Биохимический анализ белков и аминокислот
Понятие, классификация, свойства и функции белков. Регуляция желудочно-кишечной секреции. Нарушение переваривания белков и транспорта аминокислот. Пути образования пула аминокислот в крови и его использование в организме. Обмен серина и глицина.
Рубрика | Химия |
Вид | курс лекций |
Язык | русский |
Дата добавления | 16.11.2017 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ГБОУ ВПО УГМУ Минздрава РФ
кафедра биохимии
КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ
для студентов 2 курса лечебно-профилактического факультета
Модуль 5. Биохимический анализ белков и аминокислот
Автор: к.б.н., доцент кафедры биохимии Гаврилов И.В.
Екатеринбург, 2013
Тема Белки I. Механизмы переваривание и всасывания белков
ПОНЯТИЕ, КЛАССИФИКАЦИЯ, СВОЙСТВА И ФУНКЦИИ БЕЛКОВ
Белки - высокомолекулярные органические соединения, состоящие из остатков более чем 100 АК. У человека в организме содержится 15кг белка. По количеству генов, у человека предполагают наличие около 50000 видов белков. Самый распространенный белок у человека - коллаген, на его долю приходиться 30% от общего содержания белка.
Пептиды - органические соединения, состоящие из остатков от 2 до 100 АК.
Олигопептиды - органические соединения, состоящие из остатков от 2 до 10 АК.
Полипептиды - органические соединения, состоящие из остатков от 10 до 100 АК.
Белки имеют 3-4 уровня организации:
1. Первичная структура линейна, представлена последовательностью аминокислот, соединенных пептидными связями;
2. Вторичная структура является пространственной, она образуется только водородными связями. Выделяют б-спираль и в-складчатый лист;
3. Третичная структура является пространственной, она образуется ковалентными, водородными, ионными и гидрофобными связями. Образует белковые глобулы;
4. Четвертичная структура является пространственной, она образуется при соединении нескольких белковых глобул слабыми водородными, ионными и гидрофобными связями;
Разрушение первичной структуры белка называется гидролиз. Гидролиз пептидной связи идет в кислой и щелочной среде и с участием ферментов пептидаз (класс гидролаз).
Разрушение вторичной, третичной и четвертичной структур называется денатурацией. Денатурация бывает обратимой, когда разрушаются слабые связи (водородные, ионные, гидрофобные) и необратимой, когда разрушаются прочные связи (ковалентные).
Классификация белков
· По составу белки делятся на простые (протеины) и сложные (протеиды). Простые белки содержат только остатки аминокислот. Сложные белки, кроме аминокислот, содержат небелковый компонент: липиды, углеводы, нуклеиновые кислоты, металлы, витамины, порфирины и т.д.
· По форме белки делятся на глобулярные и фибриллярные. Глобулярные белки содержат б-спираль, они как правило водорастворимы. Фибриллярные белки содержат в-складчатую структуру и водонерастворимы (кератин);
· Белки делятся по выполняемым в организме функциям.
Функции белков
· Структурная (коллаген, эластин, кератин);
· Каталитическая (ферменты);
· Транспортная (гемоглобин, альбумины, глобулины);
· Сократительная (актин, миозин);
· Защитная (иммуноглобулины, фибриноген, плазминоген, лизоцим);
· Регуляторная (гормоны, рецепторы);
· Онкотическое давление (белки сыворотки крови);
· Буферная (гемоглобин, белки сыворотки крови).
Свойства белков
· Белки в основном водорастворимые вещества, образующие коллоидный раствор;
· Белки способны к денатурации и гидролизу;
· Обладают амфотерными свойствами;
· Проявляют оптическую активность, т.к. состоят из оптически активных L-аминокислот.
РОЛЬ БЕЛКА В ПИТАНИИ. ПОКАЗАТЕЛИ КАЧЕСТВА ПИЩЕВОГО БЕЛКА
Роль белка в питании: основной источник АК, в первую очередь незаменимых.
Богаты белками продукты животного происхождения: мясо, рыба, сыр. Продукты растительного происхождения содержат, как правило, мало белка (кроме бобовых).
Количество белка в некоторых пищевых продуктах
Название продукта |
Содержание белка, % |
|
Мясо |
18-22 |
|
Рыба |
17-20 |
|
Сыр |
20-36 |
|
Молоко |
3,5 |
|
Рис |
8,0 |
|
Горох |
26 |
|
Соя |
35 |
|
Картофель |
1,5-2,0 |
|
Капуста |
1,1-1,6 |
|
Морковь |
0,8-1,0 |
|
Яблоки |
0,3-0,4 |
Питательная ценность белка зависит от его аминокислотного состава и способности усваиваться организмом.
Полноценным белком, считается тот, который полностью усваивается организмом и содержит все необходимые, в первую очередь незаменимые, АК в пропорции близкой к тканям человеческого организма. Биологическая ценность такого белка условно принимается за 100 (белки яиц и молока). Белки животного происхождения имеют, как правило, высокую биологическую ценность (97) (белки мяса говядины 98), а растительные белки - низкую (83-85) (белки кукурузы 36, белки пшеницы 52-65).
Растительные белки, особенно пшеницы и других злаковых, полностью не перевариваются, так как они защищены от ферментов целлюлозной оболочкой.
Многие растительные белки бедны лизином, метионином и триптофаном. Например, белки кукурузы содержат мало лизина, но достаточное количество триптофана. А белки бобов богаты лизином, но содержат мало триптофана. По отдельности эти белки является неполноценными, но их смесь содержит необходимое человеку количество незаменимых АК.
В ЖКТ не перевариваются некоторые белки животного происхождения, имеющие фибриллярное строение. Например, кератин - белок волос, шерсти, перьев, копыт и рогов.
АЗОТИСТЫЙ БАЛАНС. ПРИНЦИПЫ НОРМИРОВАНИЯ БЕЛКА В ПИТАНИИ. БЕЛКОВАЯ НЕДОСТАТОЧНОСТЬ
Азотистый баланс - разница между количеством азота, поступающего с пищей, и количеством выделяемого азота. Азот преимущественно поступает в организм в виде АК (95%), а выделяется в виде мочевины и аммонийных солей.
Нулевой азотистый баланс существует, когда количество выделяемого азота равно количеству поступающего в организм. Он характерен для здорового человека при нормальном питании.
Положительный азотистый баланс существует, когда из организма выделяется меньше азота, чем поступает. Характерен для детей, беременных, пациентов, выздоравливающих после тяжёлых болезней, а также при опухолевом росте.
Отрицательный азотистый баланс существует, когда из организма выделяется больше азота, чем поступает. Наблюдают при старении, голодании, безбелковой диете, во время тяжёлых заболеваний, ожогах и травмах. При длительном голодании организм теряет в сутки около 4г азота при катаболизме 25г белка.
Нормы белка в питании
· Для здорового взрослого человека минимальное количество белка в пище составляет 30-50 г/сут (при биологической ценности не ниже 70%). Оно поддерживает азотистое равновесие, но не обеспечивает сохранение работоспособности и здоровья человека.
· Для здорового взрослого человека оптимальное количество белка в пище составляет - 100-120 г/сут (или не менее 1г/кг в сут).
· Детям до 12 лет достаточно 50 - 70 г/сут (4,0-1,5 г/кг в сут) (до 3 месяцев - 2,2 г/кг в сут, до 6 месяцев - 2,6 г/кг в сут, старше 6 месяцев - 2,9 г/кг в сут).
· Для детей от 12- 15 лет оптимальное количество белка в пище составляет - 100-120 г/сут.
Потребность в пищевом белке возрастает:
· при физических нагрузках (при тяжелых до 130-150г),
· при низких температурах,
· в период выздоровления после тяжелых заболеваний,
· при беременности у женщин (3-4 г/кг белка /сут)
· при росте у детей.
Потребность в пищевом белке снижается:
· при старении,
· при повышении температуры окружающей среды
· при тяжелых заболеваниях.
Потребность в пищевом белке у мужчин выше, чем у женщин.
Белковая недостаточность
Продолжительное безбелковое питание вызывает серьёзные нарушения обмена веществ и неизбежно заканчивается гибелью организма. Дефицит в пище даже одной незаменимой АК ведёт к неполному усвоению других АК и сопровождается развитием отрицательного азотистого баланса, истощением, остановкой роста и нарушениями функций нервной системы.
У животных при отсутствии цистеина возникает острый некроз печени, гистидина -- катаракта; отсутствие метионина приводит к анемии, ожирению и циррозу печени, облысению и геморрагии в почках. Исключение лизина из рациона молодых животных вызывает анемиею и внезапную гибель.
Заболевание «Квашиоркор», в переводе означает «золотой (или красный) мальчик», возникает при недостаточности белкового питания. Оно характерно для Центральной Африки.
Заболевание развивается у детей, которые лишены молока и других животных белков, а питаются исключительно растительной пищей (кукуруза, бананы, таро, просо). Квашиоркор характеризуется задержкой роста, анемией, гипопротеинемией (часто сопровождающейся отёками), жировым перерождением печени. У лиц негроидной расы волосы приобретают красно-коричневый оттенок. Часто это заболевание сопровождается атрофией клеток поджелудочной железы. В результате нарушается секреция панкреатических ферментов и не усваивается даже то небольшое количество белков, которое поступает с пищей. Происходит поражение почек, вследствие чего резко увеличивается экскреция свободных аминокислот с мочой.
Без лечения смертность детей составляет 50--90%. Даже если дети выживают, длительная недостаточность белка приводит к необратимым нарушениям не только физиологических функций, но и умственных способностей. Заболевание исчезает при своевременном переводе больного на богатую белком диету, включающую большие количества мясных и молочных продуктов. Один из путей решения проблемы -- добавление в пищу препаратов лизина.
ПЕРЕВАРИВАНИЕ БЕЛКОВ В ЖКТ
Переваривание - процесс гидролиза веществ до их ассимилируемых форм.
Всасывание - процесс поступления веществ из просвета ЖКТ в кровеносное русло.
В пищевых продуктах содержатся в основном белки и пептиды, которые, как правило, не способны всасываться, ассимилируемых свободных аминокислот в пище очень мало.
Переваривание белков и пептидов в ЖКТ происходит под действием пищеварительных соков, содержащих ферменты протеазы, которые относятся к классу гидролаз.
Протеазы гидролизуют пептидных связей в белках и пептидах, их делят на протеиназы (эндопептидазы) и пептидазы (экзопептидазы).
Протеиназы (эндопептидазы) катализируют расщепление внутренних пептидных связей в белках и пептидах.
Пептидазы (экзопептидазы) отщепляют от молекул белков и пептидов по одной аминокислоте с карбоксильного или аминного конца. Соответственно различают карбоксипептидазы и аминопептидазы. Экзопептидазы функционируют в тонкой кишке.
Дипептидазы гидролизуют дипептиды.
В зависимости от особенностей строения активного центра протеазы подразделяют на сериновые, тиоловые (цистеиновые), кислые протеиназы и металлоферменты, содержащие в активном центре атом металла (чаще Zn). К металлоферментам относится большинство известных пептидаз.
Протеазы различают по субстратной специфичности, т. е. способности гидролизовать связи между определёнными аминокислотными остатками.
Переваривание белков начинается в желудке.
ПЕРЕВАРИВАНИЕ БЕЛКОВ В ЖЕЛУДКЕ
Желудок выполняет несколько функций: защитную (обезвреживание пищи: HCl, лизоцим), переваривание (механическая и химическая обработка пищи: HCl, ферменты), всасывание, эндокринную (образование гастрина и гистамина) и экскреторную (выделение мочевины, мочевой кислоты, аммиака, креатинина, солей тяжелых металлов, йода, лекарственных веществ).
Основная пищеварительная функция желудка - переваривание белка. Для пищеварения слизистая оболочка желудка выделяет сложный по составу сок, который представляет собой бесцветную, слегка опалесцирующую жидкость с величиной рН=1,5-2,0 (1,6-1,8) и относительной плотностью 1005. В сутки выделяется 2-2,5 литра сока. Основной компонент желудочного сока вода (99,5%) в которой растворены органические и неорганические вещества.
Состав желудочного сока
Неорганические вещества |
Кол-во |
Органические вещества |
Кол-во |
|
Свободная НС1 |
20 ммоль/л, 0,4-0,5% 20-40 ТЕ |
Пепсины (8 видов) |
0--21 мг% |
|
Связанная НС1 |
20-30 ТЕ |
Ренин (только у грудных детей) |
||
Хлориды |
155,1 ммоль/л |
Гастриксин |
||
Натрий |
31,3-189,3 ммоль/л |
Желатиназа |
||
Калий |
5,6-35,3 ммоль/л |
Липаза |
||
кальций |
Муцин |
|||
магний |
Лизоцим |
|||
Азот небелковый |
14,3--34,3 ммоль/л |
Органические кислоты |
||
Азот мочевины и аммиака |
4,99--9,99 ммоль/л |
|||
Азот аминокислот |
47,6-118,9 мкмоль/л |
|||
Сульфаты |
||||
фосфаты |
||||
бикарбонаты |
Желудочный сок синтезируется железами, находящимися в слизистой оболочке желудка. Различают три вида желез: кардиальные, фундальные (собственные железы желудка) и пиллорические (железы привратника). Железы состоят из главных, париетальных (обкладочных), добавочных клеток и мукоцитов.
Главные клетки вырабатывают пепсиногены (пепсин, гастриксин, реннин), обкладочные (париетальные) -- соляную кислоту, добавочные и мукоциты -- мукоидный секрет. Фундальные железы содержат все три типа клеток.
Кислотность желудочного сока
Кислотность желудочного сока связана с наличием в нем различных неорганических (HCl, кислые фосфаты) и органических (оксо-, окси-, амино-, нуклеиновые, жирные кислоты и т.д.) кислот. В связи с этим выделяют понятие общая кислотность желудочного сока. Основная причина кислотности желудочного сока связана с наличием в нем соляной кислоты. Соляная кислота в желудочном соке находится в свободном и в связанном (с белками и продуктами их переваривания) состоянии.
Механизм образования соляной кислоты
Согласно карбоангидразной теории, источником Н+ для HCl является Н2СО3, которая образуется в обкладочных клетках желудка из СО2 и Н2О под действием карбоангидразы: Н2О + СО2 > Н2СО3
Н2СО3 диссоциирует на бикарбонат, который выделяется в плазму крови в обмен на С1-, и Н+, который активно переносится Н+/К+-АТФ-азой в просвет желудка в обмен на К+.
При этом в просвете желудка концентрация Н+ увеличивается в 106 раз, концентрация НС1 достигает 0,16 М, а значения рН снижается до 1,0-2,0. При максимальной активности обкладочные клетки могут продуцировать до 23 ммоль HCl в час. Синтез HCl - аэробный процесс, требующий большого количества АТФ, поэтому при гипоксии он снижается.
Вода выходит из клеток в просвет желудка по осмотическому градиенту
Функции НС1:
· Вызывает денатурацию и набухание белков пищи, что увеличивает доступность их пептидных связей для действия протеаз;
· Обладает бактерицидным действием и препятствует попаданию патогенных бактерий в кишечник;
· Регуляция активности протеолитических ферментов (активирует пепсиноген и создаёт оптимум рН для протеолитических ферментов);
· Стимулирует работу кишечника и поджелудочной железы.
Ферменты желудка
Пепсиноген неактивный фермент, синтезируется в главных клетках, состоит из одной полипептидной цепи с молекулярной массой 40 кД.
В просвете желудка под действием НС1 от N-конца пепсиногена отщепляется пептид в 42 аминокислотных остатка, который содержит почти все положительно заряженные аминокислоты, имеющиеся в пепсиногене. При этом пепсиноген превращается в активный пепсин, он состоит преимущественно из отрицательно заряженных аминокислот, которые участвуют в формировании активного центра. Образовавшиеся под действием НС1 активные молекулы пепсина быстро активируют остальные молекулы пепсиногена аутокатализом.
Пепсин - белок, с молекулярной массой 34,5 кДа, 340АК, 3 дисульфидных мостика и фосфорная кислота. Пепсин - эндопептидаза с оптимумом рН=1,9.
. Пепсин гидролизует внутренние пептидные связи в белке (кроме кератинов и других склеропротеинов) с образованием коротких пептидов и АК: хорошо - между ароматическими аминокислотами (фенилаланин, триптофан, тирозин) и хуже - между лейцином и дикарбоновыми аминокислотами. Естественным ингибитором пепсина является пепстатин.
Всего известно до 12 изоформ пепсина, которые различаются молекулярным весом, электрофоретической подвижностью, оптимумами рН протеолитической активности, при разном рН с неодинаковой скоростью гидролизуют разные белки, условиями инактивации.
· Пепсин 1 (собственно пепсин) -- максимум активности при рН = 1,9. При рН = 6 быстро инактивируется.
· Пепсин 2 -- максимум активности при рН = 2,1.
· Пепсин 3 -- максимум активности при рН = 2,4 -- 2,8.
· Пепсин 5 («гастриксин») -- максимум активности при рН = 2,8 -- 3,4.
· Пепсин 7 -- максимум активности при рН = 3,3 -- 3,9.
Реннин (химозин, сычужный фермент) - эндопептидаза, с оптимумом рН=3-4. В составе преобладают кислые аминокислоты, вырабатывается главными клетками в виде прореннина (прохимозина). Активируется при рН<5, в присутствии кальция отщеплением пептида в 42 АК. Реннин вызывает створаживание молока в присутствии ионов кальция. Есть только у детей грудного возраста. Основной белок молока -- казеин, представляющий смесь нескольких белков, различающихся по аминокислотному составу и электрофоретической подвижности. Реннин катализирует отщепление от казеина гликопептида, в результате чего образуется параказеин. Параказеин присоединяет ионы Са2+, образуя нерастворимый сгусток, чем предотвращает быстрый выход молока из желудка. Параказеин медленно расщепляется под действием пепсина. В желудке взрослых людей реннина нет, молоко у них створаживается под действием НС1 и пепсина.
Муцин - мукопротеид образующий слизь. Существует в 2 формах: нерастворимая фракция - покрывает поверхность слизистой оболочки и изолирует эпителий от пищеварительного процесса (механическая и химическая защита); растворимая фракция - образует коллоидную систему, в которой растворены компоненты желудочного сока. Обладает буферными свойствами, способна нейтрализовать кислотность или щелочность.
Внутренний фактор Касла (гастромукопротеид) -- комплексное соединение, состоящее из пептидов, отщепляющихся от пепсиногена при его превращении в пепсин, и мукоидов -- секрета, выделяемого клетками слизистой оболочки желудка (мукоцитами).
Мукоидная часть комплекса защищает его от гидролиза пищеварительными ферментами и утилизации бактериями кишечника; белковая часть определяет его физиологическую активность. Основная роль внутреннего фактора Касла заключается в образовании с витамином В12 лабильного комплекса, который всасывается эпителиальными клетками подвздошной кишки.
Всасывание усиливается в присутствии ионов кальция, бикарбонатов и ферментов поджелудочной железы. В плазме крови витамин В12 связывается с белками плазмы, образуя белково-В12-витаминный комплекс, который депонируется в печени.
Лизоцим - белок, обеспечивающий бактерицидные свойства желудочного сока.
Нарушения переваривания белков в желудке
При заболеваниях желудка в желудочном соке часто происходит изменение содержание соляной кислоты, реже - снижение активности пищеварительных ферментов, что приводит к нарушению процессов переваривания белков.
Для диагностики заболеваний желудка определяют кислотность желудочного сока, содержание в нем свободной и связанной HCl, пепсина, фактора Касла и наличие патологических компонентов: молочной кислоты и крови.
Определение кислотности желудочного сока
Кислотность желудочного сока выражается в титрационных единицах (Т.Е.), определяется количеством мл 0,1Н раствора NaOH, пошедшего на титрование 100 мл желудочного сока. Титрование проводят в присутствии двух индикаторов, что позволяет в одной пробе определить свободную HCl, связанную HCl и общую кислотность. В норме общая кислотность у взрослых составляет 40-60 Т.Е, кислотность свободной HCl - 20-40 Т.Е., связанной HCl - 20-30 Т.Е.
В качестве нарушений выделяют:
Повышенная кислотность желудочного сока. Она обычно сопровождается изжогой, диареей и может быть симптомом язвы желудка и двенадцатиперстной кишки, а также гиперацидного гастрита.
Пониженная кислотность желудочного сока. Бывает при некоторых видах гастритов.
Желудочная ахилия - полное отсутствие НС1 и пепсина в желудочном соке. Наблюдается при атрофических гастритах и часто сопровождается пернициозной анемией вследствие недостаточности выработки фактора Касла и нарушения всасывания витамина В12.
Анацидность - рН желудочного сока >6,0. Свидетельствует о значительной потере слизистой оболочкой желудка обкладочных клеток, секретирующих соляную кислоту, что часто вызывает рак желудка.
Наличие молочной кислоты. В норме в желудочном соке молочная кислота отсутствует. Она образуется при уменьшении содержания или отсутствии свободной соляной кислоты в результате размножения молочнокислых бактерий или при злокачественных опухолях желудка, в клетках которых глюкоза окисляется анаэробным путём.
Наличие крови. Эритроциты появляются в желудочном соке при кровотечениях вследствие механических травм, язв и распада опухоли.
состояние |
рН |
Кислотность ТЕ |
Пепсин |
Фактор Касла |
Лактат |
Кровь |
|||
общая |
Связанная HCl |
Свободная HCl |
|||||||
Норма |
1,5-2,0 |
40-60 |
20-30 |
20-40 |
+ |
+ |
- |
- |
|
Гиперацидный гастрит |
1.0 |
80 |
40 |
+ |
+ |
- |
- |
||
Гипоацидный гастрит |
2,5 |
40 |
20 |
+ |
+ |
+ |
- |
||
ахилия |
7,0 |
20 |
- |
- |
- |
+ |
- |
||
Язва желудка |
1,5 |
60 |
40 |
+ |
+ |
+ |
|||
Рак желудка |
?6,0 |
40-60 |
20 |
+ |
+ |
+ |
+ |
При диагностике заболеваний желудка, кроме биохимических анализов, обязательно проводят рентгенологические и эндоскопические исследования, а также биопсию.
ПЕРЕВАРИВАНИЕ БЕЛКОВ В КИШЕЧНИКЕ
Функции тонкой и толстой кишок: 1). завершение переваривания всех компонентов пищи; 2). всасывание образовавшихся соединений; 3). удаление непереваренных продуктов (формирование каловых масс и их эвакуация). 4). экскреторная. (выведение из организма мочевины, мочевой кислоты, креатинина, ядов, лекарственных препаратов, кальция, тяжелых металлов). 5) эндокринная (образование гормонов серотонин; холецистокинин, секретин; мотилин; соматостатин, вазоинтестинальный пептид (ВИП)); 6). защитная (образует защитный барьер от антигенных свойств пищи). 7). метаболическая (синтез витаминов групп В и К с помощью микрофлоры в толстом кишечнике).
Размельченные и химически обработанные пищевые массы в смеси с желудочным соком образуют жидкий или полужидкий химус, который поступает в двенадцатиперстную кишку.
Переваривание белков происходит в кишечнике под действием пищеварительных соков поджелудочной железы и тонкой кишки.
Панкреатический сок
Для пищеварения в поджелудочной железе синтезируется сложный по составу сок, который представляет собой бесцветную опалесцирующую жидкость с величиной рН=7,5-8,8. В сутки выделяется 1,5-2,5 литра сока. В состав поджелудочного сока входят вода и сухой остаток (0,12%), который представлен неорганическими и органическими веществами.
В соке содержится 5-6г общего белка, катионы Na+ (134-142 мг/л), Ca2+, К+ (4,7-7,4 мг/л), Мg2+ и анионы Cl- (35-97 мг/л), SO32-, HPO42-, особенно много в нем бикарбонатов - 150 ммоль/л.
Ферментная часть секрета образуется в ацинарных клетках, а жидкая (водно-электролитная) - муцин и бикарбонаты - в эпителии протоков.
В панкреатическом соке содержится большое количество гидролитических ферментов: липаз, фосфолипаз, эстераз, нуклеаз, амилаз, мальтаз и в неактивной форме эндопептидаз (трипсиноген, химотрипсиноген, проколлагеназа, проэластаза) и экзопептидаз (прокарбоксипептидазы А и В).
Активация протеаз в просвете кишечника происходит путём их частичного протеолиза.
Трипсиноген превращается в активный трипсин под действием энтеропептидазы эпителия кишечника, которая отщепляет с N-конца трипсиногена гексапептид Вал-(Асп)4-Лиз.
Образовавшийся трипсин частичным протеолизом активирует оставшиеся проферменты панкреатических протеаз (проэластаза, проколлагеназа и прокарбоксипептидазы А и В, химотрипсиноген). В результате образуются активные ферменты -- эластаза, коллагеназа, карбоксипептидазы А и В, и несколько активных химотрипсинов (р, д, б).
Химотрипсиноген состоит из одной полипептидной цепи, содержащей 245 АК и пяти дисульфидных мостиков. Под действием трипсина расщепляется пептидная связь между 15-й и 16-й аминокислотами, в результате чего образуется активный р-химотрипсин.
Далее р-химотрипсин отщепляет дипептид сер(14)-арг(15), что приводит к образованию д-химотрипсина. д-химотрипсин отщепляет дипептида тре(147)-арг(148) что приводит к образованию стабильной формы активного фермента -- б-химотрипсина, который состоит из трёх полипептидных цепей, соединённых дисульфидными мостиками.
Специфичность действия протеаз
Трипсин преимущественно гидролизует пептидные связи, образованные карбоксильными группами аргинина и лизина.
Химотрипсины наиболее активны в отношении пептидных связей, образованных карбоксильными группами ароматических аминокислот (Фен, Тир, Три).
Карбоксипептидазы А и В -- цинксодержащие ферменты, отщепляют аминокислоты с С-конца. Карбоксипептидаза А отщепляет преимущественно аминокислоты, содержащие ароматические или гидрофобные радикалы, а карбоксипептидаза В -- остатки аргинина и лизина.
Поджелудочный сок обеспечивает в просвете кишки полостное переваривание. Ферменты поджелудочной железы гидролизуют полипептиды пищи до олигопептидов и аминокислот.
Возрастные особенности панкреатического сока
Протеолитическая активность пищеварительного сока поджелудочной железы находится на довольно высоком уровне уже с первых месяцев жизни, достигая максимума к 4-6 годам. Липолитическая активность увеличивается в течение первого года ребенка. Активность поджелудочной амилазы к концу первого года жизни возрастает в 4 раза, достигая максимальных значений к 9 годам.
Кишечный сок
Кишечный сок является продуктом деятельности всей слизистой оболочки кишечника и представляет собой неоднородную вязкую жидкость, с величиной рН=7,2-8,6 (с усилением секреции рН повышается). За сутки у человека в тонкой кишке выделяется до 2,5л сока, а в толстой кишке - 50-100мл сока. Кишечный сок продуцируется в основном бруннеровыми железами 12-перстной кишки и либеркюновыми железами 12-перстной, тощей и подвздошной кишок.
Основной компонент кишечного сока - вода, в которой растворены органические (белки, аминокислоты, промежуточные продукты обмена, слизь) и неорганические (хлориды, бикарбонаты, фосфаты натрия, калия, кальция) компоненты.
В кишечном соке содержится более 20 ферментов, гидролизующих углеводы (мальтаза, трегалаза, инвертаза, лактаза, а- и г-амилазы), белки и их фрагменты (аминопептидазы, трипептидазы, дипептидазы, энтерокиназа), липиды (моноглицеридлипаза, карбоксиэстераза), нуклеазы, фосфатазы и другие гидролазы. Состав кишечного сока меняется в зависимости от пищи.
Экзопептидазы (аминопептидазы, три- и дипептидазы) синтезируются кишечником сразу в активной форме, они гидролизуют оставшиеся олигопептиды до аминокислот.
Аминопептидазы последовательно отщепляют N-концевые аминокислоты пептидной цепи.
· Лейцинаминопептидаза -- Zn2+- или Мn2+-содержащий фермент, обладает широкой специфичностью по отношению к N-концевым аминокислотам.
· Аланинаминопептидаза.
Трипептидазы расщепляют трипептиды на дипептиды и аминокислоты, а дипептиды гидролизуют на аминокислоты дипептидазы.
Ферменты кишечного сока функционируют преимущественно в составе гликокаликса щеточной каемки кишечного эпителия, обеспечивая пристеночное и мембранное пищеварение.
Защита клеток от действия протеаз
Клетки поджелудочной железы защищены от действия пищеварительных ферментов тем, что:
· эти ферменты образуются в клетках поджелудочной железы в неактивной форме и активируются только после секреции в просвет кишечника.
· в клетках поджелудочной железы присутствует белок-ингибитор трипсина, образующий с активной формой фермента (в случае преждевременной активации) прочный комплекс.
В полости желудка и кишечника протеазы не контактируют с белками клеток, поскольку слизистая оболочка покрыта слоем слизи, а каждая клетка содержит на наружной поверхности плазматической мембраны полисахариды, которые не расщепляются протеазами и тем самым защищают клетку от их действия.
Разрушение клеточных белков протеазами происходит при язвенной болезни желудка или двенадцатиперстной кишки.
РЕГУЛЯЦИЯ ЖЕЛУДОЧНО-КИШЕЧНОЙ СЕКРЕЦИИ
Натощак секретируется незначительное количество желудочного сока.
Регуляция секреции желудочного сока осуществляется в 3 фазы:
1. Мозговая (сложнорефлекторная) фаза. Осуществляется через комплекс условных и безусловных рефлексов. Вид, запах и вкус пищи активируют нейроны вагуса в центре регуляции желудочной секреции. Окончания вагуса в желудке выделяют ацетилхолин, который через М-холинорецепторы стимулирует синтез желудочного сока (главными, обкладочными и добавочными клетками), а также стимулирует выработку в желудке гормонов гастрина и гистамина;
2. Желудочная (нейро-гуморальная) фаза. Возникает при нахождении пищи в желудке. За счет вагуса, метасимпатической нервной системы, гастрина, гистамина и питательных веществ (белки, пептиды, АК) стимулируется секреция желудочного сока. (Метасимпатическая нервная система (МНС) представляет собой комплекс микроганглиев, расположенных в стенках внутренних органов. МНС координирует и регулирует моторную, секреторную, абсорбционную, эндокринную, иммунную функции полых внутренних органов).
3. Кишечная фаза. При недостаточной обработки пищи из кишечника возникают сигналы, стимулирующие желудочную секрецию (за счет рефлексов местных и центральных, возникающих с рецепторов кишечника и реализующихся через вагус, МСН, гастрин, гистамин). При избытке HCl или чрезмерном разрушении пищевых продуктов, из кишечника возникают сигналы, тормозящие желудочную секрецию (через секретин, холецистокинин, ВИП, ГИП).
Гастрин - гормон пептидной природы, производимый G-клетками желудка (гастрин-17 из 17 аминокислот, и гастрин-14 из 14 аминокислот), расположенными в основном в антральном отделе желудка.
Секрецию гастрина стимулируют:
· Ацетилхолин вагуса;
· белки, продукты гидролиза;
· бомбензин;
· инсулин;
· адреналин (слабо);
· высокий уровень глюкокортикоидов;
· гиперкальциемия.
Секрецию гастрина угнетают:
· высокий уровнень HCl в желудке;
· холецистокинин;
· секретин;
· глюкагон;
· серотонин;
· ГИП;
· ВИП;
· простагландин Е;
· эндогенные опиоиды -- эндорфины и энкефалины;
· аденозин;
· кальцитонин;
· соматостатин (сильно);
Эффекты гастрина:
· Гастрин связывается с гастриновыми рецепторами в желудке и активирует через аденилатциклазную систему синтез желудочного сока: он стимулирует секрецию НС1, пепсиногена, бикарбонатов и слизи в слизистой желудка.
· Гастрин увеличивает продукцию простагландина E в слизистой желудка, что приводит к местному расширению сосудов, усилению кровоснабжения и физиологическому отёку слизистой желудка и к миграции лейкоцитов в слизистую. Лейкоциты принимают участие в процессах пищеварения, секретируя различные ферменты и производя фагоцитоз.
· Гастрин тормозит опорожнение желудка, что обеспечивает достаточную для переваривания пищи длительность воздействия соляной кислоты и пепсина на пищевой комок.
· Рецепторы к гастрину имеются и в тонкой кишке и поджелудочной железе. Гастрин увеличивает секрецию секретина, холецистокинина, соматостатина и ряда других гормонально активных кишечных и панкреатических пептидов, а также секрецию кишечных и панкреатических ферментов. Тем самым гастрин создаёт условия для осуществления следующей, кишечной, фазы пищеварения.
Гистамин биогенный амин, образующийся в энтерохромафиноподобных клетках (ECL) при декарбоксилировании аминокислоты гистидина. Секрецию гистамина стимулирует ацетилхолин вагуса, гастрин, ингибирует HCl. Гистамин, через Н2-рецепторы, усиливает секрецию HCl обкладочными клетками.
Простогландины вырабатываются покровными эпителиоцитами. Секрецию простогландинов стимулирует HCl, ингибируют глюкокортикоиды. Простогландины стимулируют слизеобразование, секрецию бикарбонатов (нейтрализация рН), усиливают кровообращения в желудке.
Серотонин - биогенный амин, образуется в энтерохромафинных эндокриноцитах (ЕС) из 5-окситриптофана. Секрецию серотонина стимулирует HCl. Серотонин стимулирует секреторную (главные и слизистые клетки) и двигательную активность (миоциты) клеток желудка.
Соматостатин (пептид) образуется в D-клетках. Соматостатин ингибирует синтез ферментов, гормонов, соляной кислоты, увеличивает скорость всасывания воды и электролитов в тонкой кишке, снижает концентрацию вазоактивных пептидов в крови, уменьшает частоту актов дефекации и массу кала.
Пища, поступающая в желудок, стимулирует повышенное образование желудочного сока в течение 4-6 часов. Количество, состав и свойства желудочного сока меняются в зависимости от характера пищи, а также при заболеваниях желудка, кишечника и печени. Наибольшее количество желудочного сока выделяется на белковую пищу, меньше - на углеводную, еще меньше на жирную.
Регуляция поджелудочной секреции
Регуляция секреции поджелудочного сока осуществляется в 3 фазы:
1. Мозговая (сложнорефлекторная) фаза. Осуществляется через комплекс условных и безусловных рефлексов. Вид, запах и вкус пищи активируют нейроны вагуса в центре регуляции панкреатической секреции. Окончания вагуса в поджелудочной железе выделяют ацетилхолин, который стимулирует синтез панкреатического сока.
2. Желудочная (нейро-гуморальная) фаза. Возникает при нахождении пищи в желудке. За счет вагуса, гастрина, серотонина стимулируется секреция поджелудочного сока.
3. Кишечная фаза. Кислый химус вызывает в кишечнике выделение S-клетками секретина (белковый гормон). Секретин поступают в кровь и стимулирует выделение из поджелудочной железы в тонкий кишечник панкреатического сока, содержащего много НСО3-, что нейтрализует НС1 желудочного сока и ингибирует пепсин. В результате рН возрастает от 1,5-2,0 до 7,0.
Поступление пептидов в тонкий кишечник вызывает секрецию холецистокинина (белкового гормона) в I-клетках, который стимулирует выделение панкреатического сока с большим содержанием ферментов.
Регуляция кишечной секреции
Регуляция деятельности желез тонкой кишки осуществляется местными нервно-рефлекторными механизмами, а также гуморальными влияниями и ингредиентами химуса. Механическое раздражение слизистой оболочки тонкой кишки вызывает выделение жидкого секрета с малым содержанием ферментов. Местное раздражение слизистой кишки продуктами переваривания белков, жиров, соляной кислотой, панкреатическим соком вызывает отделение кишечного сока, богатого ферментами. Усиливают кишечное сокоотделение ГИП, ВИП, мотилин. Гормоны энтерокринин и дуокринин, выделяемые слизистой оболочкой тонкой кишки, стимулируют соответственно секрецию либеркюновых и бруннеровых желез. Тормозное действие оказывает соматостатин.
Мотилин (в Мо-клетках) - стимулирует активность гладко-мышечной клеток кишечника.
ВСАСЫВАНИЕ АМИНОКИСЛОТ В КИШЕЧНИКЕ
Всасывание L-аминокислот (но не D) -- активный процесс, в результате которого аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь.
Известно пять специфических транспортных систем, каждая из которых функционирует для переноса определённой группы близких по строению аминокислот:
1. нейтральных, короткой боковой цепью (аланин, серии, треонин);
2. нейтральных, с длинной или разветвлённой боковой цепью (валин, лейцин, изолейцин);
3. с катионными радикалами (лизин, аргинин);
4. с анионными радикалами (глутаминовая и аспарагиновая кислоты);
5. иминокислот (пролин, оксипролин).
Существуют 2 основных механизма переноса аминокислот: симпорт с натрием и г-глутамильный цикл.
1. Симпорт аминокислот с Na+.
Симпортом с Nа+ переносятся аминокислоты из первой и пятой группы, а также метионин.
L-аминокислота поступает в энтероцит путём симпорта с ионом Na+. Далее специфическая транслоказа переносит аминокислоту через мембрану в кровь. Обмен ионов натрия между клетками осуществляется путём первично-активного транспорта с помощью Na+, К+-АТФ-азы.
2. г-Глутамильный цикл.
г-глутамильный цикл переносит некоторые нейтральные аминокислоты (фенилаланин, лейцин) и аминокислоты с катионными радикалами (лизин) в кишечнике, почках и, по-видимому, мозге.
В этой системе участвуют 6 ферментов, один из которых находится в клеточной мембране, а остальные -- в цитозоле. Мембранно-связанный фермент г-глутамилтрансфераза (гликопротеин) катализирует перенос г-глутамильной группы от глутатиона на транспортируемую аминокислоту и последующий перенос комплекса в клетку. Амнокислота отщепляется от у-глутамильного остатка под действием фермента у-глутамилциклотрансферазы.
Дипептид цистеинилглицин расщепляется под действием пептидазы на 2 аминокислоты -- цистеин и глицин. В результате этих 3 реакций происходит перенос одной молекулы аминокислоты в клетку (или внутриклеточную структуру). Следующие 3 реакции обеспечивают регенерацию глутатиона, благодаря чему цикл повторяется многократно. Для транспорта в клетку одной молекулы аминокислоты с участием у-глутамильного цикла затрачиваются 3 молекулы АТФ.
Поступление аминокислот в организм осуществляется двумя путями: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфатический проток. Максимальная концентрация аминокислот в крови достигается через 30--50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Аминокислоты при всасывании конкурируют друг с другом за специфические участки связывания. Например, всасывание лейцина (если концентрация его достаточно высока) уменьшает всасывание изолейцина и валина.
НАРУШЕНИЕ ПЕРЕВАРИВАНИЯ БЕЛКОВ И ТРАНСПОРТА АМИНОКИСЛОТ
Непереносимость белков пищи (например, молока и яиц) у взрослых людей. В норме у взрослых людей из кишечника кровь попадают только лишенные антигенных свойств аминокислоты. Однако, у некоторых людей происходит всасывание в ЖКТ недопериваренных пептидов, антигенные свойства которых вызывают иммунные реакций.
У новорожденных проницаемость слизистой оболочки кишечника выше, чем у взрослых, поэтому в кровь поступают белки (антитела) молозива, необходимые для создания пассивного иммунитета. Процесс облегчается наличием в молозиве белка -- ингибитора трипсина и низкой активностью протеолитических ферментов новорождённых.
При заболевании целиакии (нетропической спру) происходит нарушение клеток слизистой оболочки кишечника, где всасываются небольшие негидролизованные пептиды. Целиакия характеризуется повышенной чувствительностью к глютену -- белку клейковины зёрен злаков, употребляемых с пищей человеком. Этот белок оказывает токсическое действие на слизистую оболочку тонкой кишки, что приводит к её патологическим изменениям и нарушению всасывания.
Цистинурия, болезнь Хартнапа и некоторые другие, возникают вследствие дефекта переносчиков нейтральных аминокислот в кишечнике и почках. Описана врождённая патология, связанная с дефектом фермента 5-оксопролиназы. При этом с мочой выделяется оксопролин. У этих больных нарушены транспорт аминокислот в ткани и их метаболизм в клетках.
4. «Гниение» белков в кишечнике. Роль УДФ-глюкуроновой кислоты и ФАФС в процессах обезвреживания и выведения продуктов «гниения» (фенол, индол, скатол, индоксил и др.).
ГНИЕНИЕ
Гниение - (putrefacio) процесс расщепления азотсодержащих, главным образом белковых веществ, в результате жизнедеятельности микроорганизмов.
В аэробных условиях белковые молекулы подвергаются более глубокому распаду с образованием множества промежуточных продуктов, распад идет вплоть до воды и газов.
В анаэробных условиях образуется меньше продуктов распада, но они являются более токсичными. В процессе гниения образуются так называемые трупные яды или птомаины.
При распаде цистеина, цистина и метионина образуются таурин (C2H7NO3S), этилсульфид (C4H10S), метилмеркаптан (CH3-SH), сероводород, аммиак, метиламин (CH3-NH2), диметиламин ((CH3)2 NH), триметиламин ((CH3)3 NH), углекислота, водород, метан.
Из гистидина образуются гистамин, имидазолилпировиноградная и уроканиновая кислоты.
Из фенилаланина и тирозина образуются фенилпировиноградная, параоксифенилпировиноградная, фенилмолочная и оксифенилмолочная кислоты. Оксифенилмолочная кислота превращается в кумаровую кислоту, крезол (HO-C6H4-CH3), оксибензойную кислоту (HO-C6H4-COOH) и фенол (HO-C6H5).
При декарбоксилировании фенилаланина, тирозина и 5-окситриптофана образуются фенилэтиламин, тирамин и серотонин, обладающие сильными фармакодинамическими свойствами.
Из триптофана образуются окси и кетокислоты (индолилпропионовая и скатоуксусная кислоты), а также скатол и индол, имеющие токсические свойства.
В кишечнике под действием микрофлоры триптафан подвергается процессу гниения с образованием токсичных соединений: скатола, индола и триптамина.
Триптамин - галлюциноген и возбудитель; вызывает сонное оцепенение без вялости и утомления. Присутствие скатола в кале и придает фекалиям характерный запах.
Из лизина бактериями при декарбоксилировании образуется кадаверин NH2(CH2)5NH2. Ядовитость кадаверина относительно невелика. Обнаружен у растений.
Из орнитина NH2CH2CH2CH2CH(NH2)СООН бактериями при декарбоксилировании образуется путресцин H2N(CH2)4NH2. В тканях организма путресцин -- исходное соединение для синтеза двух физиологически активных полиаминов -- спермидина и спермина. Эти вещества наряду с путресцином, кадаверином и другими диаминами входят в состав рибосом, участвуя в поддержании их структуры.
Пуриновые основания при гниении превращаются в гипоксантин и ксантин, а при участии ксантиноксидазы переходят в мочевину и углекислый аммиак.
Гем в процессе гниения переходит в гематин или стеркобилиноген.
Холестерин (C27H46O) превращается в копростерин (C27H48O).
Тема Белки II. Общие пути обмена аминокислот. Биосинтез мочевины.
Аминокислоты (АК) - органические соединения, содержащие -СООН и -NH2 в б-положении. Почти все АК имеют хиральный атом и обладают оптической изомерией. У человека присутствуют L-аминокислоты.
Всего известно около 300 видов АК, у человека в организме - 70, а в составе белков - 20.
Физико-химические свойства аминокислот
АК белые кристаллические вещества, хорошо растворимые в воде. Имеют высокую температуру плавления, в твердом состоянии находятся в виде внутренней соли. Многие сладкие на вкус (гли).
АК амфотерные вещества - проявляют свойства кислот и оснований.
К наиболее важным общим реакциям АК относятся реакции:
1. декарбоксилирования,
2. переаминирования,
3. дезаминирования,
4. образование пептидных связей
5. образование оснований Шиффа (при гликозилировании белков).
Специфические реакции АК связаны с наличием функциональных групп в радикале (окислительно-восстановительные реакции цис).
Существует несколько классификаций аминокислот.
Классификация АК по природе радикала: 1). алифатические (гли, ала, вал, лей, иле и.т.д.); 2). ароматические (фен, тир, три, гис); 3). гетероциклические (про, оксипро).
Классификация АК по количеству карбоксильных и аминогрупп: 1). нейтральные; 2). кислые (глу, асп); 3) основные (арг, лиз).
Классификация АК по функциональным группам в радикале: 1). содержащие -ОН (сер, тре); 2). содержащие -SH (цис, мет); 3). содержащие -СОNH2 (глн, асн);
Классификация АК по способности к синтезу:
1. АК, которые синтезируются в организме, называют заменимыми (глицин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, серии, пролин, аланин).
2. АК, которые не синтезируются в организме, но для него необходимы, называются незаменимыми (фенилаланин, метионин, треонин, триптофан, валин, лизин, лейцин, изолейцин).
3. Аргинин и гистидин - частично заменимые АК, у взрослых они образуются в достаточных количествах, а у детей - нет. Поэтому, необходимо дополнительное поступление этих АК с пищей.
4. Тирозин и цистеин -- условно заменимые, так как для их синтеза необходимы незаменимые АК (фенилаланин и метионин).
Функции аминокислот
· Используются для синтеза белков, углеводов, липидов, нуклеиновых кислот, биогенных аминов (гормонов, нейромедиаторов), других аминокислот
· Служат источником азота при синтезе всех азотсодержащих небелковых соединений (нуклеотиды, гем, креатин, холин и др);
· Выполняют регуляторную функцию (гли, глу - нейромедиаторы);
· служат источником энергии для синтеза АТФ.
ПУТИ ОБРАЗОВАНИЯ ПУЛА АМИНОКИСЛОТ В КРОВИ И ЕГО ИСПОЛЬЗОВАНИЕ В ОРГАНИЗМЕ
Большая часть аминокислот организма человека, примерно 15кг, входит в состав белков. Фонд свободных АК организма составляет примерно 35г.
Источниками АК в организме являются белки пищи, белки тканей и синтез АК из углеводов. В сутки у человека распадается на АК около 400г белков, примерно такое же количество синтезируется. Специальной формы депонирования АК, подобно глюкозе (в виде гликогена) или жирных кислот (в виде ТГ), не существует (исключение - казеин молока). Поэтому резервом АК служат все белки тканей, но преимущественно белки мышц (т.к. их много).
ОБЩИЕ РЕАКЦИИ ОБМЕНА АМИНОКИСЛОТ
АК, появившиеся в организме, включаются в общие и специфические реакции обмена.
К общим реакциям обмена АК относят реакции трансаминирования, дезаминирования и декарбоксилирования, биосинтеза белков и рацемизации (L переходы D).
ТРАНСАМИНИРОВАНИЕ (ПЕРЕАМИНИРОВАНИЕ) АМИНОКИСЛОТ
Трансаминирование -- реакция переноса б-аминогруппы с АК на б-кетокислоту, в результате чего образуются новая б-кетокислота и новая АК. Процесс трансаминирования легко обратим, при нем общее количество АК в клетке не меняется.
Реакции катализируют аминотрансферазы, коферментом которых служит пиридоксальфосфат (ПФ) -- производное витамина В6
...Подобные документы
Характеристика белков как высокомолекулярных соединений, их структура и образование, физико–химические свойства. Ферменты переваривания белков в пищеварительном тракте. Всасывание продуктов распада белков и использование аминокислот в тканях организма.
реферат [66,2 K], добавлен 22.06.2010Общие пути обмена аминокислот. Значение и функции белков в организме. Нормы белка и его биологическая ценность. Источники и пути использования аминокислот. Азотистый баланс. Панкреатический сок. Переваривание сложных белков. Понятие трансаминирования.
презентация [6,6 M], добавлен 05.10.2011Белки – высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Наследственная информация сосредоточена в молекуле ДНК. С помощью белков реализуется генетическая информация. Классификация аминокислот.
реферат [21,6 K], добавлен 17.01.2009Физико-химические свойства аминокислот. Получение аминокислот в ходе гидролиза белков или как результат химических реакций. Ряд веществ, способных выполнять некоторые биологические функции аминокислот. Способность аминокислоты к поликонденсации.
презентация [454,9 K], добавлен 22.05.2012Общая формула и характеристика аминокислот как производных кислот. Протеиногенные кислоты, входящие в состав белков. Классификация аминокислот по взаимному расположению и количеству функциональных групп. Физические и химические свойства аминокислот.
презентация [1,7 M], добавлен 22.01.2012Электрохимические методы анализа веществ. Общие физико-химические свойства аминокислот и белков, их функции в клетках живых организмов. Использование методов полярографии и амперометрии в исследовании кинетики химических процессов в аминокислотах.
курсовая работа [2,5 M], добавлен 18.07.2014Пути внедрения ферментативных методов синтеза в химическое производство. Способ определения содержания аминокислот триптофана и цистеина в составе белков. Специфика строения и состава структурных белков биологической мембраны. Характеристика видов РНК.
контрольная работа [522,0 K], добавлен 18.05.2011Определение белков и их составных частей – аминокислот. Структура и функции белков в организме. Роль в обеспечении воспроизводства основных структурных элементов органов и тканей, а также образовании таких веществ, как, например, ферментов и гормонов.
курсовая работа [735,6 K], добавлен 16.12.2014Строение и общие свойства аминокислот, их классификация и химические реакции. Строение белковой молекулы. Физико-химические свойства белков. Выделение белков и установление их однородности. Химическая характеристика нуклеиновых кислот. Структура РНК.
курс лекций [156,3 K], добавлен 24.12.2010Исследования свойств белков для изучения их химического состава и строения. Аминокислота - основная структурная единица белка. Белковые резервы. Этапы синтеза белка. Регуляция биосинтеза аминокислот. Переваривание белков. Патология белкового обмена.
реферат [21,7 K], добавлен 17.01.2009Белки как высокомолекулярные природные соединения, состоящие из остатков аминокислот, которые соединены пептидной связью. Качественный состав белков, их структура и функции. Процессы гидролиза (кислотно-основного, ферментативного) и денатурация белков.
презентация [212,1 K], добавлен 11.02.2015Строение и свойства белков. Различия в строении аминокислот. Пространственная организация белковой молекулы. Типы связей между аминокислотами в молекуле белка. Основные факторы, вызывающие денатурацию белков. Методы определения первичной структуры белка.
реферат [354,6 K], добавлен 15.05.2010Химические свойства и характеристика аминокислот, изомерия. Классификация стандартных a-аминокислот по R-группам и по функциональным группам. Кислотно-основное равновесие в растворе a-аминокислот. Использование нингидриновой реакции для их обнаружения.
реферат [207,9 K], добавлен 22.03.2012Аминокислоты, входящие в состав пептидов и белков. Моноаминодикарбоновые кислоты и их амиды. Энантиомерия аминокислот, образование солей. Мезомерия и строение пептидной связи. Методы выделения и анализа белков. Электрофорез в полиакриламидном геле.
презентация [351,2 K], добавлен 16.12.2013Определение класса аминокислот как гетерофункциональных соединений, которые содержат две функциональные группы (карбоксильную и аминогруппу), связанные с углеводородным радикалом. Классификация, изомерия, свойства, получение и применение аминокислот.
презентация [204,2 K], добавлен 10.04.2013Оценка сложившегося административно-территориального устройства России. Исследование белков. Классификация белков. Состав и строение. Химические и физические свойства. Химический синтез белков. Значение белков.
реферат [537,6 K], добавлен 13.04.2003Основные химические элементы, входящие в состав белков. Белки - полимеры, мономерами которых являются аминокислоты. Строение аминокислот, уровни организации белковых молекул. Структуры белка, основные свойства белков. Денатурация белка и ее виды.
презентация [1,7 M], добавлен 15.01.2011Открытие Ж. Мюльдером белковых тел, теория протеина. Пептидная теория Фишера. Элементарный химический состав белков, их свойства и функции, организация молекулы и классификация. Особенности строения аминокислот. Процессы денатурации и ренатурации.
презентация [1,1 M], добавлен 16.10.2011Роль в живой природе. Состав и свойства белков. Классификация белков. Определение строения белков. Определение наличия белка. Идентификация белков и полипептидов. Синтез пептидов. Искусственное получение белка. Аминокислоты.
реферат [16,2 K], добавлен 01.12.2006Строение и уровни укладки белковых молекул, конформация. Характеристика функций белков в организме: структурная, каталитическая, двигательная, транспортная, питательная, защитная, рецепторная, регуляторная. Строение, свойства, виды и реакции аминокислот.
реферат [1,0 M], добавлен 11.03.2009