Особенности динамики роста и морфологии гидратов метана, этана и природного газа, получаемых искусственно без внешних динамических воздействий
Процесс роста и формирования гидратов простого и смешанного типов в камерах-реакторах повышенного давления и исследование их структурной морфологии. Компонентный состав газов-гидратообразователей. Схема камеры-реактора и всей экспериментальной установки.
Рубрика | Химия |
Вид | статья |
Язык | русский |
Дата добавления | 18.12.2017 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Статья по теме:
Особенности динамики роста и морфологии гидратов метана, этана и природного газа, получаемых искусственно без внешних динамических воздействий
Шиц Елена Юрьевна, д.т.н., доцент, зав. лаб. ФГБУН Институт проблем нефти и газа СО РАН, г. Якутск, Россия
Семенов Матвей Егорович, м.н.с., ФГБУН Институт проблем нефти и газа СО РАН, г. Якутск, Россия
Портнягин Альберт Серафимович, м.н.с., г. Якутск, Россия ФГБУН Институт проблем нефти и газа СО РАН г. Якутск, Россия
Аннотация: Представлены результаты исследований процесса образования и морфологии газогидратов в замкнутом объеме реакционного пространства. Установлена продолжительность процесса формирования гидратов в камерах-реакторах повышенного давления. Показано, что сформировавшиеся кристаллы газогидратов в указанных условиях представлены различными морфологическими структурами, тип которых не зависит от состава газа-гидратообразователя.
Ключевые слова: газогидрат, газ-гидратообразователь, морфология кристаллов газовых гидратов
Введение. Газогидраты исследуются уже более двухсот лет. В последние два десятилетия особенно возрос интерес к разработкам газогидратных технологий, позволяющим практически использовать процессы образования - разложения гидратов в различных производствах. Так, свойство гидратов существовать при атмосферном давлении и незначительно отрицательных температурах может обеспечивать мобильную транспортировку и хранение углеводородного сырья в условиях Крайнего севера практически круглогодично и хранить углеводороды, в естественных условиях в зимнее время, а так же обеспечивать их запас в подземных хранилищах в вечномерзлых породах. Таким образом, создание технологий перевода природного газа в гидратную форму, конкурирующих по своей эффективности с существующими способами концентрирования газообразных углеводородов является актуальной научной и практической задачей.
Целью работы являлось изучение процесса роста и формирования гидратов простого и смешанного типов в камерах-реакторах повышенного давления и исследование их структурной морфологии.
Объекты и методы исследований.
В качестве газов-гидратообразователей были использованы метан, этан и природный газ (ПГ) Средневилюйского ГКМ Лено-Вилюйской нефтегазоносной провинции. Компонентный состав газов приведен в таблице 1.
Таблица 1 - Компонентный состав газов-гидратообразователей
Компоненты |
Метан, об.%* |
Этан, об.%* |
ПГ, об.% |
|
CH4 |
>99,9 |
<0,0005 |
92,88 |
|
C2H6 |
<0,03 |
>99,9 |
5,25 |
|
C3H6 |
<0,0046 |
- |
||
C3H8 |
<0,0005 |
1,21 |
||
i-C4H10 |
- |
<0,00015 |
0,102 |
|
n-C4H10 |
- |
<0,0003 |
0,12 |
|
O2 |
<0,07 |
- |
- |
|
N2 |
- |
0,38 |
||
СО2 |
- |
0,05 |
||
Водяной пар (Н2О), г/м3 |
<0,03 |
- |
- |
*- соответствуют требованиям ТУ 51-841-87, компонентный состав определен по ГОСТ 23781
В качестве второй - жидкой фазы для получения гидратов использовались: дистиллированная вода (ДВ) и 0,1 масс.% водный раствор сульфонола.Выбор в качестве поверхностно-активного вещества (ПАВ) сульфонола обусловлен широким применением данного типа ПАВ при добыче нефти и газа [1]. Известно, что 0,1 масс. % раствора сульфонола не влияет на равновесные условия гидратообразования, способствует клатрации и таким образом, в сотни раз увеличивает скорость образования гидратов [2]. Сульфонол представляет собой смесь изомеров натриевых солей алкилбензолсульфокислот (рис.1), с общей формулой R-C6H4NaO3S, где R радикал соответствующий общей формуле СnH2n+1, где n=14-18 [3].
Рисунок 1 - Изомеры натриевых солей алкилбензолсульфокислот
Известно, что в 1 л гидрата теоретически содержится до 160 л газа [4]. Для наиболее полного перевода системы «газ- жидкость» в гидрат, учитывая соотношение реагентов как «1:160», внутренний объем реактора и задаваемое давление, по уравнению состояния идеального газа было определено необходимое количество жидкой фазы, которая может полностью связать газ в гидрат при задаваемых условиях синтеза (табл. 2).
Таблица 2 - Расчетные количества жидкой фазы и газа-гидратообразователя
V реактора, мл |
V жидкой фазы, мл |
V газа, мл |
|
1113 |
150 |
>24000 |
Впервые, при получении газогидратов для повышения площади контакта на границе раздела фаз ограниченно растворимых друг в друге воды и газа в камеры - реакторы были установлены дополнительные реакционные поверхности: гидрофильная-металлическая (МП) и гидрофобная - полимерная поверхности (ПП) (табл. 3).
Площадь поверхности дополнительных конструкций поверхности -S~200см2.
Морфологию кристаллов получаемых газовых гидратов, фиксировали с помощью цифрового фотоаппарата Pentax K200D.
Таблица 3 - Характеристики дополнительных поверхностей
Характеристики |
МП (сталь электротехническая марки 1211) |
ПП (политетрафторэтилен - ПТФЭ) |
|||
ДВ |
0,1% ПАВ |
ДВ |
0,1% ПАВ |
||
Краевой угол смачивания при 298?К, градус |
<45? |
<45? |
105? |
97? |
|
Поверхностное натяжение при 298?С, мH/м |
72 |
37 |
72 |
37 |
|
Химический состав/структурная формула |
C<0.005, Si>1.65, Mn - 0.09, Cr - 0.02, Ni - 0.08, Mo - 0.014, Cu - 0.06, Fe - остальное; |
(-C2F4-)n |
Рисунок 2 - Общий вид металлической и полимерной конструкций, устанавливаемых в камерах- реакторах
гидрат реактор камера гидратообразователь
Обсуждение полученных результатов
Структура газогидрата позволяет концентрировать природный газ. Для сохранения нативной структуры гидратов и изучения влияния типов: жидкой и газовой фаз, дополнительных реакционных поверхностей на процесс гидратообразования все эксперименты проводились в реакторах изохорного типа при отсутствии внешних динамических воздействий на реакционную систему (рис.3). В полном сборе реактор состоит из цилиндра и крышки-фланца на которой крепятся образцовый манометр (класс точности 0,4) и заправочный вентиль.
Рисунок 3 - Схема камеры-реактора и всей экспериментальной установки для получения газогидратов
Рисунок 4 - Равновесные условия для газов- гидратообразователей, рассчитанные по методике Слоана Слоана [5]
Охлаждение производилось в инкубаторе -холодильнике SANYO MIR-254 в котором температурный режим задается вручную, а затем поддерживается автоматически с точностью ±0,3?С программируемой системой контроля температуры.
Газогидраты являются клатратными соединениями включения и получаются из газа и воды в условиях повышенного давления и пониженных температур На рисунке 4 представлены результаты расчета термобарических условий гидратообразования для метана, этана и природного газа, на основании которых были выбраны: температура в диапазоне от +6 до 0єС и загрузочное давление 50 атм-для метана, природного газа и 11 атм-для этана.
Интенсивность роста и морфология гидратов зависят от многих факторов: состава газовой и жидкой фазы, давления и температуры, наличия инициаторов кристаллизации и прочих, в том числе, механических воздействий на реакционную систему [4-6].
В комплексе данные факторы могут влиять на процесс гидратообразования по-разному. Чтобы оценить и учитывать влияние основных факторов на процесс гидратообразования для каждого типа газа были получены гидраты из ДВ и водных растворов ПАВ при наличии в камере- реакторе дополнительных металлической или полимерной поверхностей (таблица 4). Для проверки сходимости получаемых данных с каждой системой проводилось не менее 3-х серий экспериментов.
Таблица 4 - Состав гетерогенных фаз в процессе получения газовых гидратов
Водная фаза |
Газ-гидратообразователь |
|||||||||
Метан |
Этан |
ПГ |
||||||||
ДВ |
- |
+МП |
+ПП |
- |
+МП |
+ПП |
- |
+МП |
+ПП |
|
0,1% ПАВ |
- |
+МП |
+ПП |
- |
+МП |
+ПП |
- |
+МП |
+ПП |
Таким образом, разработан методический подход получения газогидратов в камерах - реакторах изохорного типа, который заключается в следующих последовательно проводимых технологических операциях:
В реактор помещаются: дополнительная поверхность (МП/ПП) и рассчитанный объем жидкой фазы. Камера- реактор закрывается и вакуумируется, при температуре 25єС заправляется газом- гидратообразователем до достижения расчетного (загрузочного давления).
Заправленные жидкой и газовой фазами камеры - реакторы помещаются в инкубатор-холодильник. Для проверки герметичности камеры отстаиваются при температуре +20єС в течение 1 часа.
Для сдвига равновесия в сторону образования гидратов камеры- реакторы охлаждаются в инкубаторе- холодильнике от +6єС до 0 єС со скоростью ~1 єС/сутки;
В ходе эксперимента каждый час фиксируется значение давления и температуры. В процессе получения гидратов по разработанному методу отсутствует динамическое воздействие на систему и, для сдвига равновесия в область образования газогидрата- дополнительная подача газовой фазы в реактор. Так, по мере образования гидратов давление в камере- реакторе самопроизвольно снижается, поэтому для соблюдения условия нахождения системы в области гидратообразования (рис. 4) температура, устанавливаемая в инкубаторе- холодильнике пошагово понижается (красная пунктирная линия на рис. 5,6,7). Таким образом, движущей силой процесса синтеза газогидратов в реакторе изохорного типа, является температурный фактор.
Рисунок 5 - Термобарический процесс образования гидратов метана в камерах- реакторах изохорного типа
Рисунок 6 - Термобарический процесс образования гидратов этана в камерах- реакторах изохорного типа
Рисунок 7 - Термобарический процесс образования гидратов природного газа в камерах- реакторах изохорного типа
Известно, что в статических условиях, то есть без динамической подачи в реактор потоков той или иной фаз, формирование гидратов, получаемых из дистиллированной воды, является крайне медленным процессом [4-6].
Установлено, что во всех исследуемых системах на графиках зависимости давления от времени нахождения реагентов в камере наблюдается «плато», то есть самопроизвольное снижение давления прекращается. Равновесное состояние, характеризующее практическое завершение процесса образования гидратов метана, этана и природного газа достигается после ~ 160 часов или 6,6 суток (рис. 5, 6, 7). Однако, интенсивность самопроизвольного снижения давления различная. Так, за 220 часов изменение (снижение) давления относительно начального (загрузочного), при образовании гидратов из ДВ и метана составило 7,5 at, этана - 1 at и природного газа - 7 at. При использовании водной фазы, содержащей ПАВ давление в камере- реакторе при образовании гидратов из метана понизилось на 27 at, этана- на 4,5 at, природного газа - на 25 at. Таким образом, показано, что более интенсивно, как из ДВ так и из раствора, содержащего ПАВ, формируются гидраты метана и природного газа, а менее - газогидраты этана.
Установлено, что наличие или отсутствие в реакторе дополнительных гидрофильных, как и гидрофобных поверхностей, повышающих площадь контакта газовой и жидкой фаз не оказывает значительного влияния на ход процесс образования газогидратов из метана, этана и природного газа. Показано, что газогидраты различных морфологических типов образуются из ДВ и растворов, содержащих ПАВ, как на металлической, так и на полимерной поверхности (табл. 5).
Таким образом, при искусственном получении индивидуальных и смешанных газогидратов внутреннюю металлическую поверхность реакторов можно заменять на полимерную. Для чего в настоящей работе предложено использовать ПТФЭ (политетрафторэтилен) - морозостойкий, ударопрочный химически стойкий линейный термопластичный полимер с низким коэффициентом трения, что соответствует техническим условиям получения гидратов при низких температурах, а так же позволяет без усилий осуществлять выгрузку из реакторов готового продукта.
В таблице 5 приведена морфология искусственно полученных гидратов метана, этана, природного газа. Видно (табл.5), что в условиях отсутствия динамических воздействий на систему в камерах- реакторах образуются газогидраты различных структурно- морфологических типов: массивные льдо- и снегоподобные кристаллы и менее крупные - гранулы, а так же тонкие вискерные кристаллы, имеющие направление роста. Видно, что плотные льдоподобные кристаллы газогидратов образуются из ДВ, а более рыхлые снегоподобные - из растворов, содержащих ПАВ.
Таблица 5 - Структурно-морфологические типы газовых гидратов, полученных из различных газовых и водных фаз
Металлическая и полимерная поверхность реакторов и дополнительные поверхности внутри него покрываются тонким слоем гидрата, имеющим плотную слоистую структуру, тем не менее, большая часть гидратов сформировалась на стенке реактора. Особенностей изменения морфологии газогидратов в зависимости от состава газа- гидратообразователя не выявлено.
Заключение
Таким образом, показано, что разработка технологии перевода природного газа и его основных компонентов в гидратную форму может быть основана на процессах без принудительного динамического перемешивания газовой и жидкой фаз. Так как процесс формирования гидратов в этих условиях является достаточно длительным необходим поиск новых технологических решений по его интенсификации и ускорению либо преобразованию периодического процесса в непрерывный.
Список литературы
1. Абрамзон А.А. Поверхностно-активные вещества: свойства и применение, 2-ое издание перераб. и доп.// Л.: Химия. - 1981, 304 с.
2. Нестеров А.Н. Кинетика и механизм гидратообразования в присутствиии поверхностно- активных веществ// дисс. докт. хим. наук, Тюмень. -2006. -280с.
3. Поверхностно-активные вещества: справочник под ред. Абрамзона А.А. и Гаевой Г.М.-Л.: Химия.-1979, - 380 с.
4. Макогон Ю.Ф. Гидраты природных газов// М.: Недра.-1974.- с. 204.
5. E. Dendy Sloan, Jr. Clathrate hydrates of natural gases//- Third Edition. - Marcel Dekker- 1998, 730 p.
6. Бык С.Ш., Макогон Ю.Ф., Фомин В.И. Газовые гидраты//- М.: Химия.- 1980, 296 с.
Размещено на Allbest.ru
...Подобные документы
Структура и состав гидратов. Скорость образования гидратов и методы борьбы с ними. Свойства жидких поглотителей. Аппаратура установок абсорбционной осушки. Осушка в барботажных абсорберах. Осушка газов на установках низкотемпературной сепарации.
курсовая работа [2,4 M], добавлен 26.07.2011Конверсия метана природного газа с водяным паром — основной промышленный способ производства водорода. Виды каталитических конверсий. Схема устройства трубчатого контактного аппарата. Принципиальная технологическая схема конверсии метана природного газа.
курсовая работа [3,2 M], добавлен 20.11.2012Структура гидратов, скорость их образования. Свойства жидких поглотителей. Технологическая схема установки абсорбционной осушки углеводородной газовой смеси в барботажных аппаратах. Принципы обезвреживания водного конденсата десорбера ректификацией.
дипломная работа [2,3 M], добавлен 13.12.2011Изучение физических и химических свойств метана, этана и циклопропана. Использование в быту и промышленности хранилища газообразных и жидких углеводородов. Определение массы бесцветного газа, находящегося в подземном резервуаре геометрической формы.
контрольная работа [100,4 K], добавлен 29.06.2014Этапы первичной переработки природного газа, его состав и принципиальная схема паровоздушной конверсии метана. Схема химических превращений, физико-химические основы, термодинамика и кинетика процесса, сущность и преимущество каталитической конверсии.
курсовая работа [1011,5 K], добавлен 11.03.2009Место камер хлопьеобразования в технологической схеме. Процесс конвективной коагуляции. Определение градиента скорости в камерах хлопьеобразования различных типов. Обработка маломутных цветных вод. Камеры хлопьеобразования гидравлического типа.
реферат [1,1 M], добавлен 09.03.2011Технологическая схема производства аммиака и получения синтез-газа. Эксергетический анализ основных стадий паровоздушной конверсии метана. Термодинамический анализ процесса горения в трубчатой печи. Определение эксергетического КПД шахтного реактора.
дипломная работа [1,3 M], добавлен 05.11.2012Особенности строения предельных углеводородов, их изомерия и номенклатура. Гомологический ряд алканов неразветвленное строения. Получение метана в лабораторных условиях, его физические и химические свойства. Области применения метана как природного газа.
презентация [113,5 K], добавлен 22.12.2013Основные состояния природного газа, залегающего в земных недрах и в виде газогидратов в океанах и зонах вечной мерзлоты материков. Химический состав и физические свойства природного газа, его месторождения и добыча. Утилизация попутного нефтяного газа.
презентация [109,0 K], добавлен 08.03.2011Исследование метода для оценок облаков, туманов и их динамики, фактора насыщения пара над поверхностью капли. Анализ влияния растворенных в капле гигроскопических примесей солей и кислот. Расчет давления насыщения водяного пара над поверхностью капли.
контрольная работа [113,9 K], добавлен 15.06.2011Расчет основных характеристик газа на основании закона Дальтона, понятие парциального давления. Определение плотности смеси газов, значения молекулярной массы. Основные виды вязкости: кинематическая и динамическая. Пределы воспламенения горючего газа.
контрольная работа [65,7 K], добавлен 11.07.2017Способы очистки углеводородных газов от Н2S, СO2 и меркаптанов. Схемы применения водных растворов аминов и физико-химических абсорбентов для извлечения примесей из природного газа. Глубокая осушка газа. Технология извлечения тяжелых углеводородов и гелия.
контрольная работа [340,3 K], добавлен 19.05.2011Метан — бесцветный газ без запаха, первый член гомологического ряда насыщенных углеводородов; получение и химические свойства. Процесс высокотемпературной конверсии метана для производства метанола; определение углеродного эквивалента исходного газа.
курсовая работа [87,3 K], добавлен 12.12.2012Процесс поглощения газа жидким поглотителем. Абсорбционные методы очистки отходящих газов. Очистка газов от диоксида серы, от сероводорода и от оксидов азота. Выбор схемы и технологический расчет аппаратов для очистки газов на ТЭЦ, сжигающих мазут.
курсовая работа [1,0 M], добавлен 18.04.2011Сущность алканов (насыщенных углеводородов), их основные источники и сферы применения. Строение молекул метана, этана, пропана и бутана. Особенности промышленных и лабораторных методов синтеза алканов. Механизм галогенирования, горения и пиролиза.
курсовая работа [2,8 M], добавлен 19.04.2012Синтез фосгена через конверсию угарного газа с паром. Расчёты равновесной температуры, давления, объёма адиабатического реактора по степени превращения. Определение себестоимости производства, график зависимости данных переменных от степени превращения.
курсовая работа [50,2 K], добавлен 16.05.2012Характеристики сырья, химизм процесса гидроочистки. Характеристики получаемых продуктов, их выход при нефтепереработке. Технологическая схема установки, аппаратов и оборудования. Материальный баланс установки. Расчет основных аппаратов установки.
курсовая работа [843,0 K], добавлен 12.04.2015Ацетилен - бесцветный газ со слабым сладковатым запахом. Изучение процесса производства ацетилена различными способами: электрокрекингом (из метана), термическим крекингом (из жидкого пропана), термоокислительным пиролизом метана и из реакционных газов.
реферат [12,6 M], добавлен 28.02.2011Схемы процессов изомеризации на катализаторах. Технологический расчет реакторного блока установки высокотемпературной изомеризации пентан-гексановой фракции. Расчет материального и теплового баланса, энтальпии водородсодержащего газа, параметров реактора.
курсовая работа [393,4 K], добавлен 23.01.2015Переработка каменного угля, его значение, потребление, мировые запасы. Особенности перегонки нефти на непрерывно действующих трубчатых установках. Основные виды крекинга. Состав природного газа, его применение. Способы применения попутного нефтяного газа.
реферат [26,7 K], добавлен 20.12.2015