Газожидкостная хроматография

Эффективность использования метода газожидкостной хроматографии (ГЖХ). Типичная блок-схема газожидкостного хроматографа. Колонки, применяемые в ГЖХ. Хроматографическое разделение компонентов. Распространенные неподвижные фазы, применяемые в ГЖХ.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 31.10.2017
Размер файла 889,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Иркутский государственный медицинский университет

Фармацевтический факультет

Заочное отделение

Кафедра общей химии

Реферат

по физической химии

Тема: Газожидкостная хроматография

Выполнил:

Студент ФФЗ гр.303

Слуцкий А.В.

Иркутск 2015

Хроматографические методы анализа. Газожидкостная хроматография (ГЖХ)

Газожидкостная хроматография основана на физико-химическом разделении анализируемых компонентов, находящихся в газовой фазе, при их прохождении вдоль нелетучей жидкости, нанесенной на твердый сорбент. Это один из наиболее перспективных методов анализа. Широкое распространение и перспективность методов ГЖХ обусловлены тем, что они позволяют разделить и количественно определить вещества в сложной смеси даже в тех случаях, когда они сходны по химическим свойствам, а температуры кипения W различаются на десятые доли градуса. Для анализа требуются очень малые количества вещества, а время определения обычно исчисляется минутами.

Разделение анализируемых веществ происходит в колонках (трубках), наполненных твердым пористым сорбентом, на который нанесена жидкая нелетучая стационарная фаза. Пары анализируемых веществ, смешанные с газом-носителем, движутся через колонку. При этом происходит многократное установление равновесия между подвижной газовой и жидкой стационарной фазами, обусловленное многократным повторением процессов растворения и испарения. Вещества, лучше растворимые в стационарной фазе, дольше удерживаются ею. Благодаря этому происходит разделение анализируемой смеси на отдельные компоненты, которые выходят из колонки отдельно и регистрируются на выходе.

Эффективность использования метода ГЖХ в каждом отдельном случае зависит от правильного выбора жидкой фазы, размера частиц и природы твердого носителя, скорости и природы газа-носителя, температуры, количества вводимой пробы, длины колонки и других факторов. Поскольку теоретический учет этих факторов не всегда возможен, эффективность анализа ГЖХ в большой степени зависит от практических знаний и опыта экспериментатора.

Поведение анализируемого вещества в колонке хроматографа можно охарактеризовать временем удерживания (fe), Т. е. временем, прошедшим от момента ввода пробы в колонку до момента появления максимума хроматографического пика этого компонента. Очевидно, что эта величина при прочих равных условиях будет зависеть от объемной скорости газа-носителя (F). Поэтому хроматографические пики принято характеризовать величиной удерживаемого объема (VR):

Удерживаемый объем зависит от размера пробы и ряда других факторов. Поэтому для расчетов применяют не простую величину Vr, а исправленную с учетом времени удерживания несорбирующегося вещества (воздух, инертный газ) - t0; мертвого объема, равного удерживаемому объему несорбирующегося вещества, - Vm, сжимаемости j; массы неподвижной фазы W; абсолютной температуры колонки T и т. д.

Довольно часто пользуются исправленным удерживаемым объемом VR, который представляет собой разность удерживаемого объема вещества и удерживаемого объема газа-носителя:

Вдоль каждой колонки существует градиент давления. Поэтому вводят поправочный коэффициент j, который учитывает сжимаемость газа в колонке:

где Pi - давление газа-носителя на входе в колонку, а Ро - давление на выходе из колонки. С учетом сжимаемости исправленный удерживаемый объем будет:

Пользуются также величиной удельного удерживаемого объема:

Эта величина эквивалентна VN при 0 С на 1 г жидкой фазы.

Относительный удерживаемый объем рассчитывают по формуле:

где индекс s относится к некоторому внутреннему стандарту, в качестве которого обычно используют нормальные алканы, а индекс х - к данному компоненту пробы.

Типичная блок-схема газожидкостного хроматографа изображена на рис. 1. Газ-носитель (гелий, азот, аргон) из баллона 1 через редуктор поступает в блок стабилизации газового потока 2, а из него - в аналитический блок 3, состоящий из термостата, колонок и ротаметра. Испытуемое вещество вводится с помощью микрошприца на стеклянную насадку, расположенную в начале колонки и обеспечивающую быстрое испарение вещества и полное смешение его с газом-носителем. Ввод пробы шприцем в колонку осуществляется через прокладку из силиконовой резины. Объем пробы в зависимости от типа детектора, прибора и условий хроматографирования колеблется в пределах от 0,1 до 10 мкл. Определяемые компоненты в смеси с газом-носителем поступают в детектор 4. Электрический сигнал от детектора поступает в усилитель 5. Усиленный сигнал записывается самопишущим потенциометром в виде хроматограммы (рис. 2) с числом пиков, соответствующим числу определяемых компонентов смеси. Количество каждого компонента можно высчитать по площади пика. Температура колонки может меняться по заданной программе с помощью блока программирования 7. Внешний вид современного хроматографа изображен на рис. 1.

Рис. 1. Типичная блок-схема газожидкостного хроматографа.

1 - баллон с газом-носителем; 2 - блок стабилизации газового потока; 3 - аналитический блок, состоящий из термостата, колонок и ротаметра; 4 - детектор; 5 - усилитель; 6 - самопишущий потенциометр; 7 - блок программированного изменения температуры колонки.

Газ-носитель. В качестве газа-носителя обычно применяют аргон, гелий, азот, водород, воздух. Выбор газа зависит от типа детектора и некоторых других причин. Чем больше относительная молекулярная масса газа-носителя, тем выше качество разделения компонентов анализируемой смеси (благодаря уменьшению их диффузии). Газы с меньшей молекулярной массой обеспечивают лучшую чувствительность детекторов по теплопроводности.

Наибольшая эффективность хроматографической колонки достигается при постоянной скорости потока газа-носителя. Обычно используются скорости потоков 75-100 мл/мин для колонок с внешним диаметром 6 мм и 25-50 мл/мин для колонок с внешним диаметром 3 мм. Скорость газа-носителя определяется вмонтированными в прибор ротаметрами. Для обеспечения устойчивости газового потока приборы снабжаются стабилизаторами давления. Газы для хроматографии должны быть тщательно осушены, так как вода снижает точность определения. Другие примеси практически не влияют на удерживаемые объемы, но ухудшают стабильность показаний и чувствительность детекторов.

Рис. 2 Типичная газовая хроматограмма хлороформа.

1 - н-гептан; 2 - метиленхлорид; 3 - 1,1 дихлорэтан; 4 - четыреххлористый углерод; 5 - хлороформ.

Колонки. Применяемые в ГЖХ колонки представляют собой U-образные или свернутые в спираль металлические трубки длиной от 1 до 5 м и диаметром 3-6 мм, заполненные твердым сорбентом с нанесенной на него жидкой нелетучей фазой. Твердые носители должны быть химически инертными, иметь большую удельную поверхность (обычно 5-10 м2/г) и обладать механической и термической стойкостью. Для обеспечения максимальной эффективности колонки следует использовать носители с узким диапазоном размеров зерен. Наиболее часто рекомендуются диапазоны размеров зерен в мешках: 60/80, 80/100 или 100/120. С уменьшением размеров зерен увеличивается эффективность разделения, но возрастает сопротивление колонки и соответственно время удерживания.

Большинство носителей изготовляют из диатомитовой земли, представляющей собой разновидность водной микроаморфной двуокиси кремния, содержащей примеси окислов металлов, и огнеупорного кирпича, свойства которого близки к свойствам диатомитовой земли. Огнеупорный кирпич имеет, как правило, более развитую поверхность и предпочтителен для работы с длинными колонками. Носители, изготовляемые на основе диатомитовой земли и огнеупорного кирпича, - это хромосорб, диатом, целатом, S-80 и др. Ряд носителей изготавливают на основе полимеров (анапорт, флуоропак, хромосорб Т, порапак и др.), а также из стекла и двуокиси кремния. В некоторых случаях адсорбент перед нанесением жидкой фазы промывают спиртовой щелочью или слабой кислотой либо обрабатывают диметилдихлорсиланом для увеличения химической инертности.

Эффективность хроматографического разделения компонентов анализируемой смеси во многом зависит от правильного выбора неподвижной фазы. Неподвижная фаза должна обладать очень низким давлением пара при рабочей температуре, так как в противном случае она будет испаряться в процессе работы колонки. Неподвижная фаза должна быть термически стойкой и оставаться в жидком состоянии во всем интервале температур, при которых работает колонка. Она должна обладать достаточной растворяющей способностью по отношению к определяемым веществам.

В большинстве случаев для приготовления колонок используют от 1 до 30% жидкой фазы от массы носителя. Колонки с содержанием жидкой фазы более 20% применяют в препаративной хроматографии. Более эффективное разделение, как правило, достигается при использовании колонок с низким содержанием жидкой фазы. Для выбора подходящей неподвижной фазы часто приходится применять метод проб и ошибок. Во многих случаях полезным оказывается правило: "подобное растворяется в подобном". В соответствии с этим такие вещества, как углеводороды, хорошо анализируются на неполярных фазах, а полярные соединения на неполярных фазах делятся плохо и выходят из колонки значительно быстрее, чем неполярные, кипящие при той же температуре (табл. 1).

Детекторы. При помощи детектора измеряют состав газа, выходящего из колонки. В настоящее время используют дифференциальные детекторы, которые позволяют измерять концентрацию компонента в данный момент. При выходе чистого газа-носителя такой детектор дает нулевой сигнал. Наибольшее распространение получили катарометр и пламенно-ионизационный детектор (ДИП). Катарометр регистрирует изменение теплопроводности газа-носителя, вызванное появлением анализируемого вещества. При работе пламенно-ионизационного детектора происходит ионизация анализируемых веществ в процессе их сгорания в пламени водорода. Образующиеся ионы рекомбинируют на электродах. Возникающий при этом ток пропорционален концентрации ионов и напряжению на электродах. Катарометр проще по устройству и удобнее в работе, но значительно менее точен, чем ионизационный детектор.

Таблица 1. Наиболее распространенные неподвижные фазы, применяемые в ГЖХ

Усиленный сигнал детектора записывается на движущейся диаграммной бумаге в виде хроматографических пиков (см. рис. 2). В основе количественного хроматографического анализа лежит измерение площади регистрируемого пика, которая пропорциональна концентрации вещества в пробе. На современных приборах площадь пика определяется с помощью интегратора. При отсутствии интегратора площадь может быть определена как произведение высоты пика на его полуширину (ширина пика на половине его высоты).

Расчет концентрации анализируемого вещества производят различными методами. При использовании метода абсолютной калибровки предварительно строят калибровочные кривые, связывающие площадь хроматографического пика с концентрацией анализируемого вещества. Затем определяют площадь пика для пробы с неизвестной концентрацией и находят концентрацию по калибровочной кривой. Необходимо точно выдерживать постоянство условий анализа, так как площадь пика зависит от скорости газа-носителя, температуры, метода ввода пробы и других факторов. При соблюдении всех правил относительная ошибка определения составляет менее 1%.

Если постоянство условий проведения анализа по каким-либо причинам выдержать невозможно, используют метод внутреннего стандарта. Калибровка производится при добавлении определенных количеств вещества - стандарта к смеси с известной концентрацией анализируемых веществ. На основании полученных данных строят кривую зависимости содержания исследуемого вещества и отношения площадей пиков исследуемого вещества и стандарта.

Советская промышленность выпускает большое число моделей хроматографов. Одними из наиболее совершенных и распространенных приборов являются хроматографы серии "Цвет-100" (Цвет-101, 102, 103, ... 120 ... 150 и т. д.). Каждая из модификаций представляет определенную комбинацию стандартных блоков (блоки детекторов, блок подготовки газов и т. д.).

"Цвет-ПО" является одной из наиболее универсальных моделей хроматографов, предназначенных для количественного и качественного анализа органических и неорганических веществ и определения микропримесей в широком диапазоне температур кипения, а также для анализа агрессивных и неустойчивых соединений на стеклянных колонках. В приборе использована двухколоночная газовая схема с независимой установкой расхода газа-носителя. Колонки набивные U-образные, микронабивные, капиллярные и препаративные. Специальное аналитическое оборудование, поставляемое в комплекте (оборудование для пиролиза), дает возможность анализировать высокомолекулярные вещества, выделять отдельные компоненты для идентификации. Хроматограф снабжен набором детекторов. Максимальная температура колонок 400 С, а испарителя - 450 С. Порог чувствительности ионизационно-пламенного детектора и детектора электронного захвата 1*10в-7, катарометра - 1*10в-3, плотномера - 1*10в-2.

Более новые модели "Цвет-134" и "Цвет-152" могут работать в режиме программирования температуры колонок в диапазоне температур от 50 до 400 С, так как они снабжены не только стеклянными и капиллярными, но и фторопластовыми колонками; порог чувствительности детектора повышен до 1*10в-8.

газожидкостный хроматография фаза

Литература

1. Основы аналитической химии. В 2 кн. Кн. 1 Общие вопросы. Методы разделения: Учебник для ВУЗов/ Ю.А. Золотов, Е.Н. Дорохова, В.И. Фадеева и др.; Под ред. Ю.А. Золотова. - М.: Высш. шк., 1996. - 383 с.: ил.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность метода хроматографии, история его разработки и виды. Сферы применения хроматографии, приборы или установки для хроматографического разделения и анализа смесей веществ. Схема газового хроматографа, его основные системы и принцип действия.

    реферат [130,2 K], добавлен 25.09.2010

  • Хроматография. Пути развития хроматографического анализа и возможности классификации хроматографических методов. Выделение и очистка углеводов. Хроматографическое разделение и его основные принципы. Качественная тонкоструйная хроматография сахаров.

    реферат [772,0 K], добавлен 29.09.2008

  • Комплектные приборы с высокой степенью автоматизации для жидкостной хроматографии. Принципиальная схема жидкостного хроматографа. Современные насосы для жидкостной хроматографии. Устройства для формирования градиента. Инжекторы для ввода пробы, детекторы.

    контрольная работа [210,5 K], добавлен 12.01.2010

  • Методы определения редуцирующих веществ в гидролизатах. Определение легко- и трудногидролизуемых полисахаридов, массовой доли PB в гидролизатах по методу Макэна-Шоорля и эбулиостатическим методом. Анализ гидролизатов методом газожидкостной хроматографии.

    реферат [487,2 K], добавлен 24.09.2009

  • Основы метода обращенной газовой хроматографии. Газовая хроматография - универсальный метод качественного и количественного анализа сложных смесей и способ получения отдельных компонентов в чистом виде. Применение обращенной газовой хроматографии.

    курсовая работа [28,9 K], добавлен 09.01.2010

  • Использование тонкослойной хроматографии в качественном анализе. Выбор проявляющего растворителя (подвижной фазы). Нанесение раствора образца на пластинку. Двумерная хроматография на бумаге. Приготовление подвижной фазы, нанесение вещества и проявление.

    курсовая работа [1,1 M], добавлен 01.12.2015

  • Сущность и назначение процесса хроматографии, его разновидности и порядок проведения. Принцип работы хроматографа и возможности его использования. Метод внутренней нормализации и его преимущества. Общие требования безопасности при работе с прибором.

    курсовая работа [82,5 K], добавлен 07.12.2009

  • Понятие и основные этапы протекания метода эксклюзионной хроматографии, его принципиальная особенность и сферы применения, разновидности и их отличительные признаки. Характеристика оборудования, используемого в процессе эксклюзионной хроматографии.

    реферат [54,4 K], добавлен 07.01.2010

  • Сущность высокоэффективной жидкостной хроматографии (ВЭЖХ) как метода анализа и разделения сложных примесей. Сорбенты, координационно-насыщенные хелаты; закономерности влияния строения лиганда на поведение хелатов в условиях обращенофазной хроматографии.

    реферат [109,8 K], добавлен 11.10.2011

  • Общая характеристика процесса хроматографии. Физико-химические основы тонкослойной хроматографии, классификация методов анализа. Варианты хроматографии по фазовым состояниям. Контроль качества пищевых продуктов посредством метода ТСХ, оборудование.

    курсовая работа [371,8 K], добавлен 27.12.2009

  • Специфика метода жидкостно-жидкостной хроматографии - физико-химического метода разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях. Распределительная хроматография на бумаге.

    курсовая работа [601,2 K], добавлен 13.03.2011

  • Явления, происходящие при хроматографии. Два подхода к объяснению - теория теоретических тарелок и кинетическая теория. Газовая, жидкостная, бумажная хроматография. Ионообменный метод. Случаи применения ионообменной хроматографии. Гельхроматографирование.

    реферат [69,4 K], добавлен 24.01.2009

  • Возникновение и развитие хроматографии. Классификация хроматографических методов. Хроматография на твердой неподвижной фазе: газовая, жидкостная (жидкостно-адсорбционная). Хроматография на жидкой неподвижной фазе: газо-жидкостная и гель-хроматография.

    реферат [28,1 K], добавлен 01.05.2009

  • Сущность и содержание ионно-парной хроматографии, ее использование в жидкостной хроматографии и экстракции для извлечения лекарств и их метаболитов из биологических жидкостей в органическую фазу. Варианты ионно-парной хроматографии, отличительные черты.

    реферат [28,7 K], добавлен 07.01.2010

  • Назначение лигандообменной хроматографии, принцип и этапы ее реализации, задействованные элементы. Определение микропримесей в жидкостной хроматографии, рекомендации по его проведению. Методика анализа сложных примесей и инструментарий для него.

    реферат [27,1 K], добавлен 07.01.2010

  • Физико-химический метод разделения компонентов сложных смесей газов, паров, жидкостей и растворенных веществ, основанный на использовании сорбционных процессов в динамических условиях. Хроматографический метод. Виды хроматографии. Параметры хроматограммы.

    реферат [21,6 K], добавлен 15.02.2009

  • Понятие и структура полимерных сорбентов, история их создания и развития, значение в процессе распределительной хроматографии. Виды полимерных сорбентов, возможности их использования в эксклюзионной хроматографии. Особенности применения жестких гелей.

    реферат [29,6 K], добавлен 07.01.2010

  • Осуществление разделения методом адсорбционной хроматографии в результате взаимодействия вещества с адсорбентами. Нормально-фазная распределительная хроматография с привитыми фазами. Обращенно-фазная распределительная хроматография с привитыми фазами.

    реферат [109,8 K], добавлен 07.01.2010

  • Способы идентификации компонентов, регистрация пиков в хроматографии. Изучение образца для постулирования присутствия конкретных веществ. Идентификация нехроматографическими методами, спектральный анализ непосредственно в хроматографической системе.

    реферат [37,3 K], добавлен 12.01.2010

  • Обращенно-фазовая хроматография. Химически привитые сорбенты в колоночной жидкостной хроматографии для получения гидрофобных распределительных систем. Элюотропный ряд растворителей. Гель-проникающия, ионообменная и распределительная хроматография.

    реферат [19,8 K], добавлен 15.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.