Электрохимические методы исследования
Общая характеристика и условия применения электрохимических методов исследования. Разновидности электрохимических методов анализа. Сущность потенциометрии и потенциометрического титрования. Характеристика и особенности кондуктометрии, кулонометрии.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 27.10.2017 |
Размер файла | 39,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Министерство образования и науки РФ
Федеральное государственное бюджетное образовательное учреждение
высшего образования
«Иркутский национальный исследовательский технический университет»
Кафедра металлургии цветных металлов
(наименование кафедры)
«Электрохимические методы исследования»
Реферат по дисциплине
«Физико-химические методы исследования металлургических процессов»
Выполнил студент группы МЦМ-16-1
Захаренков Р. И.
Проверил преподаватель кафедры МЦМ
Кузьмина М.Ю.
Иркутск 2017 г.
ВВЕДЕНИЕ
Электрохимия - раздел физической химии, который рассматривает системы, содержащие ионы (растворы или расплавы электролитов) и процессы, протекающие на границе двух фаз с участием заряженных частиц.
Первые представления о взаимосвязи химических и электрических явлений были известны в XVIII веке, так как было выполнено огромное количество физико-химических экспериментов с электрическим и грозовыми разрядами, с зарядами, находящимися в лейденских банках, но все они имели случайный характер из-за отсутствия постоянного мощного источника электрической энергии. Зарождение электрохимии связано с именами Л. Гальвани и А. Вольта. Занимаясь исследованием физиологических функций лягушки, Гальвани случайно создал электрохимическую цепь. Она состояла из двух различных металлов и препарированной лапки лягушки. Лапка одновременно являлась электролитом и индикатором электрического тока, но вывод был дан неправильный, т. е., согласно Гальвани, этот электрический ток, который возникал в цепи, имел животное происхождение, т. е. был связан с функциональными особенностями организма лягушки (теория «животного электричества»).
Правильное толкование опытам Гальвани дал А. Вольта. Он создал первую батарею гальванических элементов - вольтов столб. Элементы батареи состояли из медных и цинковых дисков, а электролитом служил пропитанный соленой водой или кислотой губчатый материал. Именно такое соединение позволило получить электрический ток. Вскоре трудами великих ученых А. Вольта, Дж. Даниэля, Б. С. Якоби, П. Р. Багратиона, Г. Плантэ и др. появились удобные в работе мощные гальванические элементы и аккумуляторы. Затем А. Вольта разработал ряд напряжений металлов. Если два различных металла привести в соприкосновение, а затем разъединить, то при помощи физических средств, например, электроскопа, можно увидеть, что один металл приобрел положительный заряд, а другой - отрицательный. Этот ряд металлов, в котором каждый предшествующий металл заряжается положительно, но после контакта с любым последующим, т. е. ряд Вольта, оказался аналогичным ряду напряжений.
Далее, в начале XIX века, был разработан электролиз, а М. Фарадей установил количественные законы электролиза. Большой вклад в развитие электрохимии внесли ученые: С. А. Аррениус, В. Ф. Оствальд, Р. А. Колли, П. Дебай, В. Нернст, Г. Гельмгольц и др. Сейчас электрохимия делится на теоретическую и прикладную. Благодаря использованию электрохимических методов, она связана с другими разделами физической химии, а также с аналитической химией и другими науками.
электрохимический потенциометрия кондуктометрия кулонометрия
1. ЭЛЕТРОХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ
Необходимость в использовании разнообразных методов для исследования электрохимических процессов обусловлена широкой областью изменения скорости переноса электрона в электродных реакциях. Каждый из методов имеет некоторый предел по определяемому значению плотности тока обмена, выше которого электрохимические параметры электродной реакции определить нельзя. Применительно к каждому конкретному объекту необходимо выбрать тот метод, который дает максимальный объем надежной информации. При проведении электрохимических исследований необходимо знать химический состав исходных веществ и продуктов реакции. Для определения состава электролита используют различные физико-химические методы: спектрофотометрический, потенциометрический, аналитический и другие. При проведении электрохимических исследований необходимо соблюдать следующие условия.
1. Максимальная чистота используемых реактивов; состав электродов должен быть строго известен, как известно и состояние их поверхностей. Следует следить за тем, чтобы в процессе измерений поверхность электродов не претерпевала изменений.
2. Конструкция электрохимической ячейки и расположенный в ней электродов должны обеспечивать равномерное распределение тока по всей поверхности рабочего электрода.
3. Измерение проводить при строго контролируемой температуре.
4. Поддерживать постоянные давления и состав газовой фазы над электролитом. Как правило, исследования проводят в среде инертного газа (N2, Ar, Ne, He H2), поскольку кислород газовой фазы может оказывать существенное влияние на механизм процесса.
5. Необходимо обеспечить такие условия эксперимента, при которых падение потенциала в диффузной части двойного электрического слоя было бы минимальным или точно известным. Для снижения этого потенциала используют, как правило, фоновый электролит, концентрация которого должна быть не менее, чем в 20 раз выше, чем у основного вещества. Однако предварительно следует убедиться, что фоновый электролит не искажает поляризационной кривой изучаемой реакции.
6. Точное измерение потенциала рабочего электрода. Для этого необходимо устранить диффузионный потенциал между исследуемым электролитом и электролитом электрода сравнения. Этот потенциал принимает максимальное значение при приближении к предельному току и может, существенно исказить результаты измерений. Для устранения диффузионного потенциала между исследуемым электролитом и электролитом электрода сравнения желательно: а) выбрать электрод сравнения, который имеет тот же электролит по составу, что и исследуемый. Например, при исследованиях в хлоридных растворах удобно применять хлор-серебрянный, каломельный, хлорный электроды; в кислых сульфатных растворах - ртутно-сульфатные электроды и т.п.; б) использовать электрод сравнения с таким электролитом, на границе которого с исследуемым электролитом диффузионный потенциал может быть рассчитан по известным формулам.
При измерении в растворах с постоянной ионной силой, а при больших концентрациях фона - с постоянной ионной концентрацией можно, в принципе, использовать любой электрод сравнения. Диффузионный потенциал в этом случае может быть и весьма велик, но и постоянен - его можно рассчитать или определить экспериментально.
Во всех случаях изучения кинетики электрохимических процессов необходимо измерение плотности тока. Обычно начинают с того, что выясняют методами аналитической химии, кулонометрии, протекает ли на электроде только одна изучаемая реакция или она осложнена побочными. В случае протекания побочных реакций, надо выяснить, какая доля тока приходится только на осуществление изучаемой реакции (построить так называемую парциальную поляризационную характеристику для изучаемой реакции).
Наиболее просто механизм электродной реакции можно интерпретировать лишь в случае, когда исходное вещество превращается в один продукт со 100%-ным выходом по току. Проверка реакции на соответствие закону Фарадея или проведение кулонометрических измерений позволяет одновременно определить число электронов, участвующих в суммарной электродной реакции. Знание состава исходного вещества и продукта реакции, а также общего числа переносимых электронов, дает возможность записать уравнение суммарной электродной реакции.
Следующим шагом в изучении механизма электродной реакции является выяснение того, какая стадия является лимитирующей.
Если лимитирующей стадией является стадия разряда -ионизации, а все другие протекают обратимо, то основные кинетические параметры процесса можно определить графически или аналитически, применяя к поляризационным характеристикам уравнения теории замедленного разряда [1].
1.1 Электрохимические методы анализа
Электрохимические методы анализа - это совокупность методов качественного и количественного анализа, основанных на электрохимических явлениях, происходящих в исследуемой среде или на границе раздела фаз и связанных с изменением структуры, химического состава или концентрации анализируемого вещества.
Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ.
Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, кондуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование).
Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.
Для любого рода электрохимических измерений необходима электрохимическая цепь или электрохимическая ячейка, составной частью которой является анализируемый раствор.
Электрохимические методы классифицируют в зависимости от типа явлений, замеряемых в процессе анализа. Различают две группы электрохимических методов:
1. Методы без наложения постороннего потенциала, основанные на измерении разности потенциалов, который возникает в электрохимической ячейке, состоящей из электрода и сосуда с исследуемым раствором. Эту группу методов называют потенциометрическими. В потенциометрических методах используют зависимость равновесного потенциала электродов от концентрации ионов, участвующих в электрохимической реакции на электродах.
2. Методы с наложением постороннего потенциала, основанные на измерении:
а) Электрической проводимости растворов ? кондуктометрия;
б) Количества электричества, прошедшего через раствор ? кулонометрия;
в) Зависимости величины тока от приложенного потенциала ? вольт-амперометрия;
г) Времени, необходимого для прохождения электрохимической реакции - хроноэлектрохимические методы (хроновольтамперометрия, хронокондуктометрия).
В методах этой группы на электроды электрохимической ячейки налагают посторонний потенциал.
Основным элементом приборов для электрохимического анализа является электрохимическая ячейка. В методах без наложения постороннего потенциала она представляет собой гальванический элемент, в котором вследствие протекания химических окислительно-восстановительных реакций возникает электрический ток. В ячейке типа гальванического элемента в контакте с анализируемым раствором находятся два электрода - индикаторный электрод, потенциал которого зависит от концентрации вещества, и электрод с постоянным потенциалом - электрод сравнения, относительно которого измеряют потенциал индикаторного электрода. Измерение разности потенциалов производят специальными приборами - потенциометрами [2].
В методах с наложением постороннего потенциала применяют электрохимическую ячейку, названную так потому, что на электродах ячейки под действием наложенного потенциала происходит электролиз - окисление или восстановление вещества. В кондуктометрическом анализе используют кондуктометрическую ячейку, в которой замеряют электрическую проводимость раствора. По способу применения электрохимические методы можно классифицировать на прямые, в которых концентрацию веществ измеряют по показанию прибора, и электрохимическое титрование, где индикацию точки эквивалентности фиксируют с помощью электрохимических измерений. В соответствии с этой классификацией различают потенциометрию и потенциометрическое титрование, кондуктометрию и кондуктометрическое титрование и т.д.
Приборы для электрохимических определений кроме электрохимической ячейки, мешалки, нагрузочного сопротивления включают устройства для измерения разности потенциалов, тока, сопротивление раствора, количества электричества. Эти измерения могут осуществляться стрелочными приборами (вольтметр или микроамперметр), осциллографами, автоматическими самопишущими потенциометрами. Если электрический сигнал от ячейки очень слабый, то его усиливают с помощью радиотехнических усилителей. В приборах методов с наложением постороннего потенциала важной частью являются устройства для подачи на ячейку соответствующего потенциала стабилизированного постоянного или переменного тока (зависит от типа метода). Блок электропитания приборов электрохимического анализа включает обычно выпрямитель и стабилизатор напряжения, который обеспечивает постоянство работы прибора.
1.2 Потенциометрия
Потенциометрия основана на измерении разности электрических потенциалов, возникающих между разнородными электродами, опущенными в раствор с определяемым веществом. Электрический потенциал возникает на электродах при прохождении на них окислительно-восстановительной (электрохимической) реакции. Окислительно-восстановительные реакции протекают между окислителем и восстановителем с образованием окислительно-восстановительных пар, потенциал Е которых определяется по уравнению Нернста концентрациями компонентов пар [ок] и [вос]:
, (1)
где Е° - стандартный электродный потенциал, В;
n - число электронов, участвующих в процессе.
Потенциометрические измерения проводят, опуская в раствор два электрода - индикаторный, реагирующий на концентрацию определяемых ионов, и стандартный электрод или электрод сравнения, относительно которого измеряется потенциал индикаторного. Применяют несколько видов индикаторных и стандартных электродов.
Электроды первого рода обратимы относительно ионов металла, из которого состоит электрод. При опускании такого электрода в раствор, содержащий катионы металла, образуется электродная пара: Mn+/M.
Электроды второго рода чувствительны к анионам и представляют собой металл М, покрытый слоем нерастворимой его соли МА с анионом A-, к которому чувствителен электрод. При контакте такого электрода с раствором, содержащим указанный анион A-, возникает потенциал Е, величина которого зависит от произведения растворимости соли
ПРMA и концентрации аниона [A-] в растворе.
Электродами второго рода являются хлорсеребряный и каломельный. Насыщенные хлорсеребряный и каломельный электроды поддерживают постоянный потенциал и применяют в качестве электродов сравнения, по отношению к которым измеряется потенциал индикаторного электрода.
Инертные электроды - пластина или проволока, изготовленная из трудноокисляемых металлов - платины, золота, палладия. Применяются они для измерения Е в растворах, содержащих окислительно-восстановительную пару (например, Fe3+/Fe2+).
Мембранные электроды различного типа имеют мембрану, на которой возникает мембранный потенциал Е. Величина Е зависит от разности концентраций одного и того же иона по разным сторонам мембраны. Простейшим и наиболее употребляемым мембранным электродом является стеклянный электрод.
Смешивание нерастворимых солей типа AgBr, AgCl, AgI и других с некоторыми пластмассами (каучуки, полиэтилен, полистирол) привело к созданию ион-селективных электродов на Br-, Cl-, I-, избирательно адсорбирующих из раствора указанные ионы вследствие правила Панета - Фаянса - Гана. Так как концентрация определяемых ионов вне электрода отличается от таковой внутри электрода, равновесия на поверхностях мембраны отличаются, что приводит к возникновению мембранного потенциала.
Для проведения потенциометрических определений собирают электрохимическую ячейку из индикаторного электрода сравнения, который опускают в анализируемый раствор и подсоединяют к потенциометру. Применяемые в потенциометрии электроды имеют большое внутреннее сопротивление (500-1000 МОм), поэтому существуют типы потенциометров представляют собой сложные электронные высокоомные вольтметры. Для измерения ЭДС электродной системы в потенциометрах применяют компенсационную схему, позволяющую уменьшить ток в цепи ячейки.
Наиболее часто потенциометры применяют для прямых измерений рН, показатели концентраций других ионов pNa, pK, pNH?, pCl и мВ. Измерения проводят, используя соответствующие ион-селективные электроды.
Для измерения рН применяют стеклянный электрод и электрод сравнения - хлорсеребряный. Перед проведением анализов необходимо проверить калибровку рН-метров по стандартным буферным растворам, фиксаналы которых прикладываются к прибору.
рН-метры помимо прямых определений рН, pNa, pK, pNH?, pCl и других позволяют проводить потенциометрическое титрование определяемого иона.
1.3 Потенциометрическое титрование
Потенциометрическое титрование проводят в тех случаях, когда химические индикаторы использовать нельзя или при отсутствии подходящего индикатора.
В потенциометрическом титровании в качестве индикаторов используют электроды потенциометра, опушенные в титруемый раствор. При этом применяют электроды, чувствительные к титруемым ионам. В процессе титрования изменяется концентрация ионов, что регистрируется на шкале измерительного пробора потенциометра. Записав показания потенциометра в единицах рН или мВ, строят график их зависимости от объема титранта (кривую титрования), определяют точку эквивалентности и объем титранта, израсходованный на титрование. По полученным данным строят кривую потенциометрического титрования.
Кривая потенциометрического титрования имеет вид, аналогичный кривой титрования в титриметрическом анализе. По кривой титрования определяют точку эквивалентности, которая находится в середине скачка титрования. Для этого проводят касательные к участкам кривой титрования и по середине касательной скачка титрования определяют точку эквивалентности. Наибольшее значение изменения ?рН/?V приобретает в точке эквивалентности.
Еще более точно точку эквивалентности можно определить методом Грана, по которому строят зависимость ?V/?Е от объема титранта. Методом Грана можно проводить потенциометрическое титрование, не доводя его до точки эквивалентности.
Потенциометрическое титрование применяют во всех случаях титриметрического анализа.
При кислотно-основном титровании используют стеклянный электрод и электрод сравнения. Поскольку стеклянный электрод чувствителен к изменениям рН среды, при их титровании на потенциометре регистрируются изменения рН среды. Кислотно-основное потенциометрическое титрование с успехом применяют при титровании слабых кислот и оснований (рК?8). При титровании смесей кислот необходимо, чтобы их рК отличались больше, чем на 4 единицы, в противном случае часть более слабой кислоты оттитровывается вместе с сильной, и скачок титрования выражен не четко.
Это позволяет использовать потенциометрию для построения экспериментальных кривых титрования, подбор индикаторов для титрования и определения констант кислотности и основности.
При осадительном потенциометрическом титровании применяют в качестве индикатора электрод из металла, составляющего с определяемыми ионами электродную пару.
При комплексометрическом титровании используют: а) металлический электрод, обратимый к иону определяемого металла; б) платиновый электрод при наличии в растворе окислительно-восстановительной пары. При связывании титрантом одного из компонентов редокс-пары меняется его концентрация, что вызывает изменения потенциала индикаторного платинового электрода. Применяются также обратное титрование избытка раствора ЭДТА, добавленного к соли металла, раствором соли железа (III).
При окислительно-восстановительном титровании применяют электрод сравнения и платиновый индикаторный электрод, чувствительный к окислительно-восстановительным парам.
Потенциометрическое титрование - один из наиболее употребляемых методов инструментального анализа вследствие простоты, доступности, селективности и широких возможностей.
1.4 Кондуктометрия. Кондуктометрическое титрование
Кондуктометрия основана на измерении электрической проводимости раствора. Если в раствор вещества поместить два электрода и подать на электроды разность потенциалов, то через раствор потечет электрический ток. Как и каждый проводник электричества, растворы характеризуются сопротивлением R и обратной ему величиной - электрической проводимостью L:
, (2)
где R - сопротивление, Ом;
- удельное сопротивление, Ом . см;
S - площадь поверхности, см2.
, (3)
где L - электрическая проводимость, Ом-1;
R - сопротивление, Ом.
Кондуктометрический анализ проводят с помощью кондуктометров - приборов, измеряющих сопротивление растворов. По величине сопротивления R определяют обратную ему по величине электрическую проводимость растворов L.
Определение концентрации растворов осуществляют прямой кондуктометрией и кондуктометрическим титрованием. Прямая кондуктометрия используется для определения концентрации раствора по калибровочному графику. Для составления калибровочного графика замеряют электрическую проводимость серии растворов с известной концентрацией и строят калибровочный график зависимости электрической проводимости от концентрации. Затем измеряют электрическую проводимость анализируемого раствора и по графику определяют его концентрацию.
Чаще применяют кондуктометрическое титрование. При этом в ячейку с электродами помещают анализируемый раствор, ячейку помещают на магнитную мешалку и титруют соответствующим титрантом. Титрант добавляют равными порциями. После добавления каждой порции титранта замеряют электрическую проводимость раствора и строят график зависимости между электрической проводимостью и объемом титранта. При добавлении титранта происходит изменение электрической проводимости раствора в т.э. наступает перегиб кривой титрования.
От подвижности ионов зависит электрическая проводимость раствора: чем выше подвижность ионов, тем больше электрическая проводимость раствора.
Кондуктометрическое титрование обладает рядом преимуществ. Его можно проводить в мутных и окрашенных средах, в отсутствии химических индикаторов. Метод обладает повышенной чувствительностью и позволяет анализировать разбавленные растворы веществ (до 10-4 моль/дмі). Кондуктометрическим титрованием анализируют смеси веществ, т.к. различия в подвижности различных ионов существенны и их можно дифференцированно оттитровывать в присутствии друг друга.
Кондуктометрический анализ легко автоматизировать, если раствор титранта подавать из бюретки с постоянной скоростью, а изменение электрической проводимости раствора регистрировать на самописце.
Эта разновидность кондуктометрии получила название хроно-кондуктометрического анализа.
В кислотно-основном титровании кондуктометрическим путем можно определять сильные кислоты, слабые кислоты, соли слабых оснований и сильных кислот.
В осадительном кондуктометрическом титровании электрическая проводимость титруемых растворов сначала уменьшается или остается на некотором постоянном уровне вследствие связывания титруемого электролита в осадок, после т.э. при появлении избытка титранта - снова возрастает.
В комплексометрическом кондуктометрическом титровании изменения электрической проводимости раствора наступают вследствие связывания катионов металла в комплекс с ЭДТА.
Окислительно-восстановительное кондуктометрическое титро-вание основано на изменении концентрации реагирующих ионов и появлении в растворе новых ионов, что изменяет электрическую проводимость раствора.
В последние годы получило развитие высокочастотная кондуктометрия, в которой электроды с раствором не контактируют, что важно при анализе агрессивных сред и растворов в закрытых сосудах.
Получила развитие два варианта - прямая высокочастотная кондуктометрия и высокочастотное титрование.
Прямая высокочастотная кондуктометрия применяется для определения влажности веществ, зерна, древесины, концентрации растворов в закрытых сосудах - ампулах, при анализе агрессивных жидкостей.
Высокочастотное титрование проводят на специальных титраторах - ТВ-6, ТВ-6Л.
Высокочастотное кондуктометрическое титрование проводят по типу кислотно-основного, окислительно-восстановительного или осадительного титрования в тех случаях, когда отсутствует подходящий индикатор или при анализе смесей веществ.
1.5 Кулонометрия. Кулонометрическое титрование
В кулонометрии вещества определяют измерением количества электричества, затраченное на их количественное электрохимическое превращение. Кулометрический анализ проводят в электролитической ячейке, в которую помещают раствор определяемого вещества. При подаче на электроды ячейки соответствующего потенциала происходит электрохимическое восстановление или окисление вещества. Согласно законам электролиза, открытым Фарадеем, количество вещества, прореагировавшего на электроде, пропорционально количеству электричества, прошедшего через раствор:
, (4)
где g - масса, выделяющегося вещества, г;
n - количество электронов, переносимых в электродном процессе;
F - число Фарадея (F = 96485 Кл/моль);
I - сила тока, А;
t - время, с;
M - молярная масса выделяющегося вещества, г/моль.
Кулонометрический анализ позволяет определять вещества, не осаждающиеся на электродах или улетучивающиеся в атмосферу при электрохимической реакции.
Различают кулонометрию прямую и кулонометрическое титрование. Высока точность и чувствительность методов измерения электрического тока обеспечивает кулонометрическому анализу уникальную точность 0,1-0,001%, и чувствительность до 1•10-8 ? 1•10-10 г. Поэтому кулонометрический анализ применяется для определения микропримесей и продуктов разрушения веществ, что важно при контроле их качества.
Для индикации т.э. при кулонометрическом титровании можно применять химический и инструментальные методы - добавление индикаторов, обнаружение окрашенных соединений фотометрическим или спектрофотометрическим путём.
В отличии от других методов анализа кулонометрия может быть полностью автоматизирована, что сводит к минимуму случайные ошибки определения. Эта особенность использована при создании автоматических кулонометрических титраторов - чувствительных приборов, применяющихся для особо точных анализов, когда другие методы оказываются недостаточно чувствительными. При анализе веществ, малорастворимых в воде, кулонометрию можно проводить на электродах из ацетиленовой сажи, являющиеся хорошим адсорбентом и извлекающий такие вещества из реакционной среды с достаточной полнотой. Кулонометрическое титрование - перспективный метод инструментального анализа. Он может найти широкое применение для решения ряда специальных аналитических задач - анализа примесей, малых количеств лекарственных препаратов, определение в биологическом материале и окружающей среде токсических веществ, микроэлементов и других соединений [3].
ЗАКЛЮЧЕНИЕ
В работе выполнен обзор основных электрохимических методов исследования, подробно изложен их принцип, применение, преимущества и недостатки.
Электрохимические методы анализа -- группа методов количественного химического анализа, основанные на использовании электролиза.
Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ.
Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, кондуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование).
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Основы современного электрохимического анализа. Будников Г.К., Майстренко В.Н., Вяселев М.Р., М., Мир, 2003.
2. Дж. Плэмбек, под ред. С. Г. Майрановского Электрохимические методы анализа. Основы теории и применение : пер. с англ. / Видання : Мир, 1985.
3. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия - М.: химия, 2001. 624 с.
4. СТО 005-2015. Система менеджмента качества. Учебно-методическая деятельность. Оформление курсовых проектов (работ) и выпускных квалификационных работ технических специальностей.
Размещено на Allbest.ru
...Подобные документы
Классификация электрохимических методов анализа, сущность вольтамперометрии, кондуктометрии, потенциометрии, амперометрии, кулонометрии, их применение в охране окружающей среды. Характеристика химико-аналитического оборудования и основные фирмы-продавцы.
курсовая работа [395,8 K], добавлен 08.01.2010Электрохимические методы основаны на измерении электрических параметров электрохимических явлений, возникающих в исследуемом растворе. Классификация электрохимических методов анализа. Потенциометрическое, кондуктометрическое, кулонометрическое титрование.
реферат [47,1 K], добавлен 07.01.2011Классификация электрохимических методов анализа. Потенциометрическое определение концентрации вещества в растворе. Принцип кондуктометрии. Типы реакций при кондуктометрическом титровании. Количественный полярографический анализ. Прямая кулонометрия.
курсовая работа [41,8 K], добавлен 04.04.2013Сущность электроаналитических методов, возможность получить экспериментальную информацию о кинетике и термодинамике химических систем. Достоинства, недостатки и пригодность вольтамперометрии, кондуктометрии, потенциометрии, амперометрии и кулонометрии.
реферат [611,0 K], добавлен 20.11.2009Общая характеристика потенциометрического анализа. Индикаторные электроды (электронообменные и ионоселективные). Виды потенциометрического метода анализа. Прямая потенциометрия и потенциометрическое титрование. Измерение ЭДС электрохимических цепей.
курсовая работа [378,5 K], добавлен 08.06.2012Общие понятия, условия проведения и классификация электрохимических методов анализа. Потенциометрический анализ (потенциометрия). Амперометрическое титрование (потенциометрическое поляризационное титрование). Количественный полярографический анализ.
реферат [408,3 K], добавлен 01.10.2012Электрохимические методы исследования, их классификация и сущность история возникновения. Определение концентрации кислот методом кондуктометрического титрования; потенциалов электродов, ЭДС гальванического элемента, электрохимического эквивалента меди.
курсовая работа [1,2 M], добавлен 15.12.2014Изучение метода потенциометрического анализа. Анализ и оценка объектов исследований. Изучение методики потенциометрического анализа в приложении к данному объекту. Определение возможности применения методов потенциометрического анализа мясных продуктов.
курсовая работа [921,6 K], добавлен 16.09.2017Основные электрохимические методы анализа. Общая характеристика потенциометрического анализа. Виды потенциометрического метода анализа. Применение гальванического элемента, включающего два электрода. Порядок измерения потенциала индикаторного электрода.
курсовая работа [595,1 K], добавлен 11.08.2014Классификация инструментальных методов анализа по определяемому параметру и способу измерения. Сущность потенциометрического, амперометрического, хроматографического и фотометрического титрования. Качественное и количественное определение хлорида цинка.
контрольная работа [933,2 K], добавлен 29.01.2011Потенциометрический метод - метод качественного и количественного анализа, основанный на измерении потенциалов, возникающих между испытуемым раствором и погруженным в него электродом. Кривые потенциометрического титрования.
контрольная работа [34,3 K], добавлен 06.09.2006Метод потенциометрического титрования. Кислотно-основное титрование. Определение конечной точки титрования. Методика проведения потенциометрического титрования. Потенциометрическое титрование, используемые приборы и обработка результатов анализа.
курсовая работа [1,5 M], добавлен 24.06.2008Сущность и классификация методов кислотно-основного титрования, применение индикаторов. Особенности комплексонометрического титрования. Анализ методов осадительного титрования. Обнаружение конечной точки титрования. Понятие аргенометрии и тицианометрии.
контрольная работа [28,3 K], добавлен 23.02.2011Теоретические основы электрохимических методов анализа вещества, основанных на использовании электролиза. Рассмотрение аппаратуры, метрологических и аналитических характеристик электрогравиметрического анализа. Особенности метода внутреннего электролиза.
реферат [93,0 K], добавлен 30.11.2014Классификация физико-химических методов анализа веществ и их краткая характеристика, определение эквивалентной точки титрования, изучение соотношений между составом и свойствами исследуемых систем. Метод низкочастотного кондуктометрического титрования.
учебное пособие [845,9 K], добавлен 04.05.2010Общая характеристика ступенчатого титрования. Определение барбитуратов алкалиметрическим титрованием после предварительного извлечения эфиром. Кислотно-основные индикаторы. Обесцвечивание фенолфталеина при окончании реакции. Анализ лекарственных форм.
курсовая работа [336,5 K], добавлен 02.05.2014Расчет величины электродного потенциала, возникающего на границе между металлом и раствором соли этого металла. Преобразование энергии в электрохимических системах. Диффузионный потенциал в электрохимических цепях. Строение двойного электрического слоя.
курсовая работа [1,4 M], добавлен 12.09.2014Характеристика гафния. Изучение спектрофотометрических методов анализа. Определение гафния с помощью ксиленового орнажевого, пирокатехинового фиолетового, кверцетина и морина. Сравнение реагентов по чувствительности. Электрохимические методы анализа.
курсовая работа [177,1 K], добавлен 14.06.2015Группа методов количественного химического анализа, основанных на использовании электролиза (электрохимические методы анализа). Особенности электрогравиметрического метода, его сущность и применение. Основная аппаратура, метод внутреннего электролиза.
реферат [234,5 K], добавлен 15.11.2014Методы получения и основные характеристики сополимеров N-винилпирролидона с малеиновым ангидридом. Физико-химические методы исследования сополимеров. Методика определения количества звеньев малеинового ангидрида методом потенциометрического титрования.
дипломная работа [2,1 M], добавлен 31.05.2015