Флуоресцентные зонды для изучения биохимических процессов

Схема взаимодействия зонда с молекулой, механизм тушения флуоресценции. Назначение, классификация и критерии выбора флуоресцентных зондов. Применение индуктивно-резонансного переноса энергии для получения информации об изменениях в биологической мембране.

Рубрика Химия
Вид доклад
Язык русский
Дата добавления 09.06.2017
Размер файла 195,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Флуоресцентные зонды для изучения биохимических процессов

Юрченко Дарья

План

Введение

1. Схема взаимодействия зонда с молекулой. Механизмы тушения флуоресценции

2. Назначение, классификация и критерии выбора флуоресцентных зондов

3. Пример использования Флуоресцентных зондов. Флуоресцентные зонды в медицине для изучения биохимических процессов

Список использованных источников

Введение

Со времени зарождения молекулярной спектроскопии существуют два взаимодополняющих направления изучения спектрально-люминесцентных свойств многоатомных органических соединений. Одно направление характеризуется исследованием мономолекулярных свойств. В этом случае предпринимаются меры по максимальному уменьшению взаимодействия исследуемого соединения с окружающей средой - разреженные пары в газовой фазе, «инертные» растворители, матрицы Шпольского и т.д. Однако в подавляющем числе случаев научных и прикладных исследований молекула находится в средах с межмолекулярным взаимодействием. В связи с этим обстоятельством сформировалась спектроскопия межмолекулярных взаимодействий. Одним из фундаментальных исследований органических молекул в области оптики и спектроскопии является установление взаимосвязи их фотофизических свойств с особенностями их электронного и структурного строения, межмолекулярных взаимодействий.

Флуоресцентные зонды - обширный класс органических соединений. Молекулярные зонды очень широко используются в различных научных исследованиях и имеют большое прикладное значение. С их помощью можно анализировать процессы, происходящие на молекулярном и субмолекулярном уровнях. Метод флуоресцентных зондов широко используется при решении ряда специфических задач, а также при исследовании нефлуоресцирующих или слабо флуоресцирующих веществ. Флуоресцентные зонды широко используются в биофизических исследованиях, однако до последнего времени еще не нашли массового применения в практической медицине в форме новых диагностических методов. Между тем существенное, принципиальное отличие флуоресцентных зондов состоит в том, что традиционные методы лабораторного анализа, как правило, связаны с измерением количества молекул или клеток того или иного вида, тогда как флуоресцентные зонды способны сообщить информацию о физико-химическом состоянии молекул и клеток.

Ряд флуорофоров способны изменять свои флуоресцентные параметры при взаимодействии с биосубстратами. Параметры люминесценции флуоресцентных зондов меняются в зависимости от окружающей их среды. Благодаря использованию искусственных флуорофоров - флуоресцентных зондов - в методе флуоресцентной спектроскопии появляется возможность оценивания конформационного состояния белков, физического состояния мембранных липидов непосредственно в ткани, процессов передачи энергии между молекулами, исследования молекулярных механизмов возникновения и развития патологических процессов, действия на организм биологически активных веществ и лекарственных препаратов.

Для исследования фотофизических свойств молекул необходимо получить как можно более полную информацию о геометрической структуре (пространственном строении), дипольном моменте основного и возбужденного состояний, распределении электронной плотности (электронном строении), природе электронных состояний, спектрах поглощения и люминесценции, центрах взаимодействия с протонодонорным растворителем в основном и возбужденном состояниях, константах скоростях фотопроцессов и квантового выхода флуоресценции. Эти характеристики часто существенно зависят от способности молекулы к межмолекулярным взаимодействиям, поэтому необходимо знать как свойства самой молекулы, так и свойства растворителя.

1. Схема взаимодействия зонда с молекулой. Механизмы тушения флуоресценции

Согласно своему названию, флуоресцентный зонд имеет целью передавать исследователю информацию о среде, в которой он находится. Флуоресцентным зондом называется молекулярная конструкция, которая изменяет один из параметров флуоресценции (интенсивность, время жизни, максимум спектра флуоресценции), когда связывается со своей мишенью. Флуоресцентные зонды являются удобным инструментом для визуализации и квантификации распределения химических веществ, например сигнальных молекул в клетках. флуоресценция индуктивный энергия мембрана

Флуоресцентный зонд состоит из двух основных компонентов: 1) рецептора, который связывается с молекулой, которую надо обозначить (в аналитической химии её называют аналитом); 2) флюорофора, который реагирует на изменение окружения, меняя флуоресценцию. Существует большое количество механизмов, которые способны трансформировать связывание между рецептором и аналитом в изменение флуоресцентного сигнала. Например, при связывании рецептора с аналитом может варьироваться конформация молекулы, что приводит к удлинению или сокращению системы сопряжённых р-связей. Изменение конформации молекулы может влиять на расстояние между ФРПЭ-парой, что также приведёт к заметным изменениям во флуоресценции. Образование новых координационных связей между рецептором и аналитом может активировать/блокировать перенос электрона в возбуждённом состоянии (англ. photoinduced electron transfer), что является одним из механизмов тушения флуоресценции. Существуют также другие механизмы.

Флуоресцентный зонд может по-разному изменять флуоресценцию при связывании с аналитом, что схематично показано на рисунке: флуоресценция может расти (случай А), угасать (В) или полностью изменить один из параметров, например, цвет (случай С).

Рис.1. Возможный ответ флуоресцентного зонда на связывание с аналитом

Примерами для первого случая (рост флуоресценции в присутствии аналита) являются многочисленные производные флуоресцеина и родамина в закрытой лактонной форме. Раскрытие лактонов с образованием открытой флуоресцентной формы при реакции с такими веществами, как перекись водорода, сероводород или оксид азота (NO) является методом выявления этих биологически важных молекул в живых организмах. Примером для второго случая (уменьшение флуоресценции при взаимодействии с аналитом) являются флуоресцентные зонды на хлорид-ионы: флуоресценция многих производных хинолина уменьшается в присутствии ионов хлора. Наконец, примером для третьего случая является Fura-2, один из первых ратиометрических зондов для ионов кальция, который меняет цвет флуоресценции при изменении концентрации ионов Ca2+ в среде.

В некоторых случаях флуоресцентный зонд реагирует не на присутствие какого-то отдельного химического вещества, а изменение физических параметров среды, в которой он находится (температура, полярность, вязкость). Важным примером являются сольватохромные флуоресцентные красители -- соединения, меняющие цвет флуоресценции в зависимости от полярности окружения. Сольватохромные флуоресцентные красители стали важным инструментом исследования липидного состава и фазовых переходов в липидных мембранах клеток. Другая группа соединений, которую называют флуоресцентными молекулярными роторами, меняет интенсивность флуоресценции в зависимости от вязкости среды. Интенсивность флуоресценции очень низка в обычных растворителях, тогда как при высоких значениях динамической вязкости среды интенсивность флуоресценции возрастает в десятки раз. С помощью флуоресцентных молекулярных роторов и конфокальной флуоресцентной микроскопии стало возможным исследовать вязкость среды внутри живых клеток. В течение последних лет флуоресцентные зонды стали незаменимыми средствами исследования живых клеток, обогатив клеточную биологию новыми быстрыми и точными методами количественного анализа.

2. Назначение, классификация и критерии выбора флуоресцентных зондов

Имеют место требования к флуоресцирующему хромофору, которые накладывают ограничения на применимость метода флуоресцентного зондирования. При выборе зонда исследователю следует убедиться в том, что область поглощения выбранного хромофора не перекрывается с областями поглощения компонентов изучаемого биосубстрата, при этом не должно происходить никакого влияния на свойства самого биообъекта со стороны ФЗ. Необходимым условием является различие в параметрах флуоресценции для свободного и связанного зонда, а также соблюдение условий передачи энергии возбуждения в донорно-акцепторной паре.

В настоящее время насчитывается не менее 200 соединений - флуоресцентных зондов, которые условно делятся на три группы в зависимости от величины дипольного момента и наличия заряженных частиц. Для групп будет наблюдаться различное расположение зонда в субстрате: гидрофобные и амфифильные зонды будут различно локализовываться на поверхности раздела биосубстрат-растворитель. Основываясь на этом, происходит отбор необходимых молекул-зондов в зависимости от цели и объекта исследования. Важно отметить, что при использовании в биологии и биофизике ФЗ подбираются таким образом, чтобы они имели возможность связываться с белками в наиболее активных центрах.

Одним из наиболее важных предпосылок чувствительности зонда к окружению является его применение для изучения биологических структур (мембраны, белки, иные компоненты клетки), с которыми ФЗ связывается нековалентными связями. Интенсивность и время жизни флуоресценции зонда характеризуют подвижность сольватной оболочки, поляризация флуоресценции - вращательную подвижность, ориентацию и вязкость микроокружения зонда.

По эффективности переноса энергии от зонда-донора к зонду-акцептору, находящихся по разные стороны от биологической мембраны, решается задача о нахождении её толщины. Флуоресцентные методы, с использованием зондов, позволяют решить ряд задач клинической диагностики (флуоресцентная эндоскопия), экологического контроля и физико-химического анализа.

В настоящее время известно достаточно большое число соединений, которые применяются в качестве ФЗ. Среди них: 1-анилинонафталин-8-сульфонат (1,8-АНС), пирен, перилен, 4-(n-диметиламиностирил)-N-метилпиридиния (ДСМ), толуинонафталин сульфонат (ТНС), n-толуолсульфонат 4-(n-диметиламиностирил)-1-гексилпиридиния (ДСП), пирен, дифенилгексатриен (ДФГ), 3-метоксибензантрон (МБА), Auramine O, 4-диметиламинохалкон (ДМХ), 6-додеканоил-2-диметиламинонафталин (ЛАУРДАН / LAURDAN), 6-пропинил-2-диметиламинонафталин (ПРОДАН / PRODAN), 2-диметиламинoнафталин (ДАН / DAN), перилен и др.

В настоящее время наиболее применяемыми в биохимических и биофизических исследованиях являются молекулы ЛАУРДАН и ПРОДАН. Эти молекулы в своей основе являются производными нафталина.

Рис.2. Структура молекулы ЛАУРДАН

Интерес к выбранным молекулам объясняется экстремально-большим сдвигом в спектрах флуоресценции и большим изменением величины квантового выхода флуоресценции при смене полярности растворителя. Практическое применение изучаемых зондов связано с их многоцентровостью к образованию комплексов с растворителями.

Рис. 3. Структура молекулы ПРОДАН

3. Пример использования Флуоресцентных зондов. Флуоресцентные зонды в медицине для изучения биохимических процессов

С помощью флуоресцентных зондов можно исследовать молекулярные механизмы возникновения и развития патологических процессов, действие на организм биологически активных веществ и лекарственных препаратов. Флуоресцентные зонды применяются также для диагностики и прогноза развития заболеваний, выявления факторов риска и контроля эффективности лечения. Зондовая флуоресценция чувствительна к структурно-функциональным изменениям в биологических мембранах, микровязкости ее липидного бислоя, связыванию с белками и другими веществами, структурным перестройкам в белках, изменению мембранного потенциала и концентрации внутри-клеточного кальция и др. Анализируя спектр флуоресценции клеток и мембран, связанных с зондом, можно определить полярность микроокружения флуорофора. Интенсивность и время жизни флуоресценции зонда характеризуют подвижность сольватной оболочки, поляризация флуоресценции - вращательную подвижность, ориентацию и вязкость микроокружения зонда. Тушение флуоресценции зонда посторонними веществами позволяет установить доступность флуорофора для тушителя, его локализацию в белках и мембранах клеток и их проницаемость для тушителей, скорость диффузии. По переносу энергии возбуждения с мембранных белков на флуоресцентный зонд и по степени эксимеризации зонда можно определить расстояние между флуорофорами и вязкость среды, окружающей зонд.

Одним из важнейших звеньев в молекулярном механизме действия на организм биологически активных соединений является мембрана. С помощью мембранных зондов можно определить сродство лиганда к мембране, скорость проникновения через нее и его локализацию в клетках и тканях, выяснить связь проницаемости лиганда с его активностью, изучить его действие на структуру и физико-химические свойства мембраны и др. К мембранным зондам относятся такие вещества, как 1-анилинонафталин-8-сульфонат (АНС), пирен, перилен, 4-(n-диметиламиностирил)-N-метилпиридиния (ДСМ), n-толуолсульфонат 4-(n-диметиламиностирил)-1-гексилпиридиния (ДСП) и т. д. Такие зонды позволяют непосредственно наблюдать за процессом проникновения веществ через мембрану, встраиваясь в нее и меняя свою флуоресценцию под действием различных факторов и соединений.

Основным механизмом, позволяющим с помощью зондов получить информацию об исследуемом объекте - мембране, является индуктивно-резонансный перенос энергии, т. е. энергии возбужденного состояния от донора к акцептору, который определяется в основном диполь-дипольными взаимодействиями между ними. Такой обмен энергии может осуществляться либо между различными молекулами, либо между частями одной и той же молекулы. Скорость переноса энергии зависит от степени перекрывания спектра испускания донора со спектром поглощения акцептора, относительной ориентации дипольных моментов переходов и расстояния между молекулами. Данный перенос энергии является безызлучательным и содержит богатую информацию, касающуюся строения молекул донорно-акцепторных пар. Любые явления, влияющие на расстояние между донором и акцептором, будут воздействовать на скорость переноса энергии, а следовательно, позволят их количественно охарактеризовать.

Так, на основании изучения индуктивно-резонансного переноса энергии между двумя хромофорами, локализованными в разных участках эритроцитарной мембраны, было сделано заключение, что под действием радиации в ней уменьшается эффективная толщина гидрофобной области. В дальнейшем оно подтверждено исследованием параметров флуоресценции зондов - пирена и 1,6-дифенил-1,3,5-гексатриена (ДФГТ) в облученных мембранах эритроцитов крыс. После облучения происходило уменьшение флуоресценции зондов и времени жизни возбужденного состояния по сравнению с контрольной группой вследствие динамического тушения водой. При исследовании физико-химического состояния мембран жировой ткани и печени крыс в отдаленные сроки после г-облучения и структурных изменений мембран было обнаружено следующее. За счет переноса энергии с мембранных триптофанилов на пирен при длине волны возбуждения 286 нм наблюдали флуоресценцию зонда, локализованного в прибелковой части липидного бислоя (аннулярный липид), при возбуждении с длиной волны 330 нм - пирена, локализованного как вблизи белка, так и в липидном слое (общий липид). Рассчитанный коэффициент эксимеризации пирена позволил установить структурную модификацию плазматических мембран жировой ткани и печени крыс после однократного г-облучения в дозе 1 Гр, выражающуюся в увеличении микровязкости липидной фазы мембран как в прибелковой области, так и в области суммарного липида. Для изучения структурных перестроек в мембранах эритроцитов, митохондрий, жировой ткани и печени крыс после радиационного воздействия использовался не только пирен, но и другие флуоресцентные мембранные зонды (АНС, ТНС (2-n-толуидиннафталин-6-сульфоновая кислота), ДМХ (4-диметиламинохалкон), ДФГТ, перилен).

С помощью механизма индуктивно-резонансного переноса энергии было изучено структурное и физико-химическое состояние мембран эритроцитов у пациентов с хроническими заболеваниями печени. Выявлено уменьшение эффективности переноса энергии с мембранных триптофанилов на пирен у этих больных по сравнению с контрольной группой, что выражалось в снижении количества белка, доступного тушению зондом. Уменьшение параметра эксимеризации пирена свидетельствовало об увеличении микровязкости липидного бислоя мембран и уменьшении его текучести. Полученные данные позволили сделать вывод о том, что при хронических заболеваниях печени происходят значительные структурные перестройки в белках мембран эритроцитов.

Мембранные зонды можно использовать при диагностике таких заболеваний, как инфаркт миокарда, нестабильная стенокардия, нейроциркуляторная дистония по гипертензивному типу, хронический алкоголизм. Анализ параметров связывания зондов ДСМ и ДСП-6 с мембранами эритроцитов позволил выявить структурно-функциональные изменения мембран и дифференцировать отдельные группы больных при перечисленных заболеваниях.

При гипоксическом синдроме также были зафиксированы изменения в микровязкости мембран эритроцитов и уменьшение интенсивности флуоресценции мембранного зонда пирена.

Такие зонды, как АНС и пирен, использовались для выявления нарушений в структуре мембран клеток и изменения мембранного потенциала при гипертонической болезни, экспериментальном гипертиреозе и миокардите, химическом канцерогенезе. С помощью пирена обнаружены нарушения структуры микросом печени при авитаминозе А. С помощью флуоресцентного зонда нистатина у больных гломерулонефритом было показано снижение интенсивности флуоресценции зонда в суспензии эритроцитов, что также позволило оценить структурно-функциональное состояние мембран.

Нарушение переноса кальция через мембраны лимфоцитов было выявлено при бронхиальной астме и других пульмонологических заболеваниях с помощью зонда тетрациклина. С помощью МБА (3-метоксибензантрон), пирена и АНС различали популяции Т- и В-лимфоцитов, а также субпопуляции Т-лимфоцитов при бронхиальной астме. Выявлено снижение интенсивности флуоресценции зонда в лимфоцитах в разной степени в зависимости от формы заболевания. Данный тест позволил также оценить характер терапевтических воздействий. Акридиновый оранжевый и ДСМ эффективно применялись для оценки стадии аллергического процесса и определения чувствительности человека к конкретному антигену.

Для исследования злокачественных новообразований применялись такие зонды, как тетрациклин, флуоресцеин, МБА, риодипин. Высокая чувствительность флуоресцентного метода была продемонстрирована в определении ингибиторов холинэстеразы. Авторами оценивалась интенсивность флуоресценции комплекса обратимого ингибитора-флуорофора - этидиум бромида с бутирилхолинэстеразой в присутствии ингибитора такрина. Определение активности холинэстеразы широко используется при разработке лекарственных препаратов для лечения болезни Альцгеймера, контроля содержания фосфорорганических пестицидов, обладающих антихолинэстеразным действием в воде и пищевых продуктах.

Одним из используемых в медицине методов является флуоресцентный метод определения эффективной концентрации альбумина в крови. Альбумин в крови выполняет функцию связывания и транспорта к органам и тканям различных веществ, таких как билирубин, жирные кислоты, стероидные гормоны, производные аминокислот, лекарственные препараты, ксенобиотики и др. Известно, что нарушение связывающей способности альбумина является причиной различных патологических процессов. В основе данного флуоресцентного метода лежит использование специального флуоресцентного красителя - N-карбоксифенилимида диметиламинонафталевой кислоты (К-35), интенсивность флуоресценции которого в сыворотке (плазме) крови пропорциональна числу свободных центров связывания молекулы альбумина. Эта величина значительно снижается при многих заболеваниях, но особенно сильно - при печеночной недостаточности. Выявлено также существенное снижение этих показателей при клинической характеристике эндогенной интоксикации при острых вирусных гепатитах и оценено влияние сопутствующих заболеваний на флуоресцентные показатели.

Были проведены также исследования флуоресцентных показателей для определения общей и эффективной концентрации альбумина в сыворотке и выпоте брюшной полости у больных перитонитом, которые выявили изменения данных показателей в динамике заболевания как в выпоте, так и в сыворотке. По результатам исследования сделан вывод о снижении концентрации альбумина в крови и выходе его в экссудат в измененном состоянии. Аналогичным методом был проведен сравнительный анализ альбумина и других клинико-лабораторных показателей при гнойном перитоните. Показано значительное уменьшение флуоресцентных показателей связывающей способности альбумина и увеличение индекса токсичности. Причем в большинстве случаев данные флуоресцентного анализа во многом превосходили общепринятые клинико-лабораторные тесты при оценке тяжести состояния больного и по прогнозу развития заболевания.

Прогностическая ценность альбуминового флуоресцентного теста была также подтверждена оценкой исхода острых отравлений психотропными средствами.

Свойства связывающих центров молекулы альбумина изучены у больных тревожной депрессией. С целью более детального исследования кроме флуоресцентного теста на альбумин применяли метод тушения флуоресценции зонда К-35 ионами нитрата. Выявлено достоверное уменьшение константы тушения флуоресценции и его доли, доступной тушению, в сыворотке больных по сравнению с контрольной группой, что свидетельствует о значительных изменениях в связывающих центрах альбумина при данной патологии.

Установлено также нарушение микровязкости липидного бислоя при окислении диамидом белков мембран эритроцитов. Повышение структурированности зоны аннулярных липидов и снижение полярности липидного бислоя выявлено при изучении мембран эритроцитов при воздействии перфтораном, обладающим кислородтранспортной функцией.

Список использованных источников

Литература:

1. Alexander P. Demchenko, Introduction to Fluorescence Sensing. -- Springer Science + Business Media B.V., 2009.

2. Cнntia, C., Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations,Biophysical Reviews, 2014, V. 6, 63-74.

Интернет-ресурсы:

1. https://ru.wikipedia.org/wiki/Флуоресценция_в_биологических_ исследованиях

2. http://www.mednovosti.by/journal.aspx?article=4071

Размещено на Allbest.ru

...

Подобные документы

  • Структура и свойства краун-эфиров и фуллеренов, их получение и применение. Схема установки для получения монослоев, приготовление растворов и построение р-А изотерм. Молекулярное моделирование и определение площади, занимаемой молекулой в плавающем слое.

    дипломная работа [2,0 M], добавлен 01.04.2011

  • Масс-спектрометрия с индуктивно связанной плазмой как наиболее универсальный метод анализа элементного состава вещества. Система ввода образца в виде раствора. Процессы, происходящие в индуктивно связанной плазме. Фильтрация и детектирование ионов.

    презентация [320,0 K], добавлен 07.06.2015

  • Процедура анализа содержания бериллия в природной воде, критерии выбора анализатора. Способ регистрации, отображения и использования информации. Назначение и структурная схема атомно-абсорбционного спектрометра. Источники составляющих полной погрешности.

    курсовая работа [473,1 K], добавлен 08.02.2012

  • Значение ионофоров в исследовании функционирования биологических мембран, их химическая природа и классификация. Стадии механизма переноса ионов. Препараты, функционально разобщающие окислительное фосфорилирование, их назначение и механизм действия.

    доклад [496,3 K], добавлен 16.12.2009

  • Типы галогенпроизводных углеводородов, их классификация, методы получения. Виды галогенкарбонильных соединений. Галоформная реакция. Схема получения йодоформа. Расчет выход продукта, его физические свойства и особенности применение в медицинской практике.

    курсовая работа [720,9 K], добавлен 15.12.2011

  • Особенности молекулярного, конвективного и турбулентного механизмов переноса молекул, массы и энергии. Расчет средней квадратичной скорости молекул и описание характера их движения, понятие масштаба турбулентности. Процедуры осреднения скорости молекул.

    реферат [4,6 M], добавлен 15.05.2011

  • Понятие аминокислот, их сущность, строение, история открытия, структура, свойства, классификация, назначение и применение. Аммиак, его определение, основные физические и химические свойства, особенности получения, применение и физиологическое действие.

    реферат [18,6 K], добавлен 17.12.2009

  • Основные методы разделения и выделения веществ при биохимических исследованиях. Количественное определение белка в сыворотке крови. Химическая природа нуклеопротеидов. Применение единиц СИ для выражения результатов клинико-биохимических исследований.

    учебное пособие [4,2 M], добавлен 11.03.2013

  • Атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой как простой и точный метод качественного и количественного анализа. Возбуждение и ионизация с последующим переходом в стабильное состояние. Интенсивность испускания волны данной длины.

    контрольная работа [285,1 K], добавлен 03.12.2010

  • Основные способы получения ацетилена, его применение химической промышленности, в области машиностроении и металлообработке. Схема современного генератора непрерывного действия системы "карбид в воду". Химизм процесса получения ацетилена из углеводородов.

    реферат [1,6 M], добавлен 01.01.2015

  • Обзор метода исследования различных объектов под действием ультрафиолетового облучения. Измерение интенсивности люминесценции атомов, ионов, молекул при их возбуждении различными видами энергии. Люминесцентные зонды и метки. Флуоресцирующие молекулы.

    презентация [767,3 K], добавлен 05.04.2018

  • Роль ароматических углеводородов и их производных. Сущность и механизм процесса деалкилирования толуола для получения бензола. Сырье и назначение. Конструктивное устройство и схема промышленной установки каталитического гидродеалкилирования толуола.

    презентация [164,3 K], добавлен 10.12.2016

  • Характеристика биодеградируемых (биоразлагаемых) полимеров - материалов, которые разрушаются в результате естественных природных (микробиологических и биохимических) процессов. Свойства, способы получения и сферы использования биодеградируемых полимеров.

    реферат [25,3 K], добавлен 12.05.2011

  • Создание катализаторов для процессов углекислотной и пароуглекислотной конверсии биогаза. Подбор параметров процессов для получения синтез-газа с регулируемым соотношением Н2/СО. Определение условий проведения взаимодействия метана с углекислотным газом.

    дипломная работа [1,2 M], добавлен 01.11.2014

  • Понятие биосенсоров. Медиаторы электронного транспорта. Циклическая вольтамперометрия. Приготовление растворимых медиаторов электронного транспорта. Формирование биоэлектродов. Определение электрохимической обратимости системы, коэффициента переноса.

    курсовая работа [344,7 K], добавлен 30.01.2018

  • Номенклатура аминов, их физические и химические свойства. Промышленные и лабораторные способы получения аминов. Классификация аминокислот и белковых веществ. Строение белковых молекул. Катализ биохимических реакций с участием ферментов (энзимов).

    реферат [54,1 K], добавлен 01.05.2011

  • Понятие электролиза, его практическое применение. Электролизные и гальванические ванны, их электроснабжение для получения алюминия. Применение электрохимических процессов в различных областях современной техники, в аналитической химии и биохимии веществ.

    презентация [772,0 K], добавлен 25.07.2015

  • Растительность болот и классификация торфа в заказнике. Метод определения органических веществ окситермография. Реагенты, вспомогательное оборудование. Методика определения влажности и зольности, элементного состава торфа, органического углерода мха.

    курсовая работа [472,5 K], добавлен 25.05.2016

  • Исследование физических свойств гетерофункциональных соединений, взаимосвязи химического строения и биологической активности. Классификация карбоновых кислот. Номенклатура ароматических гидроксикислот. Способы получения и медико-биологические свойства.

    презентация [588,3 K], добавлен 10.12.2012

  • Влияние гидроксидов d-металлов на электрохимические характеристики и скорость диссоциации молекулы воды в биполярной мембране. Методы исследования: вольт-амперометрия, частотный спектр электрохимического импеданса. Расчёт эффективных констант скорости.

    дипломная работа [1,9 M], добавлен 30.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.