Исследование роста наностержней ZnO в методике карботермического синтеза на тонкопленочных подслоях ZnO:Ga

Изучение влияния количества катализатора на морфологию массивов стержней ZnO. Метод карботермического синтеза с использованием различных подложек (Si (100) и a-Al2O3) с применением меди в виде сверхтонких пленок (1 – 4 nm)в качестве катализатора роста.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 29.05.2017
Размер файла 3,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Южный федеральный университет

Исследование роста наностержней ZnO в методике карботермического синтеза на тонкопленочных подслоях ZnO:Ga

Н.В. Лянгузов

Ростов-на-Дону

Введение

Квазиодномерные (1-D) наноструктуры, такие как наностержни, нанонити и наноленты на основе ZnO имеют большие потенциальные возможности для применений в микро- и наносенсорах, благодаря комбинации пьезоэлектрических, оптических и хемосорбционных свойств. Данные структуры изготавливаются различными группами методов: термическим испарением, химическим осаждением из газовой фазы (к которому относится и методика карботермического синтеза), эпитаксией из металлорганических соединений, импульсным лазерным испарением в атмосфере аргона.

Методика карботермического синтеза [1, 2], благодаря относительной простоте технической реализации представляется перспективной с точки зрения промышленной технологии. В большинстве перечисленных выше методик синтеза для активации роста наностержней применяется так называемый катализатор, играющий роль растворителя для газовой фазы цинка и кислорода. В этом качестве, как правило, выступают различные металлы (Au, Cu, Ag, Sn). Рост стержней происходит через конденсацию пара Zn в жидкую фазу металла-катализатора и описывается механизмом пар-жидкость-кристалл [3, 4].

Выбор типа катализатора роста стержней ZnO является одним из основных параметров, определяющих структурное совершенство (а, следовательно, их электрические и оптические свойства). Тип катализатора диктует выбор температуры синтеза, которая является основным параметром роста и определяет, в том числе, и морфологические параметры массивов получаемых стержней (среднюю длину, диаметр, плотность поверхностного расположения, пространственную ориентацию оси стержней относительно подложки). При этом, существенную роль может играть не только вещество, используемое в качестве катализатора роста, но и его количество, варьируя которого при прочих равных условиях возможно получать структуры с разным типом морфологии. Изучение влияния количества катализатора на морфологию массивов стержней ZnO, получаемых методикой карботермического синтеза, и являлось целью данной работы.

Экспериментальная часть

Массивы нано - и микростержней ZnO были получены методом карботермического синтеза с использованием различных подложек (Si (100) и a-Al2O3) с использованием меди в виде сверхтонких пленок (эквивалентной толщиной 1 - 4 nm) в качестве катализатора роста [5]. Перед нанесением катализатора и последующим синтезом стержней оксида цинка на подложках предварительно были получены пленочные подслои Zn0,97Ga0,03O толщиной 60 нм.

Рис. 1. SEM-изображение массива стержней ZnO, полученных на подложке Si c пленочным подслоем Zn0, 97Ga0,03O толщиной 60 нм. На фрагменте a) продемонстрирована селективность роста стержней по катализатору, на фрагменте b) - изображение массива стержней, сформированного на области подложки, занятой катализатором.

Нанесение катализатора осуществлялось методом магнетронного распыления на постоянном токе. Получение пленочных подслоев ZnO производилось методом импульсного лазерного напыления с использованием излучения KrF-лазера ( = 248 нм, ? = 15 нс) с энергией 300 мДж, фокусируемого на поверхность вращающейся мишени с плотностью энергии ~ 2 Дж/см2. Расстояние мишень-подложка составляло 75 мм. Напыление пленок ZnO:Ga происходило в атмосфере кислорода при давлении 1,5?10-2 мм. рт. ст. Подложка нагревалась до температуры ~ 500 оС в случае использования подложек Si, и ~ 680 oC в случае использования a-Al2O3. Толщина покрытий ZnO контролировалась по числу импульсов.

Карботермический синтез проводился в кварцевой трубе, помещенной во внешний резистивный нагреватель. Подложка располагалась на расстоянии L = 10 мм от источника испаряемого материала. В качестве транспортного газа использовался Ar при давлении 750 мм. рт. ст. и скорости потока 20 см3/мин. Печь нагревалась в течении до температуры температур 770 С при синтезе на подложках Si [6], и до температуры 820 С при синтезе на подложках a-Al2O3 [5]. После проведения синтеза осуществлялось охлаждение рабочей зоны естественным образом до температуры ~ 150 о С, после чего образец вынимался из трубы. Морфология полученных образцов изучалась методом сканирующей электронной микроскопии на приборе Zeiss SUPRA 25.

Результаты

Вначале, была исследована селективность роста в процессе карботермического синтеза микро- и наностержней ZnO по катализатору. Для этого подложки Si (100) предварительно химически очищались от естественного окисла. После нанесения тонкопленочного подслоя Zn0,97Ga0,03O толщиной 60 нм слой катализатора (меди), эквивалентной толщиной 1 нм, наносился методом магнетронного распыления через теневую маску, представляющую собой тонкую бронзовую фольгу с регулярно расположенными квадратными отверстиями.

Сторона квадрата отверстий составляла 90 мкм, а период повторения - 120 мкм в двух перпендикулярных направлениях в плоскости. В результате, после напыления через маску, на подложке был сформирован упорядоченный массив из квадратов, занятых катализатором. Как было показано в работе [6] такие толщины подслоя ZnO и пленки катализатора лежат в диапазоне, где наблюдается наиболее интенсивный рост массивов вертикальных стержней ZnO. Далее, в процессе карботермического синтеза массивы вертикальных стержней ZnO с большой поверхностной плотностью (~ 20 мкм-2) были сформированы только в областях подложки, покрытых катализатором (рис. 1). Вне этих областей рост был практически подавлен: наблюдались отдельные стержни длиной не более 150 нм и диаметром ~ 30 нм.

Синтез проводился при оптимальной температуре T = 770 oC и прочих условиях, идентичных описанным в работе [6]. Необходимо отметить, что структура подслоя также повлияла на морфологические особенности сформированных массивов стержней. Ввиду введения в состав пленочного подслоя легирующей примеси (Ga), его структурное совершенство могло снизиться по сравнению с нелигированными подслоями. За счет существенного различия параметров элементарных ячеек и коэффициентов теплового расширения пленки-подслоя и Si подложки, эффект снижения структурного совершенства проявился в значительной степени. В результате этого, стержни оксида цинка, полученные на таком подслое, уже не были столь строго ориентированы в перпендикулярном к подложке направлении, как в случае использования нелигированных подслоев. Они были ориентированы в телесном угле ~ 30о по отношению к направлению нормали (рис. 1 b). катализатор карботермический медь

Далее, был исследован рост стержней ZnO на проводящих подслоях Zn0,97Ga0,03O толщиной 50 нм с использованием диэлектрических подложек a-Al2O3. Было изучено влияние толщины слоя катализатора (Cu) на морфологию формируемых массивов стержней. В данных экспериментах катализатор также наносился методом магнетронного распыления, но без использования теневых масок.

Рис. 2. SEM-изображение массива вертикально ориентированных стержней ZnO, полученных подложке a-Al2O3 c пленочным подслоем Zn0,97Ga0,03O толщиной 50 нм при использовании пленки катализатора (Cu) эквивалентной толщиной 1 нм. Изображения выполнены перпендикулярно поверхности - a) и под углом 60о к поверхности - 1 b).

Установлено, что тип морфологии коренным образом изменяется в зависимости от толщины слоя катализатора в диапазоне 1 - 4 нм. Так, при использовании более тонких слоев катализатора (1 нм) формируются массивы стержней, ориентированных в перпендикулярном к подложке направлении (рис. 2). Длина таких стержней лежит в диапазоне 4 - 7 мкм, а диаметр - в диапазоне 150 - 250 нм. Плотность массива составляет ~ 0,5 мкм-2. В плоскости подложки стержни имеют гексагональную огранку.

Все стержни имеют массивные основания пирамидальной формы диаметром ~ 1 мкм и высотой ~ 2 мкм (рис. 2 b). Гексагональная огранка стержней и их оснований в плоскости подложки прямым образом свидетельствует о том, что стержни ориентированы кристаллографической осью 6 порядка (она же ось с) в перпендикулярном к подложке направлении.

При увеличении толщины слоя катализатора до 3 нм полностью изменяется кристаллографическое направление, в котором происходит рост стержней. Так, из рис. 3 a) видно, что стержни ориентированы друг относительно друга под углами, кратными 60 о. Это свидетельствует о том, что в плоскости подложки рост происходит в направлении, параллельном кристаллографической оси типа a. В гексагональной сингонии (к которой и принадлежит ZnO со структурой вюрцита) существует 3 оси типа а - a1, a2 и a3, развернутых друг относительно друга на угол 120о в плоскости, перпендикулярной оси с, и существует 6 кристаллографических направлений, соответствующих положительным и отрицательным направлениям осей а. Соответственно, углы между этими направлениями кратны 60о.

Отсюда очевидно следует предположение о том, что рост стержней происходит в направлении, параллельном кристаллографической оси а. Однако, из электронно-микроскопического изображения, выполненного под углом к поверхности образца (рис. 3 b) видно, что стержни не ориентированны в направлении, непараллельном подложке и имеют некоторый угол с ее поверхностью. Кристаллографическая ось a стержней лежит в плоскости поверхности подложки. Из данных фактов следует, что рост стержней происходит в направлении, лежащем в плоскости, перпендикулярной к подложке и параллельной оси а. Другими словами, рост происходит в смешанном наплавлении r = xa+yc, где x и y некоторые коэффициенты линейной векторной суммы, a и c единичные векторы осей a и c, соответственно.

Случай такого взаимосогласованного наклонного роста стержней может представлять существенный интерес при разработке устройства с перекрывающимися стержнями оксида цинка, полученными на микроструктурированных проводящих подслоях. Длины стержней при данном типе роста лежат в широком диапазоне 3 - 12 мкм. Поэтому, при характерных размерах зазоров микроструктурированных подслоев 5 мкм. могут быть достигнуты эффективное перекрывание и контакт стержней.

Рис. 3. SEM-изображение наклонных стержней ZnO, полученных подложке a-Al2O3 c пленочным подслоем Zn0,97Ga0,03O толщиной 50 нм при использовании пленки катализатора (Cu) эквивалентной толщиной 3 нм. Изображения выполнены перпендикулярно поверхности - a) и под углом 60о к поверхности - 1 b).

Выводы

В результате проведенных исследований была установлена зависимость морфологии массивов стержней, получаемых методом карботермического синтеза, от количества (эквивалентной толщины пленки) катализатора роста (в данном случае Cu). Показано, что применение более тонких (~ 1 нм) слоев катализаторов позволяет получать массивы вертикально ориентированных стержней ZnO со средней длиной в диапазоне 4 - 7 мкм, диаметром в диапазоне 150 - 250 нм и плотностью поверхностного распределения ~ 0,5 мкм-2. При увеличении толщины слоя Cu до 3 нм рост стержней происходит под углом к поверхности со взаимной ориентацией стержней в плоскости поверхности подложки под углами, кратными 60о.

Работа выполнена при финансовой поддержке Минобрнауки, грант ФЦП «Проведение центром коллективного пользования научным оборудованием «Высокие технологии» Южного федерального университета поисковых научно-исследовательских работ в области создания экологически чистых технологий получения новых активных нано- и микроструктурированных материалов для использования в современной сенсорике», госконтракт № 16.552.11.7024.

Литература

[1] Jinhui Song, Xudong Wang, Elisa Riedo, and Zhong L. Wang // J. Phys. Chem B. 2005. V. 109. N. 20.

[2] S.H. Dalal, D.L. Baptista, K.B.K. Teo, R.G. Lacerda, D.A. Jefferson, and W.I. Milne // Nanotechnology. 2006. V. 17. P. 4811-4818.

[3]. R.S. Wagner, W.C. Ellis // Appl. Phys. Lett. 1964. V. 4. P. 89.

[4]. E.I. Givargizov // J. Crystal Growth. 1975. V. 31. P. 20.

[5]. Н.В. Лянгузов, В.Е. Кайдашев, Е.М. Кайдашев, К.Г. Абдулвахидов. // Письма в ЖТФ. 2011. Т. 37. В. 5. С. 1-8.

[6]. Н.В. Лянгузов, А.Г. Дрюков, Е.М. Кайдашев, И.В. Галлий. Получение и исследование морфологии массивов микро- и наностержней ZnO на подложках Si с пленочным подслоем ZnO // Инженерный вестник Дона. 2011. №4.

Размещено на Allbest.ru

...

Подобные документы

  • Метод синтеза углеродных нанотрубок - catalytic chemical vapor deposition (CCVD). Способы приготовления катализатора для CCVD метода с помощью пропитки и золь-гель метода. Синтез пористого носителя MgO. Молекулярные нанокластеры в виде катализатора.

    курсовая работа [1,4 M], добавлен 11.06.2012

  • Отличие условий синтеза метанола от условий синтеза высших спиртов. Стадии процесса и их тепловой эффект. Влияние вида катализатора на параметры, скорость и глубину процесса. Синтез метанола на цинк-хромовом катализаторе. Схемы синтеза метанола.

    реферат [748,6 K], добавлен 15.06.2010

  • Исследование свойств аммиака как нитрида водорода, бесцветного газа с резким запахом и изучение физико-химических основ его синтеза. Определение активности катализатора синтеза аммиака, расчет материального и теплового баланса цикла синтеза аммиака.

    курсовая работа [267,4 K], добавлен 27.07.2011

  • Общие и мягкие методы синтеза енаминов. Получение енаминов при помощи конденсации альдегидов и кетонов с вторичными аминами под действием кислот Брёнстеда или Льюиса в качестве катализатора. Сущность прямого каталитического превращения амида в енамин.

    курсовая работа [563,0 K], добавлен 09.12.2014

  • Исследование влияния параметров метода химического осаждения на структуру, толщину, морфологию поверхности и эксплуатационные характеристики тонких пленок кобальта из металлоорганического соединения с заданными магнитными и электрическими свойствами.

    дипломная работа [5,8 M], добавлен 09.07.2014

  • Изучение метода синтеза соединений с простой эфирной связью, меркаптанов и аминов. Исследование реакций бимолекулярного нуклеофильного замещения. Анализ условий синтеза меркаптанов из хлорпроизводных. Технология жидкофазного синтеза. Реакционные узлы.

    презентация [137,2 K], добавлен 23.10.2014

  • Гидролитическая поликонденсация органоалкоксисиланов. Стерические, индукционные эффекты. Гидролиз в присутствии кислоты и щелочи, как катализатора. Механизм реакций конденсации. Влияние катализатора и растворителя. Получение диметилтетраэтоксидисилоксана.

    дипломная работа [3,2 M], добавлен 17.06.2014

  • Физико-механические, химические свойства и молекулярное строение полипропилена - полимера пропилена (пропена), выпускающегося в виде порошка белого цвета или гранул. Химизм получения полипропилена кислотной полимеризацией пропилена. Вид катализатора.

    реферат [142,9 K], добавлен 13.12.2011

  • Описание физико-химических свойств окиси этилена – одного из самых реакционноспособных органических соединений, который относится к циклическим простым эфирам. Процесс синтеза оксида этилена. Выбор катализатора. Технологическая схема реакционного узла.

    контрольная работа [19,7 K], добавлен 13.12.2011

  • Производство изопропилбензола как одного из важнейших продуктов нефтехимического синтеза. Техническая характеристика сырья, полуфабрикатов и продуктов. Механический расчет отверстия и толщины обечайки корпуса, работающей под внутренним давлением.

    дипломная работа [292,7 K], добавлен 22.05.2015

  • Характеристика сырья, материалов, реагентов, полупродуктов. Фазовый состав промотированных железно-оксидных катализаторов, находящихся в атмосфере паров углеводородов и воды. Приготовление жидкого стекла. Материальный баланс железо-оксидного катализатора.

    дипломная работа [3,0 M], добавлен 16.03.2011

  • Промышленное производство бутадиена из этилового спирта в присутствии бифункционального катализатора. Характеристика бутадиена и область его применения. Подготовка алюмохромового катализатора к работе. Продукт термохимической активации гидраргиллита.

    контрольная работа [20,9 K], добавлен 13.01.2014

  • Преимущество электрохимического метода синтеза комплексных соединений. Выбор неводного растворителя. Принципиальная схема синтеза и конструкция электрохимической ячейки. Основные методы исследования состава синтезированных комплексных соединений.

    курсовая работа [1,2 M], добавлен 09.10.2013

  • Особенности синтеза природных соединений - алкалоидов азафеналенового ряда, которые продуцируются "божьими коровками". Методы полного синтеза алкалоидов пергидро- и декагидро- азафеналенового ряда. Метатезис как метод создания циклических структур.

    курсовая работа [2,8 M], добавлен 24.05.2012

  • Расчет полезного объема реактора и определение направлений оптимизации технологического процесса по приготовлению катализатора гидрохлорирования ацетилена. Составление материального и теплового баланса процесса и его технико-экономическое обоснование.

    дипломная работа [1,3 M], добавлен 05.12.2013

  • Физические свойства метил-трет-бутилового эфира (МТБЭ), способы его синтеза с использованием различных катализаторов. Сырье для промышленного производства МТБЭ, технологии его получения. Расчет теплового и материального балансов установки синтеза МТБЭ.

    курсовая работа [418,2 K], добавлен 07.01.2013

  • Влияние кислорода на полимеризацию с катализаторами. Особенности образования соединений ванадия высшей валентности. Зависимость эффективных констант скорости полимеризации этилена. Порядок подачи компонентов катализатора и кислорода в реакционную зону.

    статья [362,6 K], добавлен 22.02.2010

  • Пожарная опасность выхода горючих веществ из нормально работающих технологических аппаратов. Полимеризация этилена и пропилена методом низкого давления с использованием в качестве катализатора слабого раствора триэтилаллюминия в бензине и циклогексане.

    курсовая работа [43,9 K], добавлен 06.01.2014

  • Перспективные методы синтеза нанокристаллических оксидов. Гидротермальный синтез. Микроэмульсионный метод. Плазмохимический синтез оксидов, сложных композиций металлов. Метод электрического взрыва проводников. Строение и форма ультрадисперсных частиц.

    реферат [562,9 K], добавлен 04.02.2009

  • Обзор именных реакций, направленных на получение циклических соединений. Разработка схемы синтеза ценного интермедиата для синтеза ряда биологически активных веществ. Увеличение региоселективности при циклизации использованием диизопропилового эфира.

    дипломная работа [602,3 K], добавлен 09.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.