Диссоциация воды и гидролиз солей
Факторы, влияющие на процесс гидролиза. Ионное произведение воды. Соли слабых многоосновных кислот и сильных оснований. Ступенчатый гидролиз многозарядных ионов. Взаимодействие веществ с водой, приводящие к образованию слабодиссоциирующих веществ.
Рубрика | Химия |
Вид | лекция |
Язык | русский |
Дата добавления | 31.08.2017 |
Размер файла | 104,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция
Диссоциация воды и гидролиз солей
1. Ионное произведение воды
Вода--слабый электролит. Водородный показатель рН. Чистая вода, хотя и незначительно, но проводит электрический ток и является, следовательно, слабым электролитом. Процесс ее электролитической диссоциации выражается уравнением
H2O + H2O ? H3O+ + OH-
или более просто
H2O H+ + OH-
Константа диссоциации воды Кдисс.н,о==1,8 • 10-16 при 25°С представляет величину крайне малую, следовательно, практически все молекулы находятся в недиссоциированном состоянии, поэтому можно принять концентрацию нераспавшихся молекул равной общей молярной концентрации воды:
Подставляя значения Н2О и К при 250С, получим:
откуда
Произведение концентраций ионов водорода и гидроксила в воде и разбавленных водных растворах при постоянной температуре есть величина постоянная, называемая ионным произведением воды:
В чистой воде [H+] = [OH-], поэтому
или
При повышении температуры воды и растворов энергия молекул и колебательное движение атомов увеличивается. Связи в молекулах ослабляются, степень и константа диссоциации растут. Соответственно растет ионное произведение воды и концентрация ионов Н+ и ОН-. При 100° С в воде
В кислых или щелочных растворах равенство нарушается. В кислотной среде
а в щелочной
При подсчете [Н+] и [ОН-] из соотношений
удобнее пользоваться не абсолютными величинами Kw, [H+] и [ОН-], а их отрицательными десятичными логарифмами, обозначаемыми соответственно рК, рН и рОН:
Так как эти величины однозначно связаны между собой, то можно пользоваться только одной из них, вычисляя по две остальные. Из соображений практического удобства был выбран водородный показатель рН: большинство растворов, с которыми приходится иметь дело на практике, кислотные.
Определение рН имеет колоссальное значение как в технике, при химических превращениях, так и в медицине (кровь имеет рН 7,3-7,45). Любой значительный воспалительный процесс ведет к изменению рН крови. Обычно величину рН измеряют при помощи индикаторов - веществ, способных менять свою окраску в зависимости от кислотности среды (таблица 9). Современные измерения рН производятся при использовании электрохимических методов, точность которых составляет ±0,01 единицы рН. При помощи индикаторов в титриметрическом анализе определяют количество кислоты или щелочи, израсходованное в процессе реакции.
Таблица Интервал перехода и изменение окраски индикаторов
Индикатор |
Изменение окраски |
Интервал рН |
|
Метиловый оранжевыйБромкрезоловый зелёныйБромкрезоловый перпурныйБромтимоловый синийКрезоловый красныйФенолфталеинАлизариновый жёлтый |
Красный - жёлтыйЖелтый - голубойЖелтый - пурпурныйЖелтый - голубойЖелтый - красныйБесцветный - красныйЖелтый - лиловый |
3,1 - 4,43,8 - 5,45,2 - 6,86,0 - 7,67,2 - 8,88,3 - 10,010,0 - 12,0 |
2. Механизм гидролиза
Гидролизом называют реакции взаимодействия веществ с водой, приводящие к образованию слабодиссоциирующих веществ: слабых кислот или оснований, кислых или основных солей.
Результат гидролиза можно расценивать как нарушение равновесия диссоциации H2O. Рассмотрим процессы при растворении солей в воде. Соли, как правило,-- сильные электролиты, поэтому происходит их полная диссоциация на ионы, которые, в свою очередь, могут взаимодействовать с ионами Н+ или ОН- воды.
Следовательно, гидролиз солей протекает за счет взаимодействия ионов соли с водой. Этот процесс--частный случай реакций ионного обмена, когда в качестве реагента выступает вода.
ион вода соль кислота
3. Ступенчатый гидролиз многозарядных ионов
В зависимости от катионов и анионов соли можно разбить на ряд групп, различающихся между собой по характеру образующих эти соли кислот и оснований:
I. Соли слабой одноосновной кислоты и сильного однокислотного основания. Например, растворяется ацетат калия. Являясь сильным электролитом, он полностью диссоциирует на ионы, но вода также частично диссоциирует. Возможно возникновение следующего процесса:
K+ + CH3COO-
H2O OH-+H+
CH3 COOH
Так как уксусная кислота - слабый электролит, то при столкновении ее кислотных остатков с ион у ми Н+ воды, образуются недиссоциированные молекулы уксусной кислоты. Удаление из раствора 1цсти ионов Н+ вызывает сдвиг равновесия процесса диссоциации воды слева направо. Содержание ионов ОН- в растворе нарастает. Раствор приобретает щелочную реакцию. В ионном виде процесс изображается уравнением
В момент достижения равновесия применение закона действия масс приводит к выражению
Н [H2O] в разбавленных растворах - величина постоянная, поэтому произведение К[H2O] - тоже константа. Ее называют константой гидролиза Кгидр:
Константу гидролиза можно выразить через ионное произведение воды и константу диссоциации кислоты. Для этого умножим числитель и знаменатель на [H+] и запишем:
В результате гидролиза число образующихся молекул слабой кислоты равно числу оставшихся от молекул воды несвязанных ионов [ОН-]:
[СН3СООН] = [ОН-]
Концентрация ионов соли практически равна концентрации этой соли, так как сильные электролиты диссоциируют полностью:
[CH3COO-]=CCH3COOK
где С сн3соок -- концентрация соли в растворе.
Подставляем для Кгидр:
откуда
Концентрация ионов гидроксила в растворе соли слабой одноосновной кислоты и сильного однокислотного основания равна квадратному корню из произведения константы гидролиза соли на ее концентрацию. Так как
В тех случаях, когда константа диссоциации кислоты очень мала, нельзя пренебрегать в расчете частью ее анионов, связавшейся в недиссоциированные молекулы. В этом случае расчет ведут по более точному выражению
Откуда
II. Соли сильной одноосновной кислоты и слабого однокислотного основания. Примером такой соля является хлорид аммония. Он сильный электролит и диссоциирует полностью
Вода также частично диссоциирует
Столкновение ионов NH4+ с ионами ОН- приводит к образованию соединения NH4ОH, легко превращающееся в аммиак и воду. Общую схему процесса можно представить уравнением
или в ионной форме
Связывание ионов ОН~ из раствора вызывает сдвиг диссоциации воды слева направо. Концентрация ионов Н+ в растворе растет. Таким образом, гидролиз солей слабых однокислотных оснований и сильных одноосновных кислот создает кислую среду.
Рассуждая аналогично I случаю, получим
Подставим вместо [NH4ОH] равную ей концентрацию ионов [Н+], а вместо [NH4+] приближенно равную ей концентрацию соли Ссоль.
Получим
Если образующееся при гидролизе основание очень слабое, то расчет ведут по более точной формуле
III. Соли слабой одноосновной кислоты и слабого однокислотного основания. При растворении ацетата аммония в воде наступает его практически полная диссоциация:
Столкновение ионов NH4+ и СН3СОО- с молекулами воды приводит к образованию слабо диссоциирующих молекул соответственно слабого основания NH4ОH и слабой кислоты СН3СООН по схеме
Так как образующиеся вещества--слабые электролиты, то в результате соли слабых кислот и слабых оснований подвергаются почти полному гидролизу, а реакция среды в растворах определяется соотношением силы кислоты и основания. В ионной форме уравнение гидролиза соли может быть представлено уравнением
Применим к нему закон действия масс для момента равновесия
Это выражение можно упростить. Умножим числитель и знаменатель на ионное произведение воды
Константы диссоциации основания и кислоты выражаются соответственно
откуда следуют выражения для [N4+] и [СНзСОО-]
Чтобы получить формулу для расчета [Н+], проведем ряд последовательных преобразований. Из уравнения
Вместо [NH4ОH] подставим равную ей [СН3СООН], получим
Затем в константу диссоциации кислоты
введем вместо [СН3СОО-] равную ей [NН4+], получим
Умножаем числитель и знаменатель соотношения на [Н+] и после сокращения (СН3СООН] и преобразований получим
Из формулы видно, что концентрация ионов водорода в растворе соли слабой кислоты и слабого основания не зависит от концентрации раствора соли, а только от соотношения констант диссоциации кислоты и основания.
IV. Соль сильного основания и сильной кислоты. Такая соль в растворе диссоциирует полностью, например хлорид калия
В отличие от рассмотренных выше случаев ионы соли -- сильного электролита--не могут образовать с водой слабых электролитов, а раз нет взаимодействия с водой, то, следовательно, соли сильных кислот и сильных оснований гидролизу не подвергаются. Среда в растворе остается нейтральной.
Факторы, влияющие на процесс гидролиза.
Соль слабого многокислотного основания и сильной одноосновной кислоты. Например раствор FeCI3 содержит только ионы, так как эта соль в растворе диссоциирует полностью
Катион соли представляет собой катион слабого основания, поэтому его столкновение с гидроксильными ионами воды приводит к образованию слабого электролита. Так как вода диссоциирует крайне незначительно, то столкновение ионов Fe3+ с тремя ионами ОН-невероятно. Образование Fе(ОН)3 в результате гидролиза при обычных условиях невозможно. Очевидно, процесс взаимодействия ионов соли с молекулами воды должен протекать по стадиям
(I стадия)
Образовавшийся ион (FeOH)2+ может столкнуться еще с одним ионом ОН-
(II стадия)
Возможность для осуществления различных этапов гидролиза не одинакова. Процессу гидролитического взаимодействия по I стадии ничто не препятствует, поэтому он протекает легко: Кр=8,9 • 10-4, и в растворе накапливаются ионы Н+. Процесс электролитической диссоциации воды сдвигается справа налево. Концентрация ионов ОН- понижается. Вероятность столкновения ионов (FeOH)^ с ионами ОН- в растворе становится незначительной, процесс по II стадии идет гораздо в меньшей степени: Кр=4,9 • 10-7. В итоге II стадии величина ОН- становится еще меньше, и третий эта'п гидролиза становится еще менее вероятным. Практически он самопроизвольно не осуществляется
(III стадия)
Из уравнений всех трех этапов процесса видно, что ионы С1- участия в реакции не принимают, поэтому влияния на процесс гидролиза не оказывают.
Гидролиз соли многокислотного основания и одноосновной кислоты имеет свои особенности. Процесс протекает по ступеням. При температуре, близкой к комнатной, гидролиз осуществляется практически только по I стадии вследствие накопления в растворе ионов Н+. Соли слабых многоосновных оснований и сильных кислот создают в растворе кислую среду.
Соли слабых многоосновных кислот и сильных оснований. Рассуждая аналогично предыдущему случаю, можно записать для раствора К2СО3:
(IV стадия)
В результате I стадии гидролиза в растворе накапливаются ионы ОН-, подавляющие процесс диссоциации воды. Поэтому при нормальных условиях II стадия гидролиза становится мало вероятной:
(V стадия)
Таким образом, гидролиз солей слабых многоосновных кислот и сильных оснований протекает по стадиям и обычно заканчивается на первой. Раствор соли слабой многоосновной кислоты и сильного основания характеризуется щелочной средой.
Соли слабой многоосновной кислоты и слабого многокислотного основания. Рассуждаем аналогично предыдущим случаям. Для раствора А12(СО3)3 можно записать:
(I стадия)
Вторым этапом процесса будет связывание второго иона AL3+ в ион основной соли и еще одного иона СО32- в НСО3-. На I стадии процесса не происходит заметного накопления в растворе ионов ОН- и Н+. Поэтому II стадия гидролиза протекает беспрепятственно и оба процесса можно представить суммарным уравнением:
(II и III стадии)
И в результате II стадии не возникает заметного сдвига концентраций Н+ или ОН- в растворе, поэтому процесс диссоциации воды протекает беспрепятственно и обусловливает возможность течения следующих этапов гидролиза
(III и IV стадии)
В результате этих стадий не возникло заметного изменения концентраций Н+ 'или ОН- в растворе, поэтому возможно продолжение гидролиза
(V и VI стадии)
Таким образом, гидролиз солей слабых многоосновных кислот и слабых многокислотных оснований протекает сильнее, чем бинарных солей. В результате гидролиза могут образоваться продукты полного гидролиза соли. Стадия, до которой протекает гидролиз соли, определяется соотношением силы основания и кислоты.
Для характеристики гидролиза различных солей вводятся две величины.. Константа гидролиза Кгидр равна в момент динамического равновесия отношению произведения концентраций продуктов гидролиза к произведению концентраций гидролизующихся ионов соли. Стеепень гидролиза ?гидр--отношение числа гидролизованных молекул соли к числу растворенных
Константы гидролиза соли растут по мере уменьшения констант диссоциации кислот и оснований, образующихся в результате процесса. Следовательно, возрастает и количество гидролизованных молекул. Степень гидролиза соли возрастает по мере уменьшения констант диссоциации кислот и оснований, образующихся в результате процесса.
Пример 1. К раствору FeCL3 добавляют раствор К2СО3. Определить полноту гидролиза.
Решение. Процесс гидролиза раствора FеС13 в сокращенной ионной форме изображается уравнением
Последующие стадии процесса не идут.
В растворе К2СО3 гидролиз протекает по схеме
Таким образом , в результате гидролиза в растворах образуются в избытке противоположные по знаку ионы воды (Н+ и ОН-). При смешивании растворов FeCL3 и K2CO3 наступает взаимная нейтрализация ионов Н+ и ОН-. Затруднения для гидролиза по последующим стадиям исчезают, и гидролиз солей слабого основания и сильной кислоты в смеси с солью сильного основания и слабой кислоты идет до конца
Образование осадка Fе(ОН)3 в результате полного гидролиза FеС1з и непрочной кислоты Н2СО3 облегчает течение процесса. Следовательно, добавление к раствору гидролизующейся соли другой соли, при гидролизе которой создается иная кислотность, усиливает процесс гидролиза.
Разбавление раствора увеличивает вероятность столкновения ионов растворенного вещества с ионами воды, вследствие этого степень гидролиза растет. Константа гидролиза от разбавления раствора не зависит.
При нагревании раствора увеличивается энергия теплового движения и вероятность столкновения ионов соли с ионами воды. Константа диссоциации воды и ее ионное произведение, а, следовательно, степень гидролиза и константа гидролиза растут. Так, процесс гидролиза раствора хлорида железа, протекающий при нормальной температуре до I стадии, при нагревании может проходить по II и даже по III. Это обусловлено увеличением количества ионов FeOH2+, образующихся в результате гидролиза FeCI3 и ростом концентрации ионов ОН- в растворе, вследствие увеличения ионного произведения воды. Процессы гидролиза могут быть усилены или подавлены добавлением соединений, содержащих ионы гидроксила или водорода или веществ, подвергающихся гидролизу.
Пример 2. К раствору АеС1з добавляют NH4C1. Определить изменение процесса гидролиза.
Решение. Процесс гидролиза FeCI3 запишется так
При растворении NH4Cl осуществляется реакция
Прибавление хлорида аммония к раствору FeCl3 повышает концентрацию ионов Н+ в растворе. Равновесие смещается влево и гидролиз обеих солей снижается. Таким образом, добавление в раствор гидролизующейся соли другой соли, гидролиз которой сопровождается образованием ионов воды, аналогичных возникающим при гидролизе первой, подавляет гидролиз.
Размещено на Allbest.ur
...Подобные документы
Гидролиз как реакция обменного разложения веществ водой. Гидролиз галогеналканов, сложных эфиров, дисахаридов, полисахаридов. Разложение веществ по аниону и катиону. Соли, образованные сильной кислотой и основанием. Способы усиления, подавления гидролиза.
презентация [60,5 K], добавлен 19.11.2013Взаимодействие соли с водой, приводящее к образованию слабого электролита. Основные стадии гидролиза. Формы присутствия углекислоты в водах. Очистка воды, подаваемой на подпитку теплосети. Гидролиз коагулянта при наличии в воде гидрокарбоната кальция.
контрольная работа [573,1 K], добавлен 27.10.2013Расчетные методы определения рН. Примеры уравнений реакций гидролиза солей. Понятие и формулы расчета константы и степени гидролиза. Cмещение равновесия (вправо, влево) гидролиза. Диссоциация малорастворимых веществ и константа равновесия этого процесса.
лекция [21,7 K], добавлен 22.04.2013Понятие гидролиза как реакции обменного разложения веществ водой; его роль в народном хозяйстве, повседневной жизни. Классификация солей в зависимости от основания и кислоты. Условия смещения реакций обратимого гидролиза согласно принципу Ле Шателье.
презентация [411,8 K], добавлен 02.05.2014Гидролиз соли слабой кислоты и сильного основания, сильной кислоты и слабого основания, слабой кислоты и слабого основания. Количественные характеристики гидролиза. Подавление и усиление гидролиза солей. Факторы, влияющие на степень гидролиза.
реферат [73,9 K], добавлен 25.05.2016Гидролиз как реакция обменного разложения веществ водой. Гидролиз углеводов, белков, аденозинтрифосфорной кислоты. Краткая классификация солей. Слабые кислоты и основания. Гидролиз неорганических соединений: карбидов, галогенидов, фосфидов, нитридов.
презентация [463,7 K], добавлен 01.09.2014Реакции ионного обменного разложения веществ водой. Использование качественных реактивов на крахмал, на белок и на глюкозу. Гидролиз сложных эфиров, белков, аденозинтрифосфорной кислоты. Условия гидролиза органических веществ пищи в организме человека.
разработка урока [206,5 K], добавлен 07.12.2013Основные особенности гидролиза, который приводит к образованию слабого электролита. Характеристика гидролиза солей в водном растворе. Значение гидролиза в химическом преобразовании земной коры. Развитие гидролиза в народном хозяйстве и в жизни человека.
конспект урока [124,7 K], добавлен 20.11.2011Электролитическая диссоциация в растворах. Сильные и слабые электролиты. Условия протекания ионных реакций. Кислоты и основания Брёнстеда-Лоури. Ионное произведение воды. Кислотно-основные равновесия. Кислоты и основания Льюиса. Гидролиз солей по аниону.
лекция [941,2 K], добавлен 18.10.2013Характеристика гидролиза солей. Виды реакций нейтрализации между слабыми и сильными кислотами и основаниями. Почвенный гидролиз солей и его значение в сельском хозяйстве. Буферная способность почвы: обмен катионов и анионов в процессе минерализации.
контрольная работа [56,1 K], добавлен 22.07.2009Понятие и структура химической системы, классификация и разновидности растворов. Электролиты и электролитическая диссоциация. Гидролиз солей. Химические реакции и их признаки, стехиометрия. Скорость химический реакций, и факторы, влияющие на нее.
контрольная работа [161,5 K], добавлен 17.01.2011Свойство водных растворов солей, кислот и оснований в свете теории электролитической диссоциации. Слабые и сильные электролиты. Константа и степень диссоциации, активность ионов. Диссоциация воды, водородный показатель. Смещение ионных равновесий.
курсовая работа [157,0 K], добавлен 23.11.2009Определение и классификация солей, уравнения реакций их получения. Основные химические свойства солей, четыре варианта гидролиза. Качественные реакции на катионы и анионы. Сущность процесса диссоциации. Устойчивость некоторых солей к нагреванию.
реферат [12,9 K], добавлен 25.02.2009Электролитическая диссоциация как обратимый процесс распада электролита на ионы под действием молекул воды или в расплаве. Основные особенности модельной схемы диссоциации соли. Анализ механизм электролитической диссоциации веществ с ионной связью.
презентация [3,1 M], добавлен 05.03.2013Ионная проводимость электролитов. Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации. Ионно-молекулярные уравнения. Диссоциация воды, водородный показатель. Смещение ионных равновесий. Константа и степень диссоциации.
курсовая работа [139,5 K], добавлен 18.11.2010Седиментация под действием сил тяжести - широко применяемый прием снижения содержания взвеси в воде. Технологический процесс коагуляции примесей. Гидролиз железного купороса в воде. Защита гидрофобных коллоидов, с точки зрения технологии очистки воды.
реферат [955,5 K], добавлен 09.03.2011Графическое изображение формул солей. Названия, классификация солей. Кислые, средние, основные, двойные, комплексные соли. Получение солей. Реакции: нейтрализации, кислот с основными оксидами, оснований с кислотными оксидами, основных и кислотных оксидов
реферат [69,9 K], добавлен 27.11.2005Классическая теория электролитической диссоциации. Ион-дипольное и ион-ионное взаимодействие в растворах электролитов, неравновесные явления в них. Понятие и основные факторы, влияющие на подвижность ионов. Электрические потенциалы на фазовых границах.
курс лекций [1,4 M], добавлен 25.06.2015Промышленные способы получения карбоновых кислот. Синтезы на основе оксида углерода. Гидролиз нитрилов. Синтез Гриньяра. Гидролиз жиров. Образование галогенангидридов. Декарбоксилирование. Гидратация ацетилена и окисление получаемого ацетальдегида.
реферат [87,8 K], добавлен 21.02.2009Методика получения биоэтанола из растительных отходов. Механизм трансформации целлюлозы в растворимые формы простых углеводов; факторы, влияющие на гидролиз, определение оптимальных условий для протекания процесса; получение штаммов микроорганизмов.
дипломная работа [4,1 M], добавлен 11.10.2011