Природные и синтетические полимеры

Полимеры – неорганические и органические, аморфные и кристаллические вещества, получаемые путём многократного повторения различных групп атомов, называемых "мономерными звеньями". Особые химические свойства. Целлюлозные волокна и их физические свойства.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 01.12.2017
Размер файла 149,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Природные и синтетические полимеры

Полимеры (греч. рплэ- - много; мЭспт - часть) - неорганические и органические, аморфные и кристаллические вещества, получаемые путём многократного повторения различных групп атомов, называемых "мономерными звеньями", соединённых в длинные макромолекулы химическими или координационными связями. Полимер - это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются.[1] Как правило, полимеры - вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Вальса, они называются термопласты, если с помощью химических связей - реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвленным, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено - повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (--СН 2--CHCl--)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.

Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, авиастроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Полимеры либо встречаются в природе, например целлюлоза, крахмал, каучук, белки, либо изготовляются синтетически, например полихлорвинил, полистирол, полиамиды и многие другие.

Особые механические свойства:

§ эластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);

§ малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);

§ способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

Особенности растворов полимеров:

§ высокая вязкость раствора при малой концентрации полимера;

§ растворение полимера происходит через стадию набухания.

Особые химические свойства:

§ способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.

Природные полимеры

К природным полимерам, применяемым в полиграфии, относятся: полисахариды (целлюлоза крахмал, камеди), 6елки, глютин, казеин, альбумин), полидиены (каучук).

Как осуществляется образование полимеров в природе, люди точно еще не знают, но хорошо изучили строение и свойства природных полимеров, научились выделять их из природных продуктов в очень чистом виде и даже синтезировать некоторые из них в промышленных масштабах.

Целлюлоза

Целлюлоза, или клетчатка (от латинского слова "целлула" - клетка), широко распространена в природе. Целлюлоза - это прочное волокнистое вещество органического происхождения, из которого состоит опорная ткань всех растений (растительных клеток).

Физические свойства целлюлозы

Целлюлозные волокна отличаются белизной, гибкостью, прочностью, упруго-эластичностью, т.е. способностью обратимо деформироваться без разрушения даже при больших механических напряжениях, нерастворимостью в воде и органических растворителях, неплавкостью.

Целлюлоза выдерживает нагрев до 150° без разрушения; при более высокой температуре наблюдается деполимеризация целлюлозы и связанная с этим потеря прочности, а при 270° и выше начинается термическое разложение с выделением продуктов распада: уксусной кислоты, метилового спирта, кетонов, в остатке - деготь и уголь.

Строение целлюлозного волокна.

Каждое растительное волокно, например хлопковое, льняное, древесное и др. это одна клетка, оболочка которой состоит в основном из целлюлозы. Внутри волокна имеется канал - капилляр, доступный для проникновения воздуха и влаги. Технические волокна целлюлозы имеют длину в среднем 2,5--3 мм (ель, сосна, береза, тополь) и 20--25 мм (лен, хлопок, пенька) при диаметре 25 мкм.

Целлюлозного растительного волокна имеет фибриллярное строение. Фибриллы - это нитевидные, элементарные рол окна - пачки молекул целлюлозы, прочно соединенных между собой водородными связями, длиной 50--мкм и диаметром 0,1--0,4 мкм. Вероятнее всего, что целлюлоза образует упорядоченную систему нитей - фибрилл, расположенных более плотно вокруг внутреннего канала (капилляра) волокна и более свободно в наружных его слоях. В промежутках между фибриллами находятся мицеллюлозы и лигнин, причем содержание их увеличивается от внутренних слоев клеточной стоики к наружным. Межклеточные пространства целлюлозы заполнены преимущественно лигнином.

Главный источник получения целлюлозы - древесина. Древесиной называется внутренняя часть деревьев, лежащая под корой и составляющая основную растительную ткань, из которой образуется ствол дерева.

Живая клетка растущего дерева имеет оболочку (стенки) из целлюлозы, внутреннюю полость, заполненную протоплазмой, и ядро. Живая клетка способна долиться и образовывать из года в год в растущем дереве новые образования древесины в слое камбия, под корой.

Живые клетки с течением времени подвергаются одеревенению, приводящему в конечном счете к их полному омертвлению, или одревеснению. Одревеснение клетки происходит главным образом в результате появления в ней лигнина. Древесина на 90--95% состоит, из таких отмерших клеток - волокон, лишенных протоплазмы и ядра, но способных к делению, с внутренней полостью, заполненной воздухом и водой. полимер кристаллический химический волокно

Химические строение и свойства целлюлозы. Целлюлоза - это природный полимер полисахарид, принадлежащий к классу углеводов. Гигантская молекула (макромолекула) целлюлозы построена из многократно повторяющихся структурных звеньев - остатков в-глюкозы (О 6Н 10О 5)п. Число п, или коэффициент полимеризации, показывает, сколько раз структурное звено--остаток в -глюкозы - повторяется в макромолекуле целлюлозы, а следовательно, характеризует длину молекулярной цепи (длину молекулы) и предопределяет ее молекулярный вес.

Коэффициент полимеризаций у целлюлозы различного происхождения различен. Так, у древесной целлюлозы он равен 3000, у хлопковой - 12 000, у льняной 36 000 (приблизительно). Этим и объясняется большой прочность хлопкового и льняного волокон по сравнении с волокнами древесной целлюлозы.

Щелочная целлюлоза получается действием на целлюлозу раствора едкого натра. При этом атомы водорода спиртовых гидроксилов частично или полностью заменяются атомами натрия. Щелочная целлюлоза, не теряя своего волокнистого строения, отличается повышенной химической активностью, что и используется при получении простых эфиров целлюлозы, например карбоксиметилцеллюлозы.

Карбоксиметилцеллюлоза (КМЦ) - это простой эфир целлюлозы и гликолевой кислоты. Промышленный способ изготовления карбоксиметилцеллюлозы основан на взаимодействии щелочной целлюлозы с монохлоруксусной кислотой.

Гемицеллюлозы - это нечто среднее между целлюлозой и крахмалом. Они также являются полисахаридами. Молекулы гемицеллюлоз построены из остатков моносахаридов: маннозы (гексозы) и ксилозы (пентозы). Гемицеллюлозы не имеют волокнистого строения. Они служат резервным питательным веществом для растений и предохраняют их от инфекций. Гемицеллюлозы набухают в воде и сравнительно легко гидролизуются даже очень разбавленными кислотами, растворяются в 18,5%-ной щелочи. Гемицеллюлозы не являются вредными примесями целлюлозы, идущей для изготовления бумаги. Наоборот, древесная целлюлоза с большим содержанием гемицеллюлоз легко поддается размолу, а приготовленная из неё бумага имеет повышенную прочность (особенно поверхности), так как гемицеллюлозы являются очень хорошей естественной проклейкой.

Лигнин - вещество химически неустойчивое: под влиянием света, влаги, кислорода, воздуха и тепла лигнин разрушается, вследствие чего растительные волокна теряют прочность и темнеют. Лигнин, в отличие от целлюлозы, растворяется в разбавленных кислотах и щелочах. На этом свойстве лигнина основаны способы производства целлюлозы из древесины, соломы, тростника и других растительных тканей. Строение лигнина очень сложно и еще недостаточно изучено; известно, что лигнин - природный полимер, структурным звеном которого является остаток очень реакционно-способного ароматического спирта - в -оксикониферилового.

Крахмал

Крахмал в виде микроскопических зерен образуется в зеленых частях растении из углекислоты воздуха и влаги под влиянием света и уносится вместе с соками растения в клубни и зерна, где и отлагается как запасное питательное вещество.

Физические свойства крахмала. Крахмальные зерна разных растений имеют различную форму и величину. Крахмал не растворяется в холодной воде, спирте и эфире. В горячей воде зерна крахмала набухают, увеличиваясь в объеме в сотни раз, затем теряют форму и образуют вязкий и клейкий раствор. Температура растворения крахмала в воде называется температурою клейстеризации. Для картофельного крахмала она равна 60°, для маисового (кукурузного) 70°, пшеничного и рисового - 80°.

Крахмал очень гигроскопичен, он притягивает влагу з окружающего воздуха содержит обычно 10--20% влаги. Плотность крахмала 1,620-1,650 г/см 3. С раствором йода крахмальный клейстер дает интенсивно синее окрашивание, исчезающей при кипячении и вновь появляющееся при охлаждении (качественная реакция на крахмал). Химические свойства крахмала. Крахмал, так же как и целлюлоза, является природным полимером - полиcaxapидом, принадлежащим к классу углеводов и отвечающим молекулярной формуле (С 6К 10О 5)п. Но структурным звеном молекулярной цепи крахмала будет остаток б-глюкозы, а целлюлозы - в-глюкозы. Поэтому в крахмале каждые два остатка б-глюкозы образуют остаток дисахарида мальтоза, а в целлюлозе - каждые два остатка в-глюкозы образуют остаток дисахарида целлюлозы. Мальтоза изомер целлюлозы.

Крахмал содержит две фракции полисахаридов: амилозу и амилопектин. Амилоза имеет линейное строение молекул, закрученных в клубочки. Ее коэффициент полимеризации достигает 1000. Амилозой богат картофельный крахмал.

Глютин

Костный клей, мездровый клей и желатин состоят в основном из белкового вещества - глютин а.

Костный клей в виде твердых, хрупких плиток или клеевого студня - галерты вырабатывается из костей, рогов и копыт животных.

Мездровый клей, внешне очень похожий на костный, вырабатывается из мездры, которую счищают со шкур животных.

Желатин по химическому составу очень близок к костному и мездровому клею, но гораздо выше их по качеству, в частности по чистоте. Для получения желатина отбирают лучшие сорта свежих кожевенных отходов: мездру, обрезки телячьих шкур и кости крупного рогатого скота.

В костях мездре, рогах и копытах животных содержится белковое вещество - коллаген (от греческих слов "колла" - клей и "генос"-- род, происхождение), не растворимое в воде. Коллаген, однако, под действием длительного нагревания в воде превращается в другой вид белка глютин, растворимый в горячей воде и обладающий клеящими свойствами.

Белковые вещества, или белки, состоят из остатков аминокислот, соединенных между собой амидными группами --NH - СО - в длинные полипептидные молекулярные цепи. Концевыми группами этих цепей (молекул) будут, с одной стороны, амино-, а с другой - карбоксильная группы.

Казеин

Казеин - это белковое вещество, содержащееся в молоке. Коровье молоко содержит 3,2%, козье - 3,8%, овечье - 4,5% казеина в растворенном состоянии. Если к молоку прибавить кислоты или дать молоку скиснуть, казеин свертывается и образует осадок, который можно отфильтровать от сыворотки, высушить и измельчить. Сворачивание казеина происходит также при добавлении к молоку сычужного фермента, т. е. сока, выделяемого одним из отделов желудка жвачных животных. Поэтому и зависимости от способа изготовления различают два вида казеина: кислотный и сычужный. В чистом виде казеин - белый творожистый осадок. И воде казеин не растворяется, а только набухает. Однако казеин хорошо растворяется в щелочных растворах. Для растворения на каждые 100 весовых частей казеина берут одну из следующих щелочных добавок. Для изготовления переплетного клея применяют только кислотный казеин, так как он лучше растворяется и дает более клейкие растворы, чем сычужный казеин. Последний идет главным образом на производство белковой пластической массы - галалит.

Высушенный казеин очень гигроскопичен и поглощает влагу из воздуха. Поэтому казеин надо хранить в сухом, хорошо вентилируемом помещении.

Каучук

Каучук добывается из латекса - сока некоторых тропических деревьев, главным образом гевеи бразильской, произрастающей в Южной Америке, Индии, Африке, Цейлоне.

Латекс - это колоидная система, золь из глобул каучука и воды. При добавлении к латексу кислот или при нагревании устойчивость золя нарушается, и каучук выпадает в виде осадка, который высушивают, вальцуют, нарезают листами. В таком виде каучук попадает на резиновые заводы.

Каучук эластичен и прочен, но он затвердевает на морозе, расплавляется при нагревании, а также впитывает воду и растворяется в бензине и некоторых других органических растворителях. Поэтому каучук долгое время не находил практического применения. Каучук начали применять для изготовления резины только в 40-х гг. XIX в., после того, как Чарльз Гудъир нашел, что в результате нагревания с серой каучук становится резиной. Процесс взаимодействия каучука с серой при 125--150° называется вулканизацией. (При вулканизации атомы серы присоединяются к молекулам каучука по месту двойных связей, "сшивая" молекулярные цепи каучука в непрерывную трехмерную сетчатую систему).

Резина

Резиной называется каучук, смешанный с серой, ускорителями процесса вулканизации, усилителями, наполнителями, смягчителями, противостарителями, красочными пигментами и подвергнутый процессу вулканизации.

Ускорители вулканизации, например каптакс, тиурам и др., значительно сокращают время вулканизации и одновременно улучшают механические свойства резины.

Усилители, например сажа, и наполнители, например мелд увеличивают механическую прочность резины в несколько раз и одновременно позволяют сэкономить некоторое количество каучука, снизить стоимость резины.

Мягчители, например минеральные масла, облегчают переработку резиновой смеси и уменьшают твердость готовых резиновых изделий.

Противостарители, например эджерайт, препятствуют преждевременному отвердеванию резины; потере эластичности и упругости.

Красящие вещества придают резине тот или иной цвет. Функции красящих веществ выполняют сажа, красная окись железа (редоксайд), двуокись титана, окись цинка и др.

Все составные части резиновой массы смешивают на вальцах или в резиносмесителе. После этого резиновой массе придается форма листов каландрированием или "сырых" заготовок будущих резиновых изделий.

Для закрепления формы изделий, и придания им надлежащих свойств они должны быть подвергнуты процессу вулканизации при 120--150° во время прессования заготовок с давлением 15--25 кг/см или при нормальном давлении после формования деталей из заготовок.

Синтетические полимеры

Полиэтилен получается полимеризацией этилена двумя способами: при высоком или при низком давлении. Этилен из-за строго симметричного строения молекулы полимеризуется с трудом. Полиэтилен полупрозрачный бесцветный очень прочный термопластичный полимер с хорошими диэлектрическими и антикоррозионными свойствами. Высокая прочность полиэтилена объясняется его кристаллическим строением. Полиэтилен применяется для изготовления пленочных материалов, облицовки электропроводов, изготовления труб, сосудов бытового и промышленного назначения. Полиэтиленовые пленки пропускают ультрафиолетовые лучи, что очень ценно в случае применения их как защитных покрытий в сельском хозяйстве взамен стекла.

Полихлорвинил (-- СН 2 - СНС 1--) - термопластичный твердый роговидный полимер. Начинает размягчаться при 92--94° и плавится при 170°. Становится упруго-эластичным и гибким при добавлении пластификаторов например 30--35% дибутилфталата. Полихлорвинил с введенными в него пластификаторами и пигментами называется винипластом.

Поливинилиденхлорид - это полимер винилиденхлорида применяется редко из-за плохой растворимости и нестабильности. Однако большое практическое значение имеет сополимер винилиденхлорида и хлорвинила.

Полистирол - твердый прозрачный бесцветный термопластический полимер, размягчающийся при 80° и плавящийся при 170°. В виде сополимера с акрилонитрилом применяется для отливки типографских шрифтов. Сополимер выпускается под маркой СНАК-15, содержит 85% стирола и 15% акрилонитрила, отличается высокой прочностью и устойчивостью к действию органических растворителей и смывающих веществ.

Пластические массы

Пластическими массами, или пластмассами, называют достаточно прочные вещества на основе синтетических полимеров, способные под действием нагревания размягчаться и становиться пластичными, т. е. пригодными для изготовления различных деталей и предметов домашнего обихода прессованием или литьем под давлением в специально для этого заготовленных полых стальных пресс-формах. Затвердевшая в результате дальнейшего нагревания или при охлаждении пластическая масса превращается в законченное изделие иногда очень сложной конфигурации, повторяющее и сохраняющее полученную форму. После прессования или литья форму разделяют на части и извлекают полученное изделие.

В простейшем случае в качестве пластической массы применяют соответствующий полимер без каких-либо добавок, конечно, при обязательном условии, что данный полимер полностью удовлетворяет всем требованиям в отношении механической прочности, упругости, литейных свойств и т. п. Во всех остальных случаях свойства пластических масс корректируют в нужном направлении. Для повышения прочности вводят наполнители (древесную муку, хлопковые очесы, стеклянное волокно, асбестовый: порошок, двуокись кремния - аэросил и др.), для устранения хрупкости - пластификаторы, например дибутилфталат, трикрезилфосфат и др., для придания цвета--пигменты и красители, для облегчения заполнения деталей пресс-формы и извлечения из нее изделия - смазки и т. д. Немаловажным фактором, обусловливающим введение наполнителей, будет стремление снизить себестоимость пластических масс.

Пластические массы в зависимости от химического строения полимера, входящего в их состав, делятся на термопластичные и термореактивныё. Термопластичные пластические массы делают из полимеров линейного строения, не имеющих химически активных функциональных групп. Термореактивные пластические массы обязательно содержат полимеры, имеющие функциональные группы, проявляющие свою химическую активность при более или менее продолжительном нагревании. Изделия из термопластичных пластических масс размягчаются при нагревании и в случае необходимости могут повторно многократно переплавляться. Термореактивные пластические массы необратимо затвердевают при прессовании или литье под действием более или менее продолжительного нагревания в результате протекания химической реакции поликонденсации. Поэтому повторная переплавка деталей (изделий) из термореактивных пластических масс невозможна.

Пластические массы имеют очень ценные свойства:

небольшой удельный вес (пластмассы в 5--8 раз легче стали);

большую механическую прочность;

хорошие диэлектрические свойства (пластические массы не проводят электрического тока);

высокую химическую стойкость и неизменяемость и атмосферных условиях;

простоту и легкость переработки в изделие методами литья под давлением или прессования;

хорошие экономические показатели (высокая рентабельность) применения пластических масс в различных областях техники.

В природе мы не находим материалов с подобным сочетанием свойств.

Полимеры в автомобилестроении

В течение ближайших 20 лет будет произведено больше автомобилей, чем за всю 110-летнюю историю автомобильной промышленности. Для удовлетворения растущего спроса потребуется строительство 40-50 новых производств по всему миру.

В автомобилестроении используются две группы полимеров: общетехнического назначения (ПЭ, ПП, ПВХ, ПУ, ПММА) и конструкционные, инженерно-технического назначения (АБС-пластик, ПА, ПК, ПБТ, ПЭТ). Видовая структура потребления полимеров в автомобилестроении показана на диаграмме 2. По прогнозам аналитиков, в 2010 году возрастет объем потребления всех видов полимерных материалов, за исключением ПВХ.

Основные тенденции в автомобилестроении

Снижение стоимости:

§ производство в странах с дешевой рабочей силой;

§ глобальные платформы;

§ инновационные материалы и концепции.

Увеличение размеров и массы автомобилей.

Инновационный дизайн:

§ пластики легче поддаются формовке по сравнению с металлами;

§ эффект soft touch;

§ прозрачные детали.

Высокое качество и долговечность:

§ отсутствие запаха и вредных эмиссий;

§ бесщелевой дизайн во внутренней и внешней отделке;

§ стойкость к старению, УФ-стойкость;

§ хорошая адгезия покрасочных материалов.

Воздействие на окружающую среду и безопасность:

§ новые типы двигателей;

§ сокращение выброса СО 2;

§ безопасность водителя, пассажиров и пешеходов;

§ увеличение числа подушек безопасности

Широкое применение пластиков в автомобилестроении сопровождается соответствующими изменениями в самих методах проектирования автомобилей. Ведь полимеры не только превосходят металлы по качеству, но и имеют прекрасные перспективы увеличения объемов применения, что, в свою очередь, предопределяется высокими качественными характеристиками, а именно:

§ высокая прочность и жесткость при незначительном весе обеспечивают функциональность деталей;

§ термостойкость и химическая стойкость обеспечивают применение пластиковых составляющих под капотом, вблизи двигателя;

§ прозрачность и блеск, а также выдерживание заданных размеров дают возможность использования пластмасс для внешней отделки;

§ свобода при разработке дизайнерских решений и создании сложных форм способствует новым возможностям для отделки салона и кузова

Диаграмма 1. Доля полимеров в легковом автомобиле

Диаграмма 2. Видовая структура потребления полимеров в автомобилестроении

Из всех термопластиков наиболее потребляемым в автомобильной промышленности является полипропилен. По оценкам LyondellBasell, в автомобилях в Европе используется около 48 кг ПП, в 2011 году эта цифра вырастет до 54 кг.

Как предполагали аналитики, основной рост потребления полипропилена в 2006-2011 гг. наблюдался в Азии и Европе. Основной прирост потребления ПП в Европе будет идти из Восточной Европы и России.

Полимером для автомобилестроения можно смело назвать сополимер стирола с акрилонитрилом и бутадиеном (АБС). АБС сочетает в себе эластичность с высокой ударной прочностью, что делает его одним из популярных пластиков для литья и формования сложных изделий, в том числе с высокой степенью вытяжки. По своим прочностным характеристикам, плотности, химической стойкости и др. АБС-пластики успешно конкурируют в первую очередь с традиционными материалами в производстве автомобилей, включая металлы. Радиаторные решетки, приборные панели, облицовки дверей и другие детали салона, колпаки колес, корпуса зеркал заднего вида, детали воздухозаборника, бамперы и даже передние крылья (из смеси АБС с полиамидом, например, в некоторых моделях BMW), - эти и многие другие автокомпоненты изготавливаются из АБС и композиций на его основе. По итогам 2006 года, производственные мощности АБС-пластика на мировом рынке, по данным BASF, составили порядка 6 млн. тонн. Средний ежегодный темп роста мирового рынка АБС-пластика до 2010 года оценен Торговой ассоциацией PlasticsEurope в 5,5%.

Единственным российским производителем АБС-пластиков является ОАО "Пластик" (г. Узловая) - около 45% российского рынка.

Структура потребления АБС-пластиков в России имеет свои особенности. Российский рынок почти полностью ориентирован на автомобильную промышленность: более 2/3 объема производимого и ввозимого АБС-пластика используется в автомобильной промышленности.

Список литературы

1. http://www.polymers-money.com

2. Энциклопедии полимеров, т. 1 - 3, гл. ред. В.А. Каргин, М., 1972 - 77;

3. Махлис Ф.А., Федюкин Д.Л., Терминологический справочник по резине, М., 1989;

4. Кривошей В.Н., Тара из полимерных материалов, М.,1990;

5. Шефтель В.О., Вредные вещества в пластмассах, М.,1991.

Размещено на Allbest.ru

...

Подобные документы

  • Полимеры как органические и неорганические, аморфные и кристаллические вещества. Особенности структуры их молекулы. История термина "полимерия" и его значения. Классификация полимерных соединений, примеры их видов. Применение в быту и промышленности.

    презентация [1,5 M], добавлен 10.11.2010

  • Общее понятие о полимерах. Процесс получения высокомолекулярных соединений. Биосовместимые материалы и устройства. Органические, элементоорганические, неорганические полимеры. Природные органические полимеры. Применение биоклеев в неинвазивной терапии.

    реферат [85,6 K], добавлен 23.04.2013

  • Природные и искусственные полимеры, их свойства и область применения. Радикальная, ионная полимеризация, поликонденсация. Строение макромолекул и их физические свойства. Механическая плотность, гибкость и эластичность. Исходный продукт переработки нефти.

    презентация [720,3 K], добавлен 17.01.2011

  • Общее понятие про полимеры. Основные виды пластмассы: термопласты; реактопласты. Основные представители термопластов. Применение полистирола и полипропилена. Использование эпоксидных полимеров в промышленности. Натуральные, природные и химические волокна.

    презентация [20,0 M], добавлен 28.02.2011

  • Кремнийорганические полимеры: линейные; разветвленные; циклолинейные (лестничные); сшитые (в т.ч. циклосетчатые). Силиконовые масла и каучуки. Методы получения полиорганосилоксаны. Основные физические и химические свойства кремнийорганических полимеров.

    реферат [28,0 K], добавлен 16.12.2010

  • Природные (естественные) смолы-продукты жизнедеятельности животных или растений: канифоль, шеллак и копалы. Твердые органические диэлектрики-материалы, в составе которых находится углерод. Полимеризационные и поликонденсационные синтетические полимеры.

    реферат [38,5 K], добавлен 20.12.2007

  • Физические свойства элементов главной подгруппы III группы. Общая характеристика алюминия, бора. Природные неорганические соединения углерода. Химические свойства кремния. Взаимодействие углерода с металлами, неметаллами и водой. Свойства оксидов.

    презентация [9,4 M], добавлен 09.04.2017

  • Физические свойства. Строение молекул, анализ распределения электронной плотности, анализ реакционной способности. Химические свойства. Реакции полимеризации, полимеры.

    реферат [215,2 K], добавлен 30.05.2003

  • Номенклатура, изомерия, классификация и физические свойства диеновых углеводородов и органических галогенидов. Способы получения и химические свойства. Сущность диенового синтеза. Натуральные и синтетические каучуки, их применение в строительстве.

    контрольная работа [85,0 K], добавлен 27.02.2009

  • Классификация. Свойства и важнейшие характеристики. Получение. Полимеры в сельском хозяйстве. Овцы в синтетических шубах. Полимеры в машиностроении. Пластмассовые ракеты. Пластмассовый шлюз. Сварка без нагрева.

    курсовая работа [124,8 K], добавлен 09.04.2003

  • Основные химические элементы, входящие в состав белков. Белки - полимеры, мономерами которых являются аминокислоты. Строение аминокислот, уровни организации белковых молекул. Структуры белка, основные свойства белков. Денатурация белка и ее виды.

    презентация [1,7 M], добавлен 15.01.2011

  • Вещества, молекулы которых состоят из числа повторяющихся группировок, соединенных между собой химическими связями. Молекулярная масса макромолекул. Основные типы биополимеров. Классификация полимеров. Полимеры, получаемы реакцией поликонденсации.

    презентация [905,2 K], добавлен 22.04.2012

  • Металлический барий и его распространенность в природе. Получение металлического бария. Электролиз хлорида бария. Термическое разложение гидрида. Химические и физические свойства. Применение. Соединения (общие свойства). Неорганические соединения.

    автореферат [21,0 K], добавлен 27.09.2008

  • Распространение в природе поверхностно-активных полимеров. Способы конструирования ПАВ. Полимеры с гидрофильной основной цепью и гидрофобными боковыми цепями. Уникальные свойства высокомолекулярных поверхностно-активных веществ.

    реферат [1,6 M], добавлен 16.09.2009

  • Общие сведения о крахмале; полимеры амилоза и амилопектин. Образование и структура крахмальных зерен. Классификация крахмала, его физико-химические свойства и способы получения. Применение в промышленности, фармацевтической химии и технологии, медицине.

    курсовая работа [939,9 K], добавлен 09.12.2013

  • Основные характеристики угля: состав, физические, органические и неорганические свойства. Происхождение ископаемых углей. Химические методы исследования углей. Технологическая схема и описание углеподготовительного цеха коксохимического производства.

    реферат [897,5 K], добавлен 22.12.2011

  • Формы организации профильного обучения. Классификация элективных курсов и психолого-педагогические требования к ним. Анализ школьных учебно-методических комплектов по теме "Полимеры". Тематическое планирование учебного материала "Полимеры вокруг нас".

    дипломная работа [67,8 K], добавлен 15.12.2008

  • Основные виды химических волокон: искусственные и синтетические. Свойства и сферы использования вискозы. Достоинства и недостатки ацетатного волокна. Характеристика полиамидного (капрон, нейлон), полиэфирного (лавсан) и акрилового (нитрон) волокон.

    презентация [613,6 K], добавлен 05.11.2012

  • Положение металлов в периодической системе Д.И. Менделеева. Строение атомов металлов и их кристаллических решеток. Физические свойства металлов и общие химические свойства. Электрохимический ряд напряжения и коррозия металлов. Реакции с другими веществами

    презентация [1,8 M], добавлен 29.04.2011

  • Что такое алкены, строение молекулы, физические и химические свойства. Выбор главной цепи, нумерация атомов главной цепи, формирование названия. Структурная изометрия. Химические свойства этилена, классификация способов получения, сфера применения.

    презентация [279,2 K], добавлен 20.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.