Обмен веществ и энергии

Исследование химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. Метаболический цикл. Субстраты и интенсивность метаболизма. Характеристика биологических механизмов окисления в митохондриях.

Рубрика Химия
Вид лекция
Язык русский
Дата добавления 01.09.2017
Размер файла 310,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема Обмен веществ и энергии

План

1. Обмен веществ

2. Обмен энергии

3. Биологические механизмы окисления в митохондриях

1. Обмен веществ

Метаболизм, или обмен веществ - совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. В обмене веществ можно выделить два основных этапа: подготовительный - когда поступившее алиментарным путем вещество подвергается химическим превращениям, в результате которых оно может поступить в кровь и далее проникнуть в клетки, и собственно метаболизм, т.е. химические превращения соединений, проникнувших внутрь клеток.

Метаболический путь - это характер и последовательность химических превращений конкретного вещества в организме. Промежуточные продукты, образовавшиеся в процессе метаболизма, называются метаболитами, а последнее соединение метаболического пути - конечный продукт.

Процесс распада сложных веществ на более простые называется катаболизмом. Так, поступающие с пищей белки, жиры, углеводы под действием ферментов пищеварительного тракта распадаются на более простые составные части (аминокислоты, жирные кислоты и моносахариды). При этом высвобождается энергия. Обратный процесс, т. е. синтез сложных соединений из более простых называется анаболизмом. Он идет с затратой энергии. Из образовавшихся в результате пищеварения аминокислот, жирных кислот и моносахаридов в клетках синтезируются новые клеточные белки, фосфолипиды мембран и полисахариды.

Существует понятие амфиболизм, когда одно соединение разрушается, но при этом синтезируется другое.

Метаболический цикл - это метаболический путь, один из конечных продуктов которого идентичен одному из соединений, вовлеченных в этот процесс.

Частный путь метаболизма - совокупность превращений одного определенного соединения (углеводы или белки). Общий путь метаболизма - когда вовлекаются два и более вида соединений (углеводы, липиды и частично белки вовлечены в энергетический метаболизм).

Субстраты метаболизма - соединения, поступающие с пищей. Среди них выделяют основные пищевые вещества (белки, углеводы, липиды) и минорные, которые поступают в малых количествах (витамины, минеральные вещества).

Интенсивность метаболизма определяется потребностью клетки в тех или иных веществах или энергии, регуляция осуществляется четырьмя путями:

1) Суммарная скорость реакций определенного метаболического пути определяется концентрацией каждого из ферментов этого пути, значением рН среды, внутриклеточной концентрацией каждого из промежуточных продуктов, концентрацией кофакторов и коферментов.

2) Активностью регуляторных (аллостерических) ферментов, которые обычно катализируют начальные этапы метаболических путей. Большинство из них ингибируется конечным продуктом данного пути и этот вид ингибирования называется "по принципу обратной связи".

3) Генетический контроль, определяющий скорость синтеза того или иного фермента. Яркий пример - появление в клетке индуцибельных ферментов в ответ на поступление соответствующего субстрата.

4) Гормональная регуляция. Ряд гормонов способны активировать или ингибировать многие ферменты метаболических путей.

энергия метаболизм химический окисление

2. Обмен энергии

Живые организмы представляют собой термодинамически неустойчивые системы. Для их формирования и функционирования необходимо непрерывное поступление энергии в форме, пригодной для многопланового использования. Для получения энергии практически все живые существа на планете приспособились подвергать гидролизу одну из пирофосфатных связей АТФ. В связи с этим одна из главных задач биоэнергетики живых организмов это восполнение использованных АТФ из АДФ и АМФ.

Основной источник энергии в клетке - окисление субстратов кислородом воздуха. Этот процесс осуществляется тремя путями: присоединением кислорода к атому углерода, отщеплением водорода или потерей электрона. В клетках окисление протекает в форме последовательного переноса водорода и электронов от субстрата к кислороду. Кислород играет в этом случае роль восстанавливающегося соединения (окислителя). Окислительные реакции протекают с высвобождением энергии. Для биологических реакций характерны сравнительно небольшие изменения энергии. Это достигается за счет дробления процесса окисления на ряд промежуточных стадий, что позволяет запасать ее небольшими порциями в виде макроэргических соединений (АТФ). Восстановление атома кислорода при взаимодействии с парой протонов и электронов приводит к образованию молекулы воды.

Макроэргической, или богатой энергией, называют химическую связь, при разрыве которой высвобождается более 4 ккал/моль. При гидролитическом расщеплении АТФ до АДФ и фосфорной кислоты высвобождается 7,3 ккал/моль. Ровно столько же тратится для образования АТФ из АДФ и остатка фосфорной кислоты и это один из основных путей запасания энергии в организме.

3. Биологические механизмы окисления в митохондриях

Тканевое дыхание - это процесс потребление клетками тканей организма кислорода, который участвует в биологическом окислении. Такой вид окисления называют аэробным окислением. Если конечным акцептором в цепи переноса водорода выступает не кислород, а другие вещества (например, пировиноградная кислота), то такой тип окисления называют анаэробным. Т.о. биологическое окисление - это дегидрирование субстрата с помощью промежуточных переносчиков водорода и его конечного акцептора.

Дыхательная цепь (ферменты тканевого дыхания) - это переносчики протонов и электронов от окисляемого субстрата на кислород. Окислитель - это соединение, способное принимать электроны. Такая способность количественно характеризуется окислительно-восстановительным потенциалом по отношению к стандартному водородному электроду, рН которого равен 7,0. Чем меньше потенциал соединения, тем сильнее его восстанавливающие свойства и наоборот. Т. о. любое соединение может отдавать электроны только соединению с более высоким окислительно-восстановительным потенциалом. В дыхательной цепи каждое последующее звено имеет более высокий потенциал, чем предыдущее.

Дыхательная цепь состоит из:

1. НАД - зависимой дегидрогеназы;

2. ФАД- зависимой дегидрогеназы;

3. Убихинона (КоQ);

4. Цитохрмов b, c, a+a3 .

НАД-зависимые дегидрогеназы в качестве кофермента содержат НАД и НАДФ. Пиридиновое кольцо никотинамида способно присоединять электроны и протоны водорода.

ФАД и ФМН-зависимые дегидрогеназы содержат в качестве кофермента фосфорный эфир витамина В2 (ФАД).

Убихинон (КоQ) отнимает водород у флавопротеидов и превращается при этом в гидрохинон.

Цитохромы - белки хромопротеиды, способные присоединять электроны, благодаря наличию в своем составе в качестве простетических групп железопорфиринов. Они принимают электрон от вещества, являющегося немного боле сильным восстановителем, и передают его более сильному окислителю. Атом железа связан с атомом азота имидазольного кольца аминоксилоты гистидина с одной стороны от плоскости порфиринового цикла, а с другой стороны с атомом серы метионина. Поэтому потенциальная способность атома железа в цитохромах к связыванию кислорода подавлена.

В цитохроме с порфириновая плоскость ковалентно связана с белком через два остатка цистеина, а в цитохромах b и а, она ковалентно не связано с белком.

В цитохроме а+а3 (цитохромоксидазе) вместо протопорфирина содержатся порфирин А, который отличатся рядом структурных особенностей. Пятое координационное положение железа занято аминогруппой, принадлежащей остатку аминосахара, входящего в состав самого белка. В отличие от гема гемолгобина, атом железа в цитохромах может обратимо переходить из двух в трехвалентное состояние, это обеспечивает транспорт электронов.

Механизм работы электронтранспортной цепи

Наружная мембрана митохондрии (рис.1) проницаема для большинства мелких молекул и ионов, внутренняя почти для всех ионов (кроме протонов Н) и для большинства незаряженных молекул.

Все вышеперечисленные компоненты дыхательной цепи встроены во внутреннюю мембрану. Транспорт протонов и электронов по дыхательной цепи обеспечивается разностью потенциалов между ее компонентами. При этом каждое увеличение потенциала на 0,16 В освобождает энергию, достаточную для синтеза одной молекулы АТФ из АДФ и Н3РО4. При потреблении одной молекулы О2 образуется 3 АТФ.

Процессы окисления и образования АТФ из АДФ и фосфорной кислоты т.е. фосфорилирования протекают в митохондриях. Внутренняя мембрана образует множество складок - крист. Пространство органиченное внутренней мембраной - матриксом. Пространство между внутренней и наружной мембранами называется межмембранным.

Такая молекула содержит в себе три макроэргических связи..

В процессе транспорта электронов по дыхательной цепи высвобождается энергия, которая тратится на присоединение остатка фосфорной кислоты к АДФ с образованием одной молекулы АТФ и одной молекулы воды. В процессе переноса одной пары электронов по дыхательной цепи высвобождается и запасается в виде трех молекул АТФ 21,3 ккал/моль. Это составляет около 40 % высвободившейся при электронном транспорте энергии.

Такой способ запасания энергии в клетке называется окислительным фосфорилированием или сопряженным фосфорилированием.

Молекулярные механизмы этого процесса наиболее полно объясняет хемоосмотическая теория Митчелла, выдвинутая в 1961 году.

Механизм окислительного фосфорилирования (рис.2.):

1) НАД-зависимая дегидрогеназа, расположенная на матриксной поверхности внутренней мембраны митохондрий, отдает пару электронов водорода на ФМН-зависимую дегидрогеназу. При этом из матрикса пара протонов переходит также на ФМН и в результате образуется ФМН·Н2. В это время пара протонов, принадлежащих НАД выталкивается в межмембранное пространство.

2) ФАД-зависимая дегидрогеназа отдает пару электронов на КоQ, а пару протонов выталкивает в межмембранное пространство. Получив электроны, КоQ принимает из матрикса пару протонов и превращается в КоQ Н2. 3) КоQ Н2 выталкивает пару протонов в межмембранное пространство, а пара электронов передается на цитохромы и далее на кислород с образованием молекулы воды.

В итоге при переносе пары электронов по цепи из матрикса в межмембранное пространство перекачивается 6 протонов (3 пары), что ведет к созданию разницы потенциалов и разницы рН между поверхностями внутренней мембраны.

4) Разница потенциалов и разница рН обеспечивают движение протонов через протонный канал обратно в матрикс.

5) Такое обратное движение протонов ведет к активации АТФ-синтазы и синтезу АТФ из АДФ и фосфорной кислоты. При переносе одной пары электронов (т.е. трех пар протонов) синтезируется 3 молекулы АТФ (3).

Разобщение процессов дыхания и окислительного фосфорилирования происходит, если протоны начинают проникать через внутреннюю мембрану митохондрий. В этом случае выравнивается градиент рН и исчезает движущая сила фосфорилирования. Химические вещества-разобщители называются протонофорами, они способны переносить протоны через мембрану. К таковым относятся 2,4 -динитрофенол, гормоны щитовидной железы и др. (рис. 3).

Образовавшаяся АТФ из матрикса в цитоплазму переносится ферментами транслоказами, при этом в обратном направлении в матрикс переносится одна молекула АДФ и одна молекула фосфорной кислоты. Понятно, что нарушение транспорта АДФ и фосфата тормозит синтез АТФ.

Скорость окислительного фосфорилирования зависит, в первую очередь, от содержания АТФ: чем быстрее она расходуется, тем больше накапливается АДФ, тем больше потребность в энергии, и, следовательно, активнее идет процесс окислительного фосфорилирования. Регуляцию скорости окислительного фосфорилирования концентрацией в клетке АДФ называют дыхательным контролем.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика сущности ферментов, которые благодаря своим функциям обеспечивают быстрое протекание в организме огромного числа химических реакций. Особенности строения и функций фермента амилаза. Влияние ингибиторов и активаторов на активность амилазы.

    курсовая работа [1,8 M], добавлен 12.01.2011

  • Понятие об оксидазном типе окисления. Оксигеназный тип окисления. Роль микросомального окисления. Специфические превращения аминокислот в организме. Обезвреживание чужеродных веществ. Связывание в активном центре цитохрома. Восстановление железа в геме.

    презентация [175,5 K], добавлен 10.03.2015

  • Рассмотрение превращения энергии (выделение, поглощение), тепловых эффектов, скорости протекания химических гомогенных и гетерогенных реакций. Определение зависимости скорости взаимодействия веществ (молекул, ионов) от их концентрации и температуры.

    реферат [26,7 K], добавлен 27.02.2010

  • Химическая структура витамина В12, его источники и действие в организме. Описание и применение биологических и физико-химических (колориметрический, спектрофотометрический, хроматография) методов определения цианокобаламина в биологических организмах.

    курсовая работа [544,2 K], добавлен 06.07.2011

  • Основные условия процесса превращения одного или нескольких исходных веществ в отличающиеся от них по химическому составу или строению вещества. Протекание химических реакций при смешении или физическом контакте реагентов и участии катализаторов.

    презентация [693,8 K], добавлен 08.08.2015

  • Понятие и расчет скорости химических реакций, ее научное и практическое значение и применение. Формулировка закона действующих масс. Факторы, влияющие на скорость химических реакций. Примеры реакций, протекающих в гомогенных и гетерогенных системах.

    презентация [1,6 M], добавлен 30.04.2012

  • Зависимость химической реакции от концентрации реагирующих веществ при постоянной температуре. Скорость химических реакций в гетерогенных системах. Влияние концентрации исходных веществ и продуктов реакции на химическое равновесие в гомогенной системе.

    контрольная работа [43,3 K], добавлен 04.04.2009

  • Понижение температуры замерзания раствора электролита. Нахождение изотонического коэффициента для раствора кислоты с определенной моляльной концентрацией. Определение энергии активации и времени, необходимого для химической реакции между двумя веществами.

    курсовая работа [705,4 K], добавлен 26.10.2009

  • Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.

    реферат [74,3 K], добавлен 27.01.2009

  • Классификация реакций окисления. Изучение особенностей теплового эффекта реакций окисления. Гомогенное окисление по насыщенному атому углерода. Гомогенное окисление ароматических и нафтеновых углеводородов. Процессы конденсации по карбонильной группе.

    презентация [3,5 M], добавлен 05.12.2023

  • Методы построения кинетических моделей гомогенных химических реакций. Исследование влияния температуры на выход продуктов и степень превращения. Рекомендации по условиям проведения реакций с целью получения максимального выхода целевых продуктов.

    лабораторная работа [357,5 K], добавлен 19.12.2016

  • Сущность и виды окисления - химических реакций присоединения кислорода или отнятия водорода. Ознакомление с методами восстановления металлов в водных и соляных растворах. Изучение основных положений теории окислительно-восстановительных реакций.

    реферат [130,1 K], добавлен 03.10.2011

  • Тепловые эффекты химических реакций, а также основные факторы, влияющие на их динамику. Закон Гесса: понятие и содержание, сферы практического применения. Энтропия системы и анализ уравнения Больцмана. Направления химических реакций и энергия Гиббса.

    лекция [34,1 K], добавлен 13.02.2015

  • Ферменты - белки-катализаторы, регулирующие процессы жизнедеятельности и обмена веществ в организме. Строение ферментов, их специфичность к субстрату, селективность и эффективность, классификация. Структура и механизм действия ферментов; их применение.

    презентация [670,0 K], добавлен 12.11.2012

  • Функции липидов в организме, сущность и биохимия жирового обмена в организме. Взаимодействие углеводного и липидного обменов, роль L-карнитина. Характеристика факторов, продуцирующих нарушения обмена, улучшение его за счет физических упражнений.

    реферат [35,9 K], добавлен 17.11.2011

  • История развития микроволновой химии. Разработка специализированных микроволновых печей, предназначенных для осуществления химических реакций. Взаимодействие микроволнового излучения с веществами, его использование для проведения химических анализов.

    курсовая работа [410,0 K], добавлен 13.11.2011

  • Химическая реакция как превращение вещества, сопровождающееся изменением его состава и (или) строения. Признаки химических реакций и условия их протекания. Классификация химических реакций по различным признакам и формы их записи в виде уравнений.

    реферат [68,7 K], добавлен 25.07.2010

  • Понятие и условия прохождения химических реакций. Характеристика реакций соединения, разложения, замещения, обмена и их применение в промышленности. Окислительно-восстановительные реакции в основе металлургии, суть валентности, виды переэтерификации.

    реферат [146,6 K], добавлен 27.01.2012

  • Роль скорости химических реакций, образования и расходования компонентов. Кинетика химических реакций. Зависимость скорости реакции от концентрации исходных веществ. Скорость расходования исходных веществ и образования продуктов. Закон действующих масс.

    реферат [275,9 K], добавлен 26.10.2008

  • Витамины как микронутриенты. Понятие и значение в организме минеральных веществ. Взаимодействие минеральных веществ и витаминов между собой и друг с другом. Обмен железа в организме человека, механизм влияния аскорбиновой кислоты на усвоение элемента.

    курсовая работа [309,8 K], добавлен 11.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.