения, продолжительности фотолиза, длины волны, растворителя и т.д.длительное облучение приводит к потере витаминной активности и образованию токсичных продуктов: токсистерина и супрастеринов. Поэтому необходимо строгое соблюдение режима провелдения процесса фотолиза.
Токоферолы (витамины группы Е)
Источником получения токоферолов служит масло зародышей пшеницы или кукурузы, которое подвергают гидролизу, а неомыляемый остаток (около 5%), содержащий токоферолы и стерины, растворяют в этаноле, хлороформе или дихлорэтане. Затем растворитель удаляют, остаток растворяют в ацетоне или метиловом спирте и при -10°с выкристаллизовывают стерины. Остаток стеринов осаждают дигитонином. Смесь токоферолов очищают и разделяют хроматографическим методом.
К настоящему времени выделены из природных источников или получены синтетическим путем 7 различных веществ, обладающих Е-витаминной активностью.
В качестве ЛС применяют б-токоферола ацетат. Синтезируют его конденсацией триметилгидрохинона и изофитола с последующим ацетилированием уксусным ангидридом образовавшегося б-токоферола:
Триметилгидрохинон изофитол б-токоферол
б-токоферола ацетат
Витамины группы К
Установлено, сто К-витаминной активностью обладает несколько веществ, стимулирующих свертывание крови.в зависимости от химической структуры природные витамины группы К условно делят на фиилохиноны и менахиноны.
Филлохинон широко распространен в природе главным образом в зеленых частях растений (листья люцерны, шпината, в цветной капусте, хвое, зеленых томатах, конопле и т.д.).некоторые из них являются источниками получения филлохинона.
Филлохинон (витамин К1 ) в виде индивидуального вещества под названием фитоменадион применяют в медицинской практике.
фитоменадион
Синтез витамина К основан на алкилировании 2-метил-1,4-дигидроксинафталина фитолом в присутствии катализатора (алюмосиликатов) с последующим окислением до 2-метил-1,4-диоксонафталина:
Менадионы являются продуктами жизнедеятельности бактерий, в том числе содержащиеся в кишечнике животных, их продуцируют также различные микроорганизмы.
В качестве ЛС из группы менадионов (витамины К2 ) используют в медицине синтетически полученный менадиона натрия бисульфит (Викасол).
менадиона натрия бисульфит (Викасол)
Синтез его осуществляют из в-метилнафталина, который является продуктом производства коксохимической промышленности. Метилнафталин окисляют оксидом хрома до 2-метил-1,4-диоксонафталина (менадиона0. менадион перервдят в растворимое состояние введением гидрофильной сульфогруппы.
Схема синтеза:
в-метилнафталин 2-метил-1,4-диоксонафталин менадиона натрия бисульфит |
Список используемой литературы
1. Биохимия: Учеб. для вузов, Под ред. Е.С. Северина., 2003. 779 с. ISBN 5-9231-0254-4
2. www.studfiles.ru
3. food-chem.ru
4. http://elib.bsu.by/bitstream/123456789/105661/1/Курс%20л.%20Выд.%20пр.%20биотех.%20Новиков%20Д.pdf
5. www.biochemistry.ru
Размещено на Allbest.ru
...Подобные документы
История открытия витаминов. Роль и значение витаминов в питании человека. Потребность в витаминах (авитаминоз, гиповитаминоз, гипервитаминоз). Классификация витаминов. Содержание витаминов в пищевых продуктах. Промышленное производство витаминов.
курсовая работа [58,6 K], добавлен 24.05.2002Главные направления развития витаминной промышленности. Производство витаминов из дрожжей. Производство кристаллического β-каротина: из моркови, химический синтез. Синтетическое производство витаминов. Хелатирование. Пролонгированные формы витаминов.
курсовая работа [499,2 K], добавлен 14.05.2008Разработка и внедрение синтетических методов производства витаминов в СССР. Промышленный способ получения кислоты аскорбиновой. Синтез ретинола (витамин А) ацетат и ретинола пальмитат. Механизм образования кальциферолов. Варианты синтеза тиамина.
реферат [2,5 M], добавлен 20.05.2011Изучение химической структуры и свойств водорастворимых витаминов - витаминов групп В (В1, В2, В3, В5, В6, В12) витамин Н, витамин С, и др. Их химическая природа и особенности влияния на обмен веществ. Профилактика гиповитаминоза и источники поступления.
реферат [42,0 K], добавлен 22.06.2010Витамин А - ненасыщенное соединение, легко реагирующее с кислородом воздуха и окисляющими агентами. Качественные реакции витамина В. Количественные определения витаминов В2, В6, D2, Е. Анализ фолиевой и аскорбиновой кислоты, спиртовой раствор рутина.
реферат [65,3 K], добавлен 20.01.2011Витамины как микронутриенты. Понятие и значение в организме минеральных веществ. Взаимодействие минеральных веществ и витаминов между собой и друг с другом. Обмен железа в организме человека, механизм влияния аскорбиновой кислоты на усвоение элемента.
курсовая работа [309,8 K], добавлен 11.05.2015Содержание пищевых кислот в продуктах питания и методы их определения. Характеристика некоторых из пищевых кислот. Обоснование титрования, определения и расчета количества аскорбиновой кислоты, динамика изменения её содержания при термообработке.
дипломная работа [1,3 M], добавлен 03.07.2015История открытия, понятие и основные признаки витаминов. Обеспечение организма витаминами, их классификация и номенклатура (жирорастворимые, водорастворимые, витаминоподобные вещества). Значение витаминов для организма человека, авитаминозные нарушения.
реферат [1,4 M], добавлен 24.07.2010Характеристика аскорбиновой кислоты как химического соединения. Разработка методики количественного определения аскорбиновой кислоты в лекарственных формах. Методы синтеза аскорбиновой кислоты. Способы ее качественного анализа в фармакопеях разных стран.
курсовая работа [1,0 M], добавлен 23.11.2015Характеристика витаминов, история открытия, классификация. Характеристика витаминов пиримидино-тиазолового ряда. Общая характеристика их свойств, методик идентификации и количественного определения. Исследование раствора тиамина хлорида 5% для инъекций.
дипломная работа [3,8 M], добавлен 21.08.2011Значение витамина С для организма человека. Строение и физико-химические свойства аскорбиновой кислоты, химическая схема производства. Характеристика стадий технологической схемы производства аскорбиновой кислоты. Выбор рационального способа производства.
курсовая работа [2,9 M], добавлен 12.12.2010Основные химические элементы, распространенные в организме человека, характерные признаки и симптомы недостатка некоторых из них. Общее описание свойств йода, его открытие и значение в организме. Порядок определения его недостатка и механизм восполнения.
презентация [770,1 K], добавлен 27.12.2010Химическая природа витамина С. Обмен веществ. Авитаминоз. Гипоавитаминоз. Кулинарная обработка продуктов, содержащих витамин С. Потребность в поступлении извне готовых молекул витаминов. Содержание витамина С в некоторых продуктах и потребность в нем.
реферат [51,5 K], добавлен 29.09.2008Витамины - низкомолекулярные органические вещества различной химической структуры, обладающие разнообразным спектром физиологического действия. Биологическая роль витаминов и их классификация. Изучение структуры и свойств жирорастворимых витаминов.
реферат [42,0 K], добавлен 22.06.2010Особенности применения методов выделения, отгонки и осаждения для определения содержания в пищевых продуктах минеральных веществ, воды, сахаров, жиров, витаминов и других компонентов. Требования, предъявляемые к осадкам в гравиметрическом анализе.
презентация [10,4 K], добавлен 27.02.2012Понятие витаминов, их природа и свойства. Краткая характеристика основных витаминов (ретинол, аскорбиновая кислота, токоферол, филлохинон и другие). Сырье, содержащее аскорбиновую кислоту и витамины группы К (химический состав, заготовка, использование).
реферат [148,3 K], добавлен 23.08.2013Методы синтеза аскорбиновой кислоты, выбор рационального способа производства. Строение и основные физико-химические свойства аскорбиновой кислоты. Разработка технологии электрохимического окисления диацетонсорбозы на Уфимском витаминном заводе.
курсовая работа [1,1 M], добавлен 17.08.2014Эпоксидирование (+)-карвона, с использованием NaOH(в.) для получения эпоксида с 89% выходом. Способы получения йодолактона. Внедрение атома азота, с последующим стереоселективным алкилированием. Синтез из азетидинона и синтез кольца пирролидина.
курсовая работа [5,2 M], добавлен 26.04.2016Анализ состояния методов стандартизации и контроля качества лекарственных свойств кислоты аскорбиновой; зарубежные фармакопеи. Выбор валидационной оценки методик установления подлинности и количественного определения кислоты аскорбиновой в растворе.
дипломная работа [1,4 M], добавлен 23.07.2014Понятие биохимии и биосистемы. Структурно-химическая организация живой клетки и ее строение. Жизненно необходимые соединения, структура и химические реакции аминокислот. Уровни структурной организации белков, жиров и ферментов. Классификация витаминов.
презентация [2,2 M], добавлен 17.12.2010