Органічні сполуки: білки

Білки (протеїни) як високомолекулярні біополімери, мономерами яких є залишки амінокислот. Особливості хімічної будови, класифікація та типи. Загальна формула та характерні реакції даної групи сполук, схема пептидного зв'язку. Функції білків в організмі.

Рубрика Химия
Вид реферат
Язык украинский
Дата добавления 31.03.2017
Размер файла 179,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Органічні сполуки: білки

Білки, або протеїни, - це високомолекулярні біополімери, мономерами яких є залишки амінокислот. Назва «білки» пов'язана зі здатністю багатьох білків біліти при нагріванні. Висока температура призводить до зміни їхньої конформації (від лат. konphormatio - розміщення) (просторової структури). А назва «протеїни» походить від грецького слова «перші» і відображає їхню роль у живих організмах. Білки входять до складу всіх живих систем, на них припадає від 50 до 80% сухої маси клітини.

У самій назві амінокислот відображено наявність у їхньому складі: аміногрупи (-NH2), якій притаманні лужні властивості, та карбоксильної групи (-СООН) з кислотними властивостями. Таким чином, амінокислоти - це амфотерні (від грецьк. amphoteros - обидва) сполуки, які реагують не лише з лугами, а й з кислотами.

Аміногрупа та карбоксильна група зв' язані з одним і тим самим атомом карбону. Групи атомів, за якими амінокислоти розрізняються між собою, називають радикалами, або R - групами.

Загальна формула амінокислоти:

Нескінченна різноманітність білкових молекул забезпечується різними комбінаціями залишків 20 амінокислот. Ці 20 амінокислот називають основними.

Реакція полімеризації амінокислот пов'язана із взаємодією між карбоксильною групою (- СООН) однієї амінокислоти і аміногрупою (-NH2) іншої. У ході реакції виділяється молекула води і утворюється пептид (від грецьк. peptos - зварений). Тому ковалентний зв'язок між залишками амінокислот називається пептидным.

Схема пептидного зв'язку: - СО - NN -

До вільних карбоксильної та аміногрупи можуть приєднуватися інші амінокислоти, подовжуючи ланцюг, який має назву поліпептидного:

Поліпептидні ланцюжки мають певну конформацію. При зміні її білок втрачає здатність взаємодіяти з іншими молекулами. Конформація білка залежить від послідовності амінокислотних залишків та від середовища. Поліпептидний ланцюг білків на відміну від полісахаридів не має розгалуженої структури.

Властивості білка визначаються послідовністю амінокислотних залишків, що входять до складу його молекули.

Первинна структура білка - це сполучені пептидними зв'язками залишки амінокислот, що мають вигляд лінійного ланцюга. Отже, первинна структура білка визначається якісним і кількісним складом амінокислотних залишків, а також їхньою послідовністю. Однак молекула білка у вигляді лінійного ланцюга нездатна виконувати специфічні функції. Для цього вона має набути складнішої просторової структури.

Вторинна структура білка характеризує просторову організацію білкової молекули, яка повністю або частково закручується в спіраль. Отже, вторинна структура білка - закручений у спіраль поліпептидний ланцюг. Радикали амінокислот при цьому залишаються ззовні спіралі. У підтриманні вторинної структури важлива роль належить водневим зв 'язкам, які виникають між атомами гідрогену NH-групи (пептид-ної) одного витка спіралі та оксигену СО-групи іншого. Водневі зв'язки значно слабші за ковалентні, але завдяки тому, що спіраль «прошита» численними водневими зв'язками, її структура дуже міцна. Таким чином, вторинна структура білка стабілізується водневими зв'язками між пептидними групами, розташованими на сусідніх витках спіралі.

Третинна структура білка зумовлена здатністю поліпептидної спіралі закручуватись певним чином у грудку, або глобулу (від лат. globulus - кулька). Скручування відбувається внаслідок взаємодії амінокислотних радикалів на віддалених ділянках ланцюга. Третинна структура білка підтримується кількома типами зв'язків: водневими, гідрофобними, ковалентними дисульфідними (-S-S-). Стабільність третинної структури залежить від внутрішньоклітинного середовища, зокрема від рН і температур. Значні коливання температури або зміни хімічного складу клітини порушують третинну структуру білка і негайно впливають на його функціонування. Надмірне нагрівання або вплив сильнодіючих хімічних речовин призводить до денатурації (від лат. de - рух униз, втрата, natura - природні властивості) - незворотного руйнування певної структури білка. При денатурації первинна структура білка лишається незмінною, а порушуються вищі її рівні.

Чимало білків складаються з кількох поліпептидних ланцюгів, які утримуються разом завдяки гідрофобним взаємодіям, а також водневим та іонним зв'язкам. Поєднання кількох поліпептидних ланцюгів називається четвертинною структурою білка.

За складністю будови та функціями білки поділяють на окремі класи:

o прості - протеїни (від грецьк. protos - перший), що складаються тільки з амінокислот;

o складні - протеїди (від грецьк. protos - перший, eidos - вигляд) - такі білки, що містять, крім амінокислотного ланцюга, ще й небілковий компонент.

Функції білків:

o структурна, або будівельна, - білки входять до складу всіх органів і тканин, є структурними компонентами клітинних мембран;

o регуляторна - білкові гормони регулюють процеси життєдіяльності організмів;

o каталітична, або ферментативна, - особлива група білків - ферментів, які виконують функцію біологічних каталізаторів (біокаталізу), тобто здатні регулювати (прискорювати або гальмувати) хімічні реакції; основу ферментів складають білки, до яких може приєднуватися небілкова частина (вітаміни, метали тощо). Ферменти каталізують лише певні реакції. Кожна молекула ферменту здатна здійснювати від декількох тисяч до декількох мільйонів операцій за хвилину. Для ферментів характерна закономірна локалізація, оскільки процес розщеплення або синтезу будь-якої речовини у клітині поділений на ряд хімічних операцій, які закономірно ідуть одна за одною. Кожну з цих операцій каталізує свій фермент. Дія ферментів залежить від температури і pH середовища;

o енергетична - при повному окисненні 1 г білка виділяється 17,2 кДж енергії;

o сигнальна - окремі складні білки клітинних мембран, змінюючи свою структуру, передають сигнали із зовнішнього середовища на інші ділянки мембрани або всередину клітини.

Органічні сполуки: нуклеїнові кислоти

Нуклеїнові кислоти вперше виявлено в ядрі клітини, звідки й походить назва цих сполук (від лат. nucleus - ядро). До складу молекул нуклеїнових кислот, крім органогенних елементів (С, Н, О, N), неодмінно входить фосфор (Р).

Нуклеїнові кислоти - це біополімери, мономерами яких є нуклеотиди (від лат. nuсleus - ядро).

Молекула нуклеотиду складається із залишків таких компонентів:

o азотиста (нітратна) основа - речовина зі складною циклічною структурою молекули - у великій кількості містить карбон і нітроген; основою називається тому, що має основні властивості; розрізняють п'ять видів азотистих основ:

- аденін (скорочено позначається А);

- гуанін (Г);

- цитозин (Ц);

- тимін (Т);

- урацил (У);

o п'ятикарбоновий (п'ятивуглецевий) моносахарид - пентоза; розрізняють: рибозу та дезоксирибозу; вони відрізняються лише тим, що в дезоксирибозі (тобто позбавленій О рибозі) біля другого атома С розташована не гідроксильна група (-ОН), а Н; аденін, гуанін і цитозин утворюють нуклеотиди як із рибозою, так і з дезоксирибозою; тимін - лише з дезоксирибозою, а урацил - лише з рибозою;

o залишок фосфорної кислоти (фосфат), наявність якого визначає кислотні властивості нуклеотиду.

Схема молекули нуклеотиду (схема 1):

білок сполука хімічний пептидний

Крім нуклеотидів, що входять до складу нуклеїнових кислот, неодмінним компонентом будь-якої клітини є вільні нуклеотиди. До складу вільних нуклеотидів входять, крім азотистої основи і пентози, три залишки фосфорної кислоти, які послідовно сполучаються. Причому друга і третя групи фосфорної кислоти приєднуються до нуклеотиду особливими зв' язками, у яких запасається енергія. Ці зв' язки називають макроергічними (від грецьк. makros - великий, ergon - робота) і позначаються значком ~. При розриві звичайного ковалентного зв'язку вивільняється 12 кДж/моль, а при розриві макроергічного зв'язку - 33 кДж/моль. Саме макроергічні зв' язки в нуклеотидах використовуються для запасання енергії в ході обміну речовин.

Найчастіше роль акумулятора енергії виконує аденозинтрифосфат (АТФ). АТФ складається з азотистої основи - аденіну, пентози - рибози і трьох залишків фосфорної кислоти (фосфатів), які послідовно сполучаються макроергічними зв' язками. Схема молекули АТФ (схема 2):

Будь-яка хімічна реакція, що потребує затрат енергії, пов'язана з відщепленням одного залишку фосфорної кислоти в молекулі АТФ і перетворення її на аденозиндифосфат (АДФ). Накопичення енергії в клітині, навпаки, відбувається за рахунок перетворення АДФ на АТФ.

Мононуклеотиди (нуклеотиди, які містять лише один залишок фосфорної кислоти), так само, як амінокислоти і моносахариди, здатні реагувати між собою. Перебіг такої реакції супроводиться виділенням молекули води і утворенням міцного ефірного зв' язку. Сполучною речовиною між нуклеотидами слугує залишок фосфорної кислоти, що скріплює пентози сусідніх нуклеотидів, формуючи полімер - полінук-леотид, який звичайно називають нуклеїновою кислотою. Вона може містити від кількох сотень до кількох мільйонів нуклеотидів. Полінук-леотиди мають суворо лінійну структуру ланцюга. Маса нуклеїнових кислот, як правило, значно вища від маси білків.

Залежно від виду пентози, що входить до складу нуклеотиду, розрізняють два типи нуклеїнових кислот: дезоксирибонуклеїнову (ДНК) та рибонуклеїнову (РНК). До складу ДНК входить залишок дезоксирибози, а РНК - рибози. У молекулі ДНК містяться залишки таких азотистих основ: аденіну, гуаніну, цитозину і тиміну. У молекулі РНК містяться залишки таких азотистих основ: аденіну, гуаніну, цитозину і урацилу.

Отже, до складу молекули ДНК і РНК входить по чотири типи нук-леотидів, які відрізняються за типом азотистої основи.

Дезоксирибонуклеїнова кислота (ДНК) зосереджена в ядрі, її практично немає в цитоплазмі клітини. Цей тип нуклеїнових кислот утворює дуже великі молекули (масою до 100 000 000). Вміст ДНК в ядрі клітини постійний, вона виконує єдину функцію - зберігає генетичну інформацію.

Ген (від грец. genos - походження) - це ділянка молекули нуклеїнової кислоти, яка визначає спадкові ознаки організмів.

1950 року американський вчений Ервін Чаргафф та його колеги, досліджуючи склад ДНК, виявили певні закономірності кількісного вмісту залишків азотистих основ у її молекулі:

- кількість аденінових залишків у будь-якій молекулі ДНК дорівнює числу тимінових (А=Т), а гуанінових - цитозинових (Г=Ц);

- сума аденінових і гуанінових залишків дорівнює сумі тимінових і цитозинових (А+Г=Т+Ц).

Таке співвідношення азотистих основ у молекулі ДНК дістало назву правила Чаргаффа, або правила еквівалентності.

Це відкриття сприяло встановленню просторової структури ДНК (рис. 1) і визначенню її ролі в перенесенні спадкової інформації від материнської клітини до дочірньої. 1953 року американські вчені Джеймс Уотсон і Френсіс Крик довели, що молекула ДНК складається з двох з'єднаних полінуклеотидних ланцюгів, які являють собою спіраль, закручену вправо. Діаметр спіралі ДНК дорівнює 210-9 м, а відстань між сусідніми нуклеотидами - 0,34 o 10-9 м. На один виток спіралі припадає 10 нуклеотидів.

Просторова структура ДНК

Полінуклеотидні ланцюги сполучаються водневими зв'язками, що виникають між азотистими основами, розміщеними навпроти одна до одної.

Між аденіном і тиміном утворюються два водневих зв'язки, а між гуаніном і цитозином - три. Водневі зв'язки дуже слабкі, але завдяки багаторазовому повторенню вони утворюють дуже міцну структуру, яка водночас є лабільною, що надає спіралі ДНК можливості легко розкручуватися, а потім знову швидко відновлювати дволанцюгову структуру.

Молекули А-Т і Г-Ц ніби доповнюють одна одну. Здатність доповнювати одна одну, притаманна поверхням хімічних сполук, що взаємодіють, називається комплементарністю (від лат. komplementum - доповнення).

Схема будови подвійної спіралі ДНК (схема 3).

Молекули ДНК, так само як і білки, утворюють кілька рівнів просторової організації:

o первинна структура ДНК - це певна послідовність розташування нуклеотидів у ланцюзі ДНК;

o вторинна структура ДНК - це подвійна спіраль;

o третинна структура ДНК - це суперспіраль (багаторазове згортання); саме така структура ДНК в ядрі клітині. Така укладка здійснюється за допомогою спеціальних білків - гістонів, що мають лужні властивості, а молекули ДНК намотуються на ці білки наче нитки на котушку. Завдяки цьому молекула ДНК, довжина якої, наприклад в людини, 8 см, укладається в клітинне ядро, що його можна розглянути лише під мікроскопом.

Схема 3. Схема будови подвійної спіралі ДНК (на схемі фосфат позначено літерою Р)

ДНК, як і білки, можуть денатурувати (втрачати геометричну форму і розпадатися на одинарні ланцюги) під впливом різних чинників. Цей процес відбувається при температурі +70°С, - значно вищій від температури денатурації білків, і тому називається плавленням. За певних умов можливе й відновлення природної структури - ренатурація.

Процес синтезу ДНК розпочинається перед поділом клітини і зумовлений складанням нового полінуклеотидного ланцюга за матрицею старого ланцюга. Цей процес називається реплікацією (від лат. герігсаґго - відбивати) і відбувається в такій послідовності:

o спочатку під дією спеціальних ферментів подвійна спіраль розкручується і утворюється реплікативна вилка;

o майже відразу завдяки ферменту ДНК-полімеразі починається ферментативне складання нових полінуклеотидних ланцюгів: фермент пересувається уздовж кожної нитки ДНК і послідовно створює комплементарну нитку ДНК.

Схему процесу реплікації подано на рис. 2.

Синтез полімерів, коли один ланцюг слугує еталоном, матрицею для іншого, називається матричним синтезом. Особливостями цього синтезу є точність копіювання і висока швидкість перебігу реакцій. Висока точність реплікації досягається завдяки комплементарності азотистих основ.

Надійність копіювання - це надзвичайно важлива властивість процесу реплікації, бо помилки в копіюванні нуклеотидних послідовностей

ДНК призводять до помилкового синтезу ферментів, що неминуче порушує регуляцію основних функцій організму, наслідком чого є зниження його життєздатності. Ці порушення є спадковими.

А - дволанцюгова молекула ДНК:

1 - перший ланцюг ДНК; 2 - другий ланцюг ДНК;

Б - утворення реплікативної вилки;

В-синтез комплементарних ланцюгів:

3 - нуклеотиди, які добудовують комплементарний ланцюг ДНК; Г - синтезовані дві однакові молекули ДНК

Рибонуклеїнові кислоти (РНК) містяться як в ядрі клітини, так і в цитоплазмі, і відзначаються незначними розмірами - від 75 до кількох тисяч нуклеотидів. Молекули РНК, на відміну від ДНК, складаються лише з одного ланцюга (схема 4).

Схема 4. Схема будови РНК (на схемі фосфат позначено літерою Р)

Відомо три основні типи РНК:

1) транспортна (тРНК) - це невеликий полінуклеотид, що складається в середньому з 80 нуклеотидів; вона виконує функцію транспортування амінокислот під час синтезу білків;

2) інформаційна (іРНК), або матрична (мРНК) - містить інформацію про послідовність структури різних білків, тому має різноманітну структуру і розмір у багато разів більший за тРНК;

3) рибосомна (рРНК) - є головний компонент рибосом - органел клітини, у яких відбувається синтез білка.

Усі типи РНК синтезуються на молекулах ДНК у процесі транскрипції (від лат. transcriptio - переписування). Ферменти розплітають спіраль ДНК на невеликій ділянці, пересуваються уздовж однієї нитки ДНК і послідовно створюють комплементарну нитку РНК.

Схематичне зображення процесу транскрипції подано на рис. 3.

Відмінність транскрипції від реплікації полягає в тому, що навпроти А в ланцюгу ДНК в РНК розміститься У, а не Т.

Усі типи РНК беруть тільки в певному, але надзвичайно важливому для життя клітини процесі - біосинтезі білка. Він забезпечує оновлення білків, ріст і функціонування клітин.

Размещено на Allbest.ru

...

Подобные документы

  • Значення амінокислот в органічному світі. Ізомерія. Номенклатура. Шляхи отримання амінокислот. Фізичні властивості. Хімічні властивості. Біосинтез амінокислот. Синтез незамінних амінокислот. Білкові речовини клітини: структурні білки, ферменти, гормони.

    реферат [20,0 K], добавлен 25.03.2007

  • Загальні відомості про комплексні сполуки та принципи їх класифікації. Загальні принципи будови. Поняття про хелати. Координаційні сполуки за природою ліганда, за знаком заряду комплексу. Природа координаційного зв’язку. Номенклатура комплексних сполук.

    курсовая работа [49,3 K], добавлен 01.05.2011

  • Сполуки, відмінні характеристики яких є велика молекулярна маса і висока конформаційна гнучкість ланцюга. Особливості будови полімерів. Класифікація за позодження, за типом ланцюгів, за складом мономерних ланок. Застосування полімерів у промисловості.

    презентация [975,3 K], добавлен 22.10.2013

  • Ліпіди як органічні сполуки, різні за хімічною природою, загальною властивістю яких є здатність розчинятись у неполярних органічних розчинниках, їх головні фізичні та хімічні властивості, класифікація та різновиди. Значення жирів в організмі людини.

    реферат [2,9 M], добавлен 17.04.2012

  • Особливості колориметричних методів аналізу. Колориметричне титрування (метод дублювання). Органічні реагенти у неорганічному аналізі. Природа іона металу. Реакції, засновані на утворенні комплексних сполук металів. Якісні визначення органічних сполук.

    курсовая работа [592,9 K], добавлен 08.09.2015

  • Дослідження явища хімічних зв’язків - взаємодії між атомами, яка утримує їх у молекулі чи твердому тілі. Теорія хімічної будови органічних сполук Бутлерова. Характеристика типів хімічного зв’язку - ковалентного, йодного, металічного і водневого.

    презентация [950,3 K], добавлен 17.05.2019

  • Класифікація металів, особливості їх будови. Поширення у природі лужних металів, їх фізичні та хімічні властивості. Застосування сполук лужних металів. Сполуки s-металів ІІА-підгрупи та їх властивості. Види жорсткості, її вимірювання та усунення.

    курсовая работа [425,9 K], добавлен 09.11.2009

  • Пептидний зв’язок та утворення вільних амінокислот. Поняття про рівні організації білкових молекул. Участь різних видів хімічного зв’язку в побудові первинної, вторинної, третинної, четвертинної структури білку. Біологічне окислення органічних сполук.

    контрольная работа [20,8 K], добавлен 05.06.2013

  • Сполуки, до складу яких входять атоми Гідрогену. Водні розчини кислот та негативні іони і їх концентрація та класифікація за різними критеріями. Номенклатура кислот і реакції іонної обмінної взаємодії. Утворення малодисоційованої сполуки, азотна кислота.

    контрольная работа [69,2 K], добавлен 12.12.2011

  • Поняття, класифікація, будова і біологічна роль гетероциклічних сполук. Фізичні і хімічні властивості гетероциклів. Біциклічні сполуки з п'ятичленними гетероциклами. Ароматичні сполуки з конденсуючими ядрами. Шестичленні гетероцикли з одним гетероатомом.

    курсовая работа [434,7 K], добавлен 05.12.2015

  • Органічні сполуки зі змішаними функціями, що складаються із карбону, оксигену і гідрогену. Моносахариди, дисахариди та полісахариди. Основні функції вуглеводів. Формула та властивості глюкози, фруктози, цукрози, мальтози, лактози, крохмалю та целюлози.

    презентация [1,8 M], добавлен 27.10.2014

  • Полімери як високомолекулярні речовини. Реакція катіонної полімеризації. Стереорегулярна будова полімерів. Утворення високомолекулярної сполуки. Реакції полімеризації вінілхлориду, пропілену. Ненасичені вуглеводні у продуктах деполімеризації полістиролу.

    лекция [639,4 K], добавлен 12.12.2011

  • Ізомерія - явище просторове і структурне, що визначається особливостями структури молекули і порядком зв'язку атомів. Фізичні константи і фізіологічні властивості геометричних ізомерів. Оптична активність органічної сполуки. Ізомерія комплексних сполук.

    реферат [124,6 K], добавлен 20.07.2013

  • Дитинство та юність О.М. Бутлерова - видатного хіміка-експериментатора, автора теорії хімічної будови. Навчання в університеті та сімейне життя Олександра Михайловича. Основні положення теорії будови хімічних сполук. Внесок Бутлерова у розвиток хімії.

    презентация [3,3 M], добавлен 26.09.2012

  • Класифікація неорганічних сполук. Типи хімічних зв’язків у комплексних сполуках, будова молекул. Характеристика елементів: хлор, бор, свинець. Способи вираження концентрації розчинів. Масова частка розчиненої речовини, молярна концентрація еквіваленту.

    контрольная работа [34,5 K], добавлен 17.05.2010

  • Принципи біохімічної діагностики захворювань. Характеристика білків, вуглеводів, ліпідів, ферментів, їх функції і значення в організмі. Обмін речовин і енергії в організмі. Механізм дії гормонів. Водно-сольовий, мінеральний обмін. Система згортання крові.

    курс лекций [908,3 K], добавлен 04.04.2014

  • Загальна характеристика, поширення в організмі та види вуглеводів. Класифікація і хімічні властивості моносахаридів. Будова і властивості дисахаридів й полісахаридів. Реакції окислення, відновлення, утворення простих та складних ефірів альдоз та кетоз.

    реферат [25,7 K], добавлен 19.02.2009

  • Поняття ароматичних вуглеводних сполук (аренів), їх властивості, особливості одержання і використання. Будова молекули бензену, її класифікація, номенклатура, фізичні та хімічні властивості. Вплив замісників на реакційну здатність ароматичних вуглеводнів.

    реферат [849,2 K], добавлен 19.11.2009

  • Інтеграція природничо-наукових знань як нагальна потреба сучасної освіти. Відображення міжпредметних зв’язків у програмах з хімії (порівняльний аналіз). Класифікація хімічних реакцій за різними ознаками. Реакції сполучення, розкладу, заміщення, обміну.

    дипломная работа [133,1 K], добавлен 13.11.2008

  • Дослідження сорбції антибіотика групи фторхінолонів – офлоксацину, зокрема від рН середовища на оксидах силіцію. Загальна характеристика, класифікація та механізми дії антибіотиків. Хіміко-фармакологічна характеристика антибіотиків групи фторхінолонів.

    курсовая работа [40,2 K], добавлен 24.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.