Физико-химические свойства и структурная подвижность сверхсшитых полистиролов
Свойства сетчатых полимеров, углеродных и композиционных материалов на их основе. Молекулярная структура и физические свойства сверхсшитых полистиролов. Структурная подвижность сверхсшитых полистирольных сеток. Термический анализ сверхсшитых полистиролов.
Рубрика | Химия |
Вид | автореферат |
Язык | русский |
Дата добавления | 27.02.2018 |
Размер файла | 899,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Для промышленных сверхсшитых сорбентов MN-270 со структурой, близкой к гомогенному типу, и бипористого MN-200 также характерно различие в кинетике объёмного набухания в термодинамически «хороших» растворителях и осадителях полистирола. В толуоле скорость набухания значительно выше (0.7 и 26 %/с для MN-270 и MN-200 соответственно), чем в «плохих» средах (например, в тетрадекане - 0.09 и 7 %/с), тогда как максимальная деформация набухания (esw)max практически одинакова (20-26 %) для растворителей любого типа, хотя и не велика.
При изучении объёмного деформирования сферических образцов-гранул сорбентов в процессе десорбции растворителей (сушки на воздухе) установлено, что для гелевых, непористых в сухом состоянии полимеров (например, сополимера стирола с 2.7 % ДВБ - SD2.7 или гелевых сульфокатионитов) при любых условиях высушивания объёмы гранул с течением времени уменьшаются по экспоненциальной кривой (рис. 5.1). Однако совершенно неожиданным оказалось немонотонное деформирование пористых полимеров при десорбции растворителей (рис. 5.1): в какой-то момент времени объём гранулы перестает уменьшаться или даже заметно возрастает, чтобы потом вновь уменьшиться до равновесного размера сухой гранулы. В большей или меньшей степени деформационная аномалия проявляется на всех образцах, имеющих пониженную кажущуюся плотность, т. е. явную пористость в сухом состоянии (DH, DT, SD15H, XAD-4). Для полимера XAD-4 аномальный характер деформационного процесса выражен наиболее резко, при десорбции органических растворителей различных классов промежуточное увеличение объёма гранулы составляет 0.9 % для диэтилового эфира, 1.5 % для этанола, 3.5 % для хлорбензола и 3.5 % для толуола. Максимальный эффект аномального изменения объёма обнаружен при десорбции воды из гидрофобного полимера XAD-4 (его объёмная набухаемость в воде - всего 1.02-1.04, т.е. 2-4 %). При испарении воды объём полимера уменьшается на 12 % по отношению к равновесному значению объёма сухого образца-гранулы, и лишь в последующий период высушивания, после такого значительного «вынужденного» сжатия, объём гранулы медленно увеличивается, восстанавливаясь до равновесного «сухого» объёма.
В сверхсшитых полистиролах, имеющих большую структурную подвижность (модуль упругости в 4 раза меньше чем для XAD-4), также наблюдается аномальное изменение объёма при десорбции воды: высушивание CPS(0.6)-200E и LPS-200X (рис. 5.2) привело к появлению заметных отрицательных деформаций сжатия (esw ~ -8 % и -15 %, ? ~ -0.06 и -0.56 соответственно), как и при десорбции воды из полимера XAD-4.
Промышленные сверхсшитые полистирольные сорбенты - MN-270 и бипористый MN-200 набухают в воде не более чем на 15 % по объёму, в отличие от ССП, синтезированных на основе сополимеров гелевой структуры. Несмотря на значительно бoльшую структурную жесткость, эти сорбенты также проявляют аномальный характер деформирования при удалении воды (рис. 5.2). Появление второй ступени на кинетической кривой на более ранней стадии высушивания, по-видимому, связано с тем, что в их структуре присутствуют как более крупные поры, так и характерные для сверхсшитой фазы нанопоры.
Рис. 5.1. Относительная объёмная деформация гелевых (2) и пористых (1, 3, 4, 5) полимеров при десорбции толуола. 1 - DH, 2 - SD2.7, 3 - SD15H, 4 - XAD-4, 5 - DT
Рис. 5.2. Относительная объёмная деформация ССП при десорбции воды: 1 - LPS-200X, 2 - CPS(1.4)-200E, 3 - микропористый сорбент MN-270, 4 - бипористый сорбент MN-200
Аномальный характер процесса деформирования при десорбции растворителей был обнаружен не только для гидрофобных микропористых сверхсшитых и макропористых полистирольных сеток, но и для гидрофильных пористых материалов, в частности, промышленных макропористых ионообменников: сульфокатионитов Amberlyst-15, CT-175 и анионита A-830. При изменении формы образцов (кубической вместо сферической), либо условий десорбции (обдув воздухом, нагревание), закономерно уменьшалась, либо увеличивалась скорость изменения объёма образца, но особенности процесса деформирования для каждого типа полимера сохранялись. Поэтому обнаруженное явление отражает определенный термодинамически равновесный, а не кинетический эффект. Очевидно, после десорбции основной массы растворителя из макропор, остаточная жидкость в малых порах, образуя вогнутые мениски на выходе из пор и капилляров, оказывается под уменьшенным давлением, что приводит к хорошо известному эффекту капиллярной контракции. При этом в пористых полимерных материалах определенной структуры, подобной полимеру XAD-4, в области микрокапилляров временно возникают упругие локальные деформации сжатия. При освобождении микрокапилляров от жидкости объём образца увеличивается в результате релаксации этих напряжений, а затем медленно вновь уменьшается при десорбции остаточного растворителя из все еще набухшей непористой полимерной фазы. Примечательным является то, что на кинетических кривых потери массы при десорбции толуола или других растворителей нет каких-либо экстремальных участков. Испарение всех растворителей из гранул происходит вполне равномерно.
Тем же методом дилатометрии на отдельных сферических гранулах также исследована деформация нейтральных сверхсшитых полистирольных сорбентов и ионитов на основе стирол-дивинилбензольных сополимеров гелевого типа при их контакте с концентрированными растворами ряда минеральных электролитов: HCl (35%), H3PO4 (85%), NaOH (20%), NH4Cl (25%), (NH4)2SO4 (44%) и LiCl (39%). При этом впервые обнаружен эффект значительного осмотического сжатия набухших в воде сверхсшитых полистирольных матриц в концентрированных растворах только тех электролитов, которые содержат крупные ионы лития, сульфата и фосфата. Например, для полимеров CPS(0.6)-200E и CPS(1.4)-200E деформация набухания уменьшается при контакте с такими растворами на 10-37 % (при максимальном значении набухания в воде 61±7 и 28±4 % соответственно). При этом исходная набухшая гранула может сжаться в таких растворах до объёма меньшего, чем объём сухой гранулы (например, для полимера CPS(1.4)-200E, до -7 и -9 % от объёма сухой гранулы в растворах LiCl и H3PO4, см. рис. 5.3). При контактировании с растворами, содержащими ионы OH-, NH4+, Cl- и Na+, уменьшение объёмных деформаций набухших сфер ССП минимально (1-3 %).
Для электролитов этой второй группы с ионами таких малых размеров практически все микропоры изученных полимеров доступны, и они свободно распределяются по всему объёму водной фазы и порового пространства. Напротив, крупные ионы не могут проникнуть в микропоры. Не попадают туда и связанные с ними мелкие противоионы, иначе был бы нарушен принцип локальной электронейтральности. В результате эффекта исключения возникает значительный градиент концентраций на границе между крупными и мелкими порами, и давление воды в микропорах понижается.
Примечательно, что величина объёмной деформации сжатия коррелирует с размерами исключаемых гидратированных ионов. Таким образом, обнаруженный эффект сжатия обусловлен различием в осмотическом давлении воды, заполняющей тонкие поры (недоступные для крупных ионов), и концентрированного раствора, заполняющего крупные поры. Естественно, уменьшение объёма гранул в растворах исключаемых электролитов максимально в растворах высокой концентрации.
Рис. 5.3. Деформация сферы набухшего в воде полимера CPS(1.4)-200E, при контакте с растворами электролитов.
?esw - конечное уменьшение деформации набухания esw от максимального значения (esw)max
Указанный простой дилатометрический метод обнаружения осмотического сжатия позволил выявить среди серии ССП полимеры с повышенным содержанием нанопор радиусом менее 0.4-0.5 нм. Такие сверхсшитые сорбенты проявляют наибольшую селективность в развиваемом препаративном методе разделения электролитов методом эксклюзионной хроматографии [Цюрупа М.П., Блинникова З.К., Даванков В.А. Эксклюзионная хроматография ионов как новый препаративный метод разделения минеральных электролитов // В кн. Хроматография на благо России. Под ред. А.А. Курганова. M.: ИФХ РАН. Изд. Группа «Граница», 2007. 687с.], а также в процессах сорбции соединений с малыми размерами молекул.
Сверхсшитые полистиролы, несмотря на свою гидрофобность, успешно используются в качестве сорбентов для различных органических соединений из водных систем. В связи с этим является важным не только изучение механических свойств и деформационного поведения набухших в воде ССП, но также и изучение состояния воды в матрице этих гидрофобных сетчатых полимеров. В этом плане интересную информацию дало исследование систем ССП-вода импульсным методом широких линий ЯМР 1Н протонов воды. Были получены спектры сигнала протонов воды и измерены их характеристики в процессе охлаждения набухших в воде полимеров до -90 оС и последующего постепенного нагрева до +10 оС. В результате были обнаружены две области «замораживания-размораживания» подвижности протонов воды в порах этих полимеров: от -80 до -40 оС и выше -20 оС (рис. 5.4). Этот результат, указывает на существование в ССП воды двух типов: вода в виде небольших кластеров в малых микропорах (1) и обычная вода в более крупных микропорах (2). Выше было показано (метод аннигиляции позитронов), что для определенных сверхсшитых полистиролов характерно бимодальное распределение микропор. При повышении температуры в порах (1) уже при -80 - -40 оС обнаруживается жидкая фаза воды, тогда как в более крупных порах (2) образование жидкой фазы в результате плавления льда начинается при температуре выше -20 оС. Хорошо заметные различия зависимостей интенсивности сигнала протонов жидкой воды I/I20 от температуры для разных ССП являются следствием морфологических особенностей пористой структуры этих полимеров. Различное распределение пор по размерам, очевидно, определяет и распределение по размерам кластеров воды. Так как интенсивность сигнала протонов пропорциональна количеству молекул жидкой воды, кривая зависимости интенсивности от температуры очевидно симбатна интегральной кривой распределения объёма пор по размерам пор. В полимерах CPS(0.2)-100E, CPS(0.2)-200E и CPS(1.4)-200E кластеры воды в микропорах (1), по-видимому, более неоднородны по размерам, поэтому температурная область увеличения подвижности протонов воды в них заметно шире, чем для полимера CPS(1.4)-100E. Для сорбента XAD-4 особенно четко проявляется бимодальное распределение пор по размерам. Таким образом, метод ЯМР, по-видимому, дает возможность полуколичественной оценки пористой структуры тел в области самых малых диаметров пор. Следует подчеркнуть, что стандартный анализ изотерм адсорбции азота не дает информации о размерах в области микропор диаметром менее 1.5 нм, где перестает работать механизм послойного заполнения пор азотом. Кроме того, он характеризует материал в абсолютно сухом состоянии, тогда как пористая структура материала может существенно измениться при помещении его в водную среду. Метод аннигиляции позитрона не позволяет отличить закрытые поры от протекаемых. И только метод ЯМР характеризует истинное распределение по размерам для пор, доступных водной фазе в истинно рабочем, т.е. набухшем состоянии сорбента.
Метод дифференциального термомеханического анализа (ДТМА) (графическое дифференцирование кривых ТМА, записанных на приборе УИП-70) (рис. 5.5) для замороженных систем ССП-вода позволяет подтвердить факт определенного фазового перехода воды из твердого состояния в жидкое в гидрофобных порах малого размера при аномально низких температурах. В момент этого фазового перехода резко возрастает деформируемость гранулы, находящейся под нагрузкой. По характеру термодеформационного поведения замороженных набухших в воде гранул можно наглядно видеть и качественно оценить явные различия пористой структуры их полимерной матрицы. Для одних систем скорость деформирования (vdef) при нагревании образца резко увеличивается в области от -70 до -40 оС и затем в области -20 - +20 оС. Для полимеров этой группы характерным является бимодальность распределения микропор по размерам (92 объём. % пор радиусом 1-2 нм и ~8 объём. % пор радиусом 0.4-0.6 нм, см. табл. 4.1). Для сорбентов другой группы увеличение vdef происходит в основном в области -25 - +20 оС, как например, для образцов CPS(0.2)-200E и LPS-200X, которые отличаются максимальным содержанием «больших» микропор 1-2 нм, до 99 % от суммарного объёма пор, и максимальным свободным объёмом среди исследованных сверхсшитых полистиролов (~70 %). Для сорбента CPS(1.4)-100E vdef увеличивается только в области -80 - -40 оС. Этот полимер отличается небольшим, по сравнению с другими сверхсшитыми полистиролами, свободным объёмом (менее 45 %) и заметно меньшими размерами микропор (не более 0.8 нм).
Для всех систем ССП-вода в области температур ниже -90 оС характерны лишь небольшие упругие деформации сжатия, затем, при нагревании наблюдаются два или один максимум производных термомеханических кривых (рис. 5.5): I - в области -80 - -40 оС и II - при T > -20 oC. В области I, при периодическом нагружении наряду с постоянными упругими развиваются вязкоупругие деформации и увеличивается доля небольших остаточных деформаций, тогда как в переходной области (I-II) температур вязкоупругие деформации менее выражены, а развитие остаточных деформаций носит затухающий характер. Такое деформационное поведение характеризует исследуемые системы ССП с (частично) замороженной водой (в порах (2)) как вязкоупругие материалы при низких температурах, что является весьма необычным фактом не только для частосшитых полимеров, но и для любых полимеров, наполненных водой при Т << 0 oC.
Таким образом, аномальное увеличение подвижности протонов воды, регистрируемое методом ЯМР 1Н, и симбатное увеличение структурной подвижности образцов при деформирующем воздействии на систему ССП-вода в области -80 - -40 оС, по-видимому, связано с процессом перехода воды в микропорах радиусом 0.4-0.6 нм из стеклообразного состояния в жидкое. Дальнейшее увеличение подвижности протонов воды (метод ЯМР 1Н) и структурной подвижности (метод ДТМА) в области более высоких температур вызвано плавлением полиморфного льда в микропорах радиусом 1?2 нм.
Оба рассмотренных метода позволяют с помощью вполне доступной техники дать сравнительную оценку распределения пор в нанометровой и суб-нанометровой области, которая не поддается исследованию иными общепринятыми способами.
Несмотря на то, что ССП, в которых каждое фенильное кольцо связано мостиком с другим фенильным кольцом другой макроцепи (образцы со степенью сшивания 100 %), являются частыми сетками, удивительна способность этих сеток, набухших в органических растворителях, например в толуоле, к значительным и обратимым деформациям сжатия.
Рис. 5.4. Изменение относительной интегральной интенсивности I/I20 (нормирована к интенсивности при 20 оС) сигналов 1Н ЯМР воды при нагреве системы ССП-вода: 1 - CPS(0.2)-100E, 2 - CPS(0.2)-200E и 3 -XAD-4
Рис. 5.5. Зависимость скорости деформации по оси сжатия vdef от температуры (ДТМА) трех типов структур ССП заполненных водой: А - полимер CPS(0.2)-100E, В - CPS(0.2)-200E, С - CPS(1.4)-100E
Деформации такого набухшего сверхсшитого полистирола (например, для CPS100-E линейная деформация сжатия ?=15 %) лишь немного меньше деформаций набухшего в толуоле редкосшитого сополимера стирола SD5.3 (?=19 %) и в 2 раза больше, чем деформации набухшего сополимера стирола SD15 (15 % ДВБ, ?=8.5 %) при одинаковом давлении одноосного сжатия 5 МПа. При этом модуль упругости Esw набухшего сверхсшитого полистирола CPS100-E (Esw=15-20 МПа), где в мостик связано каждое фенильное кольцо, в два раза меньше, чем у набухшего сополимера SD15. Совершенно иной характер деформационного поведения имеют ССП, набухшие в воде. В системе ССП-вода при постоянном и периодическом сжатии остаточные деформации увеличиваются (от 17 до 23 % при давлении сжатия 24 МПа), а условно-упругие деформации уменьшаются до определённого постоянного значения (от 25 % до ~5 %). Таким образом, при деформировании сверхсшитых сеток, набухших в воде (но не в иных растворителях), происходит определенная структурная перестройка с увеличением плотности упаковки элементов структуры (возрастает жесткость образца). Восстановление исходной структуры и всего комплекса физико-механических свойств деформированной сверхсшитой сетки происходит при ее набухании в совместимом с водой органическом растворителе. Подобного эффекта образования уплотненной структуры не происходит для сверхсшитых полистиролов, набухших в толуоле. В этом случае, так же как и при деформировании редких «классических» полимерных сеток, происходит хрупкое разрушение, когда напряжения достигают предела выносливости материала. В то же время, если набухший образец, деформированный небольшим постоянным грузом по оси сжатия, высушить от растворителя, то будет зафиксирована его искаженная форма и значительные внутренние напряжения (под микроскопом в поляризованном свете хорошо видна интерференционная картина распределения напряжений) без разрушений полимерного материала. Релаксация формы деформированных образцов происходит при их набухании в растворителе («отдыхе»). В таких экспериментах четко проявляется уникальная структурная подвижность сверхсшитых сеток, способных к значительным деформациям не только в процессе набухания в растворителях, но и при механических воздействиях.
Лабильная пространственная структура сверхсшитых полистиролов предопределяет и их уникальную структурную подвижность при тепловом воздействии. Методом термодилатометрического анализа (ТДА) (прибор УИП-70) установлено, что при нагреве без нагрузки на воздухе в сухих образцах ССП развиваются значительные термические деформации расширения во всей области 20-220 оС, что не характерно для обычных частых сеток, для которых как правило, наблюдается линейное расширение с общей деформацией всего на 2-3%. Форма кривой ТДА, т.е. характер термических деформаций при нагреве, зависит от типа ССП, их степени сшивания, а также термической и сольвентной (класс десорбированного растворителя) предистории. Во-первых, аномальной является значительная величина теплового расширения ССП с максимальной степенью сшивания, очевидно обусловленная релаксацией внутренних напряжений структуры сверхсшитых сеток. В частности, для полимера LPS-200X объёмные термические деформации довольно резко увеличиваются в диапазоне 130-220 оС, от 5 до 27 %, что соответствует увеличению удельного объёма от 1.8 до 2.2 см3/г (рис. 5.6). Максимальные тепловые деформации характерны для ССП с п-ксилиленовыми мостиками.
Рис. 5.6. Термодилатометрические кривые ССП: 1 - LPS-200X, 2 - LPS-200E, 3 - CPS(0.2)-200E
Известно, что в процессе интенсивного сшивания полимерных цепей в хорошем растворителе образуется предельно сольватированная жесткая сетка ССП, а при удалении растворителя из набухшего геля сетка существенно уменьшается в объёме, и в образцах фиксируется напряженно-деформированное состояние. В ССП эффект релаксации этих внутренних напряжений четко выражен на кривых ТДА в виде резкого увеличения объёма образца, которое проявляется при определенной температуре, названной нами «температурой начала конформационных структурных перестроек» Tr (рис. 5.6). Например, для полимера LPS-200X, высушенного от воды при 85 оС в течение 24 часов, Tr=150 оС. Очевидно, в районе 150 оС дисперсионные силы межцепного притяжения в сетке ослабевают настолько, что становится возможным устранение части внутренних напряжений структуры путем частичного приближения конформаций составляющих сетку циклов к равновесному состоянию.
Второй, еще более выраженной аномалией на термодилатометрических кривых ССП является наблюдающееся в области 240 оС резкое уменьшение объёма образцов. Подчеркнем, что резкое сжатие происходит намного раньше температуры термодеструкции Td - начала процесса потери массы (выше 300 оС по данным термогравиметрического анализа). Итак, образцы ССП во всей области температур 230-290 оС испытывают значительное объёмное сжатие, практически структурный коллапс (рис. 5.6), задолго до начала процесса потери массы. Очевидно, нагревание сопровождается локальными разрывами наиболее напряженных участков сетки ССП, которые и приводят к резкому «схлопыванию» свободного объёма, т.е. коллапсу сверхсшитой структуры. В результате разрывов, перегруппировки, частичной рекомбинации образовавшихся свободных радикалов и всего процесса необратимой топологической перестройки и уплотнения структуры объём образцов ССП резко уменьшается в области 230-290 оС (рис. 5.6). Активная роль кислорода в этом процессе проявляется в том, что термическое сжатие сверхсшитых полистиролов в среде воздуха и в инертной среде (аргон) проходят в разных диапазонах температуры. Так, например, полимер CPS(0.6)-200E начинает уменьшаться в объёме при температуре выше 230 оС в среде воздуха, и лишь при T>290 оС в среде аргона. В инертной среде ССП термостабильны, по крайней мере, до 325 оС, сохраняя не только массу и структуру полимерной сетки, но и хорошо развитую систему микропор. Интенсивное развитие процесса объёмного сжатия образцов ССП или структурного коллапса особенно характерно для ССП с высокой степенью сшивания, имеющих большой свободный объём, наиболее напряженную и в то же время рыхлую структуру полимерной сетки (минимальное значение кажущейся плотности).
Уникальная структурная подвижность сверхсшитых полистирольных сеток, была всесторонне изучена также и традиционными методами исследования термодеформационного поведения полимеров - ТМА, одноосного и всестороннего сжатия.
Термомеханические испытания ССП и классических полимерных сеток сополимеров стирола с ДВБ проведены методом одноосного сжатия отдельных сферических образцов (диаметр около 0.7 мм) на установке УИП-70 по специально разработанной методике, исключающей регистрацию перемещений образца, не связанных с изменением его размера. На рис. 5.7 представлены термомеханические кривые для сверхсшитого полистирола и стандартных сополимеров стирола с 2,8 (SD2.8) и 34 мол. % ДВБ (SD34).
Рис. 5.7 ТМА при одноосном сжатии полимерной сферы (h - линейная деформация сферы по оси сжатия): 1, 2 - сополимер SD2.8; 5, 6 - сополимер SD34; 3, 4 - сверхсшитый полистирол (CPS-100E). F=0.4 кг - (1, 3, 6), 0.01 кг - (2, 4, 5). 5 оС/мин
ТМА-кривые редкосшитых полистирольных сеток (сополимер SD2.8) характерны для типичного процесса перехода сетчатого полимера из стеклообразного в высокоэластическое состояние. Увеличение нагрузки от 0.01 до 0.4 кг на гранулу приводит к небольшому снижению температуры стеклования (точка перегиба ТМ-кривой в переходной области) от 106 до 93 оС. При исследовании методом ТМА частосшитого сополимера стирола SD34 установлено, что при минимальных нагрузках этот полимер находится в стеклообразном состоянии во всей области температур ниже температуры деструкции сетки. Совершенно по-иному ведет себя сверхсшитый полистирол. Развитие деформаций сжатия в сфере начинается уже при низких температурах и имеет плавный характер, как при минимальной, так и при максимальной нагрузке во всей исследованной области температур от -80 до 250 оС. Несмотря на то, что степень сшивания этих образцов ССП выше, чем у частых сополимеров стирола с ДВБ (не проявляющих расстекловывания), значительные деформации ССП (более 50 % по оси сжатия) не сопровождаются какими-либо разрушениями. Ни один из известных однофазных частосшитых полимеров, у которого температура стеклования превышает температуру термодеструкции, не способен к столь значительным деформациям сжатия.
Хорошо известно, что для обычных полимерных сеток, в частности для сополимеров стирола с ДВБ, степень сшивания является основным фактором, определяющим их физическое состояние в определенном температурном диапазоне. На рис. 5.8 представлены ТМ кривые для группы сверхсшитых полистиролов CPS-E с различной степенью сшивания и, для сравнения, полимера CPS-25E - полистирольной сетки переходного типа от классического сшитого полистирола к сверхсшитому. Для этого полимера еще можно выделить три температурные области: до 100-110 oС - стеклообразное состояние, от 100 до 260 oС - переходная область, выше 260 oС - высокоэластическое состояние (вплоть до начала термодеструкции). Для ССП четкого перехода из одного физического состояния в другое не наблюдается.
Рис. 5.8. ТМА сверхсшитых полистиролов с различной степенью сшивания: 1 - CPS-25E, 2 - CPS-43E, 3 - CPS-66E, 4 - CPS-100E, 5 - CPS-150E. Нагрузка 0.4 кг, скорость нагрева 5 оС/мин.
ТМ кривые ССП со степенью сшивания от 43 до 100 % имеют общую тенденцию к увеличению деформируемости в области температур ниже температуры стеклования полистирола и к постепенному нарастанию деформаций с увеличением температуры, особенно в диапазоне 75-200 оС. Еще более размытая форма ТМ-кривых характерна для ССП со степенью сшивания выше 100 %. При этом термодеформационное поведение сверхсшитых сеток, полученных сшиванием линейного полистирола, несколько отличается от поведения ССП на основе сополимеров стирола с ДВБ. Так, например, для полимера LPS-100E кривая деформации более полога и положение точки перегиба на ней (максимум «скорости деформирования») на 30-40 оС выше, чем для ССП CPS-100E с такой же степенью сшивания.
Установлено, что с увеличением давления сжатия скорость деформирования (максимум производных ТМ-кривых) закономерно увеличивается, а начало процесса сжатия сдвигается в сторону низких температур. При этом температура, соответствующая максимуму производных ТМ кривых, уменьшается по линейной зависимости с увеличением нагрузки на гранулу. В отличие от классических сетчатых полимеров с частой сшивкой, деформационный процесс ССП при больших величинах сжимающей нагрузки охватывает огромный диапазон температур, от -70-80 до 250-350 оС, без хрупкого разрушения образцов. При этом деформационный процесс не выявляет четко-выраженного температурного перехода из одного физического состояния полимера в другое при любом сжимающем давлении от 12 до 32 МПа для плоских образцов, либо до 0.6 кг для сферических образцов (используемые в ТМА максимальные нагрузки на порядок меньше разрушающих нагрузок для ССП).
В процессе ТМА структурные перестройки ССП сопровождаются уплотнением материала образца по оси сжатия. Это подтверждается следующим примером: после нагрева в ходе ТМА и последующего охлаждения под нагрузкой деформированный полимер CPS-100E подвергнут повторному ТМ анализу, при этом его деформирование возобновляется при той температуре, где был остановлен нагрев в ходе первого ТМА. Однако, после набухания в ацетоне, либо при термическом «отдыхе» без нагрузки образцов после термомеханического анализа, ТМ кривые «отрелаксировавших» полимерных сеток близки по форме к исходной ТМ кривой.
Таким образом, ССП не имеют четкой температурной области «размораживания» подвижности структуры. Сетка ССП способна к значительным пространственным перестройкам и перемещениям во всем диапазоне температур от -70 до 250 оС при механическом воздействии на образец. Способность сверхсшитых полистиролов к значительным деформациям обусловлена ажурностью их структуры и аномально большим свободным объёмом, деформирование ССП происходит в результате кооперативных конформационных перестроек ячеек сетки в режиме теплового и (или) механического воздействия.
При исследовании методом всестороннего сжатия образцов сверхсшитого полистирола CPS-100E на установке «Gnomix PVT Apparatus» установлено, что при последовательном повышении давления в изотермических условиях, удельный объём образца ССП уменьшается плавно, без существенных изменений динамики процесса при любой из температур в исследованной области от 24 до 240 оС. Отсутствие резких изменений формы изотерм всестороннего сжатия свидетельствует о том, в этой температурной области не происходит никаких выраженных изменений физического состояния материала, подобных тем, какие наблюдаются в классических редкосшитых полимерных сетках. Увеличение объёмных деформаций ССП до 13 % при повышении давления сжатия сопровождается последовательными конформационными перестройками сетки с уменьшением ее свободного объёма, но без необратимых разрушительных процессов. Об уплотнении материала свидетельствует также уменьшение внутренней удельной поверхности сжатых образцов. Однако деформации сжатия являются обратимыми, так как релаксируют при набухании ССП в растворителях.
Обобщая результаты исследований деформационного поведения сверхсшитых полистиролов, следует констатировать, что в широкой области температур физическое состояние ССП нельзя рассматривать ни как стеклообразное, ни как высокоэластическое. Ажурная молекулярная конструкция сверхсшитых сеток имеет много общего с каркасными структурами комплексов или солей переходных металлов, привлекающими пристальное внимание как новый тип нанопористых материалов, но отличается от этих кристаллических органоминеральных конструкций своей высокой подвижностью.
Глава 6. Термический анализ сверхсшитых полистиролов (термогравиметрический и дифференциально-термический анализ)
Исследование влияния структурных характеристик (в основном степени сшивания) сверхсшитых полистиролов и - для сравнения - «классических» сетчатых полистиролов (сополимеров стирола с ДВБ и полидивинилбензолов) на их термические свойства проведено методами термогравиметрического (ТГА), изотермического гравиметрического (ИТГА) и дифференциально-термического анализа (ДТА) в среде воздуха и в инертной среде аргона на дериватографе Q-1500 (Венгрия). Эти исследования проведены для сшитых (степень сшивания не более 19 %) и сверхсшитых полистиролов полученных на основе линейного полистирола с монохлордиметиловым эфиром или п-ксилилендихлоридом.
Установлено, что при нагреве в среде воздуха с небольшой скоростью (5 оС/мин) сверхсшитых полистиролов со степенью сшивки от 25 до 100 % в области 280-450 оС происходит интенсивное уменьшение массы, затем непродолжительное, но хорошо заметное замедление этого процесса, с последующим повторным ускорением потери массы образца в области 480-550 оС. Процесс теплового и/или термоокислительного разрушения таких полимеров, как и сополимеров стирола с ДВБ, проходит в два этапа: до 450 оС - деструкция линейных участков сетки, выше 480 оС - деструкция остаточных фрагментов сетки с ее узлами. По мере увеличения степени сшивания (полидивинилбензол или ССП со степенью сшивки более 100 %) первый этап вырождается и преобладающим становится высокотемпературный этап процесса потери массы в результате разрушения участков сетки с узлами. Методом газо-жидкостной хроматографии установлено, что при термолизе сетчатых полимеров с большим содержанием линейных фрагментов основным компонентом летучих продуктов является стирол. Действительно, полистирольные сетки с небольшой степенью сшивания (до 11 %), как и полистирол, полностью разрушаются, в основном, в результате процесса цепной радикальной деполимеризации - элиминирования мономерных фрагментов в интервале температур 250-360 оС. В конденсатах летучих продуктов термодеструкции максимально сшитых полистиролов (при более высоких температурах) обнаружены толуол, стирол и изомеры этилбензола, примерно в равных количествах, а также в значительно меньшей степени - 3-4 изомерных пропилбензола (состав основных компонентов был идентифицирован по хроматограммам индивидуальных веществ). Предполагается, что цепные радикальные процессы для ССП не характерны и термодеструкция ССП протекает по закону случая, когда вероятности разрыва химических связей в любой точке полимерной сетки практически одинаковы.
Примечательно, что ССП со степенью сшивки от 100 % и выше, при быстром нагреве в среде воздуха (20 оС/мин), либо при медленном нагреве в инертной среде, карбонизируются при температуре более 500 оС с высоким выходом коксового остатка - до 40 % при 900 оС. Так как получение карбонизатов может представить практический интерес, динамика термолиза была изучена более подробно.
При нагреве с высокой скоростью в среде воздуха сверхсшитых полимеров LPS-E (сшитых МХЭ), частосшитых сополимеров стирола и полидивинилбензола процессы потери массы 1-го и 2-го этапов перекрываются. Поэтому кривая зависимости скорости wd термодеструкции (wd = d(1-(m/mo))/dt) от температуры имеет лишь один максимум в области 420-450 оС, в частности для полимеров SD34 и LPS-25E (рис. 6.1).
Вместе с тем, оказалось, что при нагревании с высокой скоростью ССП с п-ксилиленовыми мостиками LPS-X (до степени сшивания 100 %) процесс потери массы проходит в два этапа - интенсивное разрушение в области 400-450 оС и, с небольшим увеличением скорости, в области 500-530 оС (рис. 6.2). При быстром нагреве максимум скорости термодеструкции для 1-го этапа сдвигается в сторону высоких температур на 120 оС, а для 2-го этапа положение максимума не меняется.
Рис. 6.1. Температурная зависимость wd полимеров SD34 (1, 3) и LPS-25E (2, 4) в среде воздуха: 1, 2 - нагрев 5 oС/мин, 3, 4 - 20 оС/мин.
Рис. 6.2. Температурная зависимость wd полимеров LPS-25X (1, 3) и LPS-66X (2, 4) в среде воздуха: 1, 2 - нагрев 5 оС/мин, 3, 4 - 20 оС/мин.
Для максимально сшитых полистиролов (при использовании 0.75 и 1.0 моль кросс-агента) наблюдался только один широкий высокотемпературный максимум wd при ТГА в среде воздуха либо аргона, так как в таких полимерных сетках практически нет несшитых мостиками стирольных фрагментов. Изотермический пиролиз в инертной среде ССП со степенью сшивки от 100 % и выше проходит с постепенным уменьшением скорости термодеструкции по линейной зависимости до конверсии 0.5. Затем процесс резко тормозится, по-видимому, в результате формирования устойчивых конденсированных ароматических систем с дальнейшим углублением процесса карбонизации ССП и сохранением значительного коксового остатка.
Для всех полистирольных сеток: сополимеров стирола с ДВБ и полидивинилбензола, а также для ССП со степенью сшивания до 100 %, характерен эндотермический эффект деполимеризации линейных участков сетки, расположенный в области 430 - 460 оС при условии нагрева со скоростью 20 оС/мин (рис. 6.3). Напротив, для полимеров LPS-E и LPS-X с максимальной степенью сшивания 150-200 % эндоэффект на термограммах более не регистрируется, тогда, как характерными становятся значительные экзоэффекты с локальными максимумами в области 170-220 оС и 450 - 550 оС (рис. 6.3). Первый экзоэффект совпадает с тем температурным диапазоном, в котором наблюдается аномальное увеличение объёма сверхсшитых полистиролов (рис. 5.6.).
Рис. 6.3. ДТА в инертной среде аргона сополимера стирола SD5.3 (1) и ССП (2-5): 2 - LPS-25X, 3 - LPS-66X, 4 - LPS-200E, 5 - MN-202, 6 - LPS-200X. 20 оС/мин
Второй экзоэффект, по-видимому, является следствием структурного коллапса ССП - интенсивного процесса перестройки напряженной сверхсшитой сетки, обусловленного локальными термическими разрывами С-С связей и резким «схлопыванием» микропор, имеющих большую поверхностную энергию. В итоге суммарный тепловой эффект - отрицательный для термодеструкции стандартных гелевых полистирольных сеток - становится положительным при переходе к сверхсшитым сеткам и достигает высоких значений для систем, сшитых на 150-200 %.
Глава 7. Карбонизаты сверхсшитых полистиролов - новые углеродные сорбенты
В седьмом разделе рассмотрены вопросы получения и свойства новых углеродных сорбентов - карбонизатов сверхсшитых полистиролов.
В результате исследований методами ТГА и ДТА термических свойств сверхсшитых полистиролов был установлен факт их карбонизации с большим коксовым выходом, что открывает путь к практическому получению новых углеродных сорбентов - карбонизатов ССП. В качестве перспективных исходных могут служить промышленные неионогенные сверхсшитые полистиролы и катиониты на их основе («Purolite», UK) с карбоксильными, либо сульфогруппами (исследованы 9 сорбентов). Как и для максимально сшитых лабораторных образцов сверхсшитых полистиролов LPS-E и LPS-X, на термограммах промышленных сорбентов MN-200 и MN-202 полностью отсутствует эндоэффект деполимеризации полистирольных участков, так как практически все стирольные фрагменты связаны в трех-четырех направлениях в единую полимерную сетку. Вместе с тем, на термограммах сверхсшитых сорбентов присутствует экзоэффект с максимумом при 470-480 оС (вследствие структурного коллапса сетки), подобно тому, как и для синтезированных ССП (рис. 6.3).
В результате пиролиза промышленных ССП («Purolite», UK) в инертной среде при температуре выше 500 оС получаются углеродные материалы сферической грануляции (коксовый остаток при этом достигает 50-55 %) с хорошими прочностными и сорбционными свойствами. В итоге были разработаны методики получения нескольких типов углеродных сорбентов - карбонизатов сверхсшитых полистиролов (табл. 7.1).
Впервые установлено, что образование значительных количеств карбонизатов при пиролизе полистирольных сеток возможно не только при наличии в них сульфогрупп, что было хорошо известно ранее на примере пиролиза сульфокатионитов, но и при наличии в сверхсшитом материале карбоксильных групп или остаточных хлорметильных групп. Это делает методику получения углеродных сорбентов значительно более экономичной и безотходной, т.к. отпадает стадия сульфирования сополимеров, а при их пиролизе не выделяются токсичные оксиды серы.
При изучении пористой структуры полученных карбонизатов ССП методом низкотемпературной сорбции азота установлено, что некоторые из них по физическим характеристикам подобны известным молекулярным ситам: сорбенты, синтезированные при пиролизе сверхсшитых сульфокатионитов в азоте либо в углекислом газе, являются в основном микропористыми, так что поверхность микропор размером 0.4-0.9 нм значительно превышает поверхность мезопор (см. табл. 7.1). Полученные углеродные сорбенты способны удерживать до 2.6 масс. %. водорода при 220 атм. и комнатной температуре. По данным сканирующей электронной микроскопии, микропористую структуру и общую морфологию исходных полимеров сохраняют карбонизаты всех ССП материалов: сульфированных, карбоксилсодержащих и неионогенных ССП.
Таблица 7.1 Физические свойства углеродных сорбентов - карбонизатов сверхсшитых полистиролов
Исходный полимер |
xo*, нм |
Sin , м2/г |
SМе, м2/г |
C |
H |
КО |
F, кг/гра-нула |
at |
ae |
|
масс. % |
мл/г |
|||||||||
C150 |
0.22 |
700 |
30 |
89.0 |
2.0 |
43 |
8-9 |
0.18 |
0.20 |
|
MN270s |
0.33 |
560 |
45 |
91.9 |
4.4 |
57.6 |
5-6 |
0.23 |
0.28 |
|
MN202 |
0.39 |
670 |
20 |
92.7 |
2.5 |
55 |
1.0 |
0.22 |
0.29 |
|
MN600 |
0.18 |
710 |
5 |
95.7 |
1.6 |
49.1 |
2.1 |
0.28 |
0.31 |
|
MN500 |
0.23 |
680 |
50 |
93.9 |
1.8 |
55.3 |
1.2 |
0.50 |
0.50 |
|
MN500** |
0.29 |
630 |
35 |
96.8 |
0.4 |
53 |
2.2 |
0.46 |
0.47 |
|
MN500*** |
0.44 |
1540 |
130 |
92.9 |
1.6 |
46 |
1.5 |
1.04 |
1.06 |
* х0 - полуширина микропоры (расчет по уравнению Дубинина), Sin и Sме - суммарная внутренняя удельная поверхность (метод БЭТ) и поверхность мезопор, по данным адсорбции азота, КО - коксовый остаток, F - прочность гранул при сжатии, at и ae - максимальное поглощение толуола и этанола в статических условиях, ** - пиролиз в N2 при 900 оС, *** - пиролиз в CO2 при 850 оС, для остальных - в N2 при 600 оС; C150 - сульфокатионит на основе макропористого сополимера стирола с ДВБ («Purolite», UK); MN270s - сульфированный сверхсшитый сорбент MN270
При исследовании термических свойств ССП было обнаружено, что коллапс сверхсшитой сетки сопровождается не только резким уменьшением объёма материала и заметными экзотермическими эффектами, но и появлением интенсивных ЭПР сигналов неспаренных электронов. При определенных температурных режимах пиролиза ССП формируются углеродные материалы с высокой концентрацией парамагнитных частиц, т. е. структуры с развитой полисопряженной ароматической системой. Их спектры ЭПР стабильны во времени, но крайне чувствительны к присутствию кислорода, что открывает возможность для использования новых углеродных материалов в качестве кислородных сенсоров, например, в биомедицине.
Для карбонизатов MN-500 и MN-202, полученных пиролизом при 500 и 600 оС, исследовалось влияние типа поглощенного растворителя на параметры спектров ЭПР системы сорбент-адсорбат. Для этих систем характерны спектры ЭПР в виде интенсивного и узкого сигнала-синглета при условии вытеснения воздуха из карбонизата низкомолекулярным соединением из группы: пиридин, глицерин, этанол, метанол, вода. При введении в углеродные сорбенты растворителей различных классов с линейным строением молекул (алканов, их моно- и дихлорпроизводных, спиртов), в зависимости от их способности проникать в микропоры, линия ЭПР также может значительно сужаться - вплоть до 2.3±0.3 Гс. Так, для карбонизатов неионогенных бипористых MN-200 и MN-202 или сульфокатионита MN-500 при введении растворителя ширина линии ЭПР уменьшается в 10-20 раз, а амплитуда сигнала увеличивается на 2-3 порядка. Наибольший интерес представляют образцы, полученные при 600 оС. Это пористые углеродные сорбенты с хорошо развитой внутренней поверхностью (до 600 м2/г) и, по-видимому, также хорошо развитой полисопряженной системой, образованной пакетами ароматических полициклических структур с делокализованными ?-электронами. Такие сорбенты являются полупроводниковыми материалами с удельным сопротивлением для гранульной формы материала 1.4*104 Ом*см. Поскольку сорбция кислорода на этих материалах сопровождается образованием непарамагнитных комплексов, спектр ЭПР карбонизатов на воздухе превращается в размытый синглет шириной около 14 Гс, с небольшой амплитудой. При введении низкокипящего растворителя с небольшими молекулами (в частности дихлорметана), происходит десорбция кислорода с поверхности пор углеродного сорбента с «освобождением» его парамагнитных центров. Поэтому сигнал ЭПР образца в дихлорметане становится узким (0.7 Гс для карбонизата MN-202) и весьма интенсивным по амплитуде.
Исследования различных карбонизатов ССП методом ЭПР показали, что они существенно различаются по отношению к кислороду и растворителю, что может быть использовано в различных аналитических целях.
Глава 8. Магнитные и каталитические нанокомпозиты на основе сверхсшитых полистиролов и неорганических соединений
В восьмом разделе приведены структурные исследования и сорбционные свойства магнитных нанокомпозитов, а также каталитически активных сорбентов на основе сверхсшитых полистиролов с импрегнированными нанодисперсными металлами.
Так, на основе промышленных сверхсшитых полистирольных сорбентов («Purolite», UK) были получены специальные магнитные сорбенты - композиты с включениями наноразмерных частиц оксида железа. Обладая магнитными свойствами (удельное магнитное насыщение достигает 6,8 Гс*см3/г), сорбенты сохранили высокое значение внутренней удельной поверхности - 1200 м2/г. Методами рентгенофазового анализа и малоуглового рассеяния рентгеновских лучей установлено, что в композитах на основе ССП гелевого типа импрегнированы наночастицы магнетита размером до ~6 нм (такие нанокомпозиты оптически-прозрачны), а в ССП бипористого типа (с микро и макропорами) более крупные наночастицы магнетита размером ~16 нм.
В результате сорбционных исследований, установлено, что введение магнитных частиц в поры сверхсшитых сорбентов несущественным образом (~ на 10 %) снижает их способность к поглощению паров таких высокотоксичных соединений, как иод (предельная емкость ~1.4 г/г), пентакарбонил железа (4 г/г), хлорпикрин (0.8 г/г), циклопентадиентрикарбонил марганец (0.7 г/г) и др. органических и элементоорганических соединений. Поглотив пары токсичных веществ, сорбенты могут быть отделены методом магнитной сепарации.
Также были получены и исследованы каталитически активные нанокомпозиты на основе сверхсшитого полистирола бипористого типа MN-202 и нанодисперсной платины (5 масс. %). Эти системы были испытаны для каталитического окисления воздухом метанола в разбавленных водных растворах (от 30 до 475 ppm): исходная концентрация метанола снижалась на 80-60 %.
Глава 9. Экспериментальная часть
В девятом разделе приведены методики синтеза полимеров и описание физических методов исследований.
Выводы
1. Комплексным исследованием физических свойств сверхсшитых полистирольных (ССП) материалов, полученных сшиванием линейного полистирола или сополимеров стирола с дивинилбензолом монохлордиметиловым эфиром или п-ксилилендихлоридом в присутствии этилендихлорида, установлены корреляции между основными характеристиками этих материалов как сорбентов (кажущаяся удельная внутренняя поверхность, суммарный объём пор, механическая прочность гранул) и основными условиями их синтеза (степень сшивки, объёмная концентрация сшиваемых полимерных цепей). Установленные зависимости позволяют оптимизировать процессы получения сорбентов с желаемым комплексом свойств.
2. При исследовании пористой структуры методом позитронной аннигиляционной спектроскопии и динамической десорбционной порометрии показано, что для сверхсшитых полистиролов может быть характерно бимодальное распределение микропор с максимумами распределения эффективных радиусов при 0.4?0.6 нм и 1?2 нм. Объёмная доля микропор первой и второй групп в суммарном свободном объёме составляет 0.8?10 и 88?99 об. % соответственно. Свободный объём в сверхсшитых полистиролах достигает 60?70 %. Для ССП на основе линейного полистирола, сшитого п-ксилилендихлоридом, зарегистрирована рекордная длительность времени жизни позитрония в пористом полимерном материале - 73 нс (в вакууме).
3. При исследовании методами ЯМР протонов и термомеханического анализа гидрофобных ССП, заполненных водой и охлажденных до - 90 оС, показано, что размораживание воды в микропорах радиусом 0.3?0.6 нм может начаться в области от -80 до -60 оС, а в более крупных микропорах в диапазоне от -20 до 0 оС с симбатным ступенчатым понижением модуля упругости материала. Методы удобны для быстрой сравнительной оценки нанопористой структуры (распределения пор по размерам) сверхсшитых полистиролов.
4. Разработан метод автоматической регистрации изменений объёма индивидуальной сферической гранулы сорбента. При изучении этим методом быстрой кинетики набухания в органических растворителях установлено, что ССП значительно превосходят и по скорости набухания, и по максимальной объёмной набухаемости (до 5 раз) классические полистирольные сетки со степенью сшивки в несколько раз меньшей. Если классические сетки набухают только в термодинамически хороших для полистирола растворителях, ССП столь же интенсивно набухают в любых «нерастворителях» полистирола, хотя и с меньшей скоростью, чем в растворителях.
5. При изучении кинетики уменьшения объёма набухших полистирольных сеток в процессе испарения растворителей впервые обнаружен эффект временного увеличения объёма пористых полимеров (макропористых и сверхсшитых полистирольных сеток со степенью сшивания выше 100 %). Этот аномальный деформационный эффект наиболее резко выражен при десорбции воды из этих систем. Эффект объяснен капиллярной контракцией микропор под воздействием остаточных количеств жидкой фазы. Показано, что это явление характерно для всех пористых полимеров, включая макропористые катиониты и аниониты на основе акриловых сополимеров или сополимеров стирола.
6. Методом объёмной дилатометрии набухших в воде нейтральных ССП обнаружен эффект осмотического сжатия гранул этих полимеров при их контакте с концентрированными растворами неорганических электролитов, если последние содержат крупные катион и/или анион. Величина осмотической контракции гранул полимера коррелирует с размерами исключаемых гидратированных ионов и их концентрацией. Эти измерения позволяют выявлять среди серии ССП материалы с максимальным содержанием нанопор соизмеримых с размерами гидратированных ионов, которые проявляют высокую селективность в препаративном разделении электролитов методом эксклюзионной хроматографии, а также при сорбции соединений с малыми размерами молекул.
7. Для исследования деформационного поведения гранулированных полимеров разработана методика механических испытаний при одноосном сжатии отдельных сферических образцов диаметром от 0.4 до 1.0 мм, и выведены формулы расчета упругих характеристик материала.
8. В результате исследования физико-механических свойств сверхсшитых полистиролов обнаружена необычная для частых однофазных полимерных сеток способность к вязкоупругому деформированию при одноосном, либо всестороннем сжатии в широком диапазоне температур от -70 до 200 оС. Сетка ССП обладает уникальной подвижностью как в набухшем, так и в сухом состоянии. Для сверхсшитых полистиролов во всем изученном диапазоне температур не характерно ни классическое стеклообразное, ни высокоэластическое состояние.
9. При исследовании сверхсшитых полистиролов методом термодилатометрии впервые обнаружен эффект аномально интенсивного теплового расширения в температурном диапазоне от 20 до 200 оС с последующим коллапсом сверхсшитой структуры и уплотнением материала при температуре выше 300 оС.
10. При изучении термодеструкции сверхсшитых полистиролов методом термогравиметрического анализа установлено, что выше 500 оС в инертной среде ССП со степенью сшивки от 100 % и выше карбонизируются с выходом коксового остатка до 40 % (при 900 оС).
11. Разработан метод получения новых углеродных сорбентов (карбонизатов ССП) пиролизом промышленных неионогенных ССП, а также сульфо- и карбоксильных катионитов на их основе. Пиролиз в инертной среде с высоким коксовым выходом (до 58 %) дает углеродные материалы сферической грануляции с преимущественно микропористой структурой и хорошими прочностными свойствами.
12. Проведенные методом ЭПР исследования карбонизатов ССП позволили определить условия получения углеродных сорбентов с устойчивыми парамагнитными свойствами. Высокая чувствительность ЭПР-спектров к присутствию кислорода или иных адсорбированных молекул позволяет ставить задачу создания ЭПР-сенсоров кислорода или паров органических веществ.
13. На основе промышленных сверхсшитых полистиролов разработаны новые нанокомпозиционные сорбенты. Нанокомпозиты ССП с оксидами железа могут быть использованы в качестве эффективных магнитных сорбентов для паров токсичных соединений. Композиты ССП с нанодисперсной платиной позволяют удалять следы метанола из водных растворов в результате его глубокого каталитического окисления растворенным кислородом воздуха.
Список опубликованных работ по теме диссертации
Статьи в журналах и сборниках
1. Пастухов А.В., Цюрупа М.П., Даванков В.А. О подвижности сверхсшитых полистирольных сеток // Сб. статей, «Структура и динамика молекулярных систем», Всероссийская конференция. 1996. Изд-во КГУ. Казань. C.51-54.
...Подобные документы
Общая характеристика современных направлений развития композитов на основе полимеров. Сущность и значение армирования полимеров. Особенности получения и свойства полимерных композиционных материалов. Анализ физико-химических аспектов упрочнения полимеров.
реферат [28,1 K], добавлен 27.05.2010Значение полимеров и материалов на их основе, их композиций в современной технике. Получение термопластичных эластомеров. Свойства различных типов термоэластопластов. Физические свойства промышленных фторкаучуков. Резиновые смеси на основе фторкаучуков.
реферат [34,0 K], добавлен 23.12.2010Что такое алкены, строение молекулы, физические и химические свойства. Выбор главной цепи, нумерация атомов главной цепи, формирование названия. Структурная изометрия. Химические свойства этилена, классификация способов получения, сфера применения.
презентация [279,2 K], добавлен 20.12.2010Физические и фазовые состояния и переходы. Термодинамика высокоэластической деформации. Релаксационные и механические свойства кристаллических полимеров. Теории их разрушения и долговечность. Стеклование, реология расплавов и растворов полимеров.
контрольная работа [770,9 K], добавлен 08.03.2015Особенности химических реакций в полимерах. Деструкция полимеров под действием тепла и химических сред. Химические реакции при действии света и ионизирующих излучений. Формирование сетчатых структур в полимерах. Реакции полимеров с кислородом и озоном.
контрольная работа [4,5 M], добавлен 08.03.2015Формула и описание полиацителена, его место в классификации полимеров. Строение, физические и химические свойства полиацителена. Способ получения полиацетилена полимеризацией ацетилена или полимерана логичными превращениями из насыщенных полимеров.
реферат [625,9 K], добавлен 05.04.2014Физические и химические свойства йода. Важнейшие соединения йода, их свойства и применение. Физиологическое значение йода и его солей. Заболевания, связанные с его нехваткой. Применение йода в качестве антисептика, антимикробные свойства его соединений.
реферат [26,7 K], добавлен 26.10.2009Хемосорбционное модифицирование минералов. Свойства глинистых пород. Методика модификации бентонитовой глины месторождения "Герпегеж". Физико-химические способы исследования синтезированных соединений. Определение сорбционных характеристик бентонина.
курсовая работа [9,2 M], добавлен 27.10.2010История открытия стронция. Нахождение в природе. Получение стронция алюминотермическим методом и его хранение. Физические свойства. Механические свойства. Атомные характеристики. Химические свойства. Технологические свойства. Области применения.
реферат [19,2 K], добавлен 30.09.2008Получение, строение и перспективы применения интерполиэлектролитных комплексов. Поливинилпирролидон: его применение и важнейшие характеристики. Влияние адсорбционного взаимодействия на молекулярную подвижность полимерных цепей в граничных слоях.
курсовая работа [90,4 K], добавлен 24.07.2010Общая характеристика меди. История открытия малахита. Форма нахождения в природе, искусственные аналоги, кристаллическая структура малахита. Физические и химические свойства меди и её соединений. Основной карбонат меди и его химические свойства.
курсовая работа [64,2 K], добавлен 24.05.2010Особенности строения и свойств. Классификация полимеров. Свойства полимеров. Изготовление полимеров. Использование полимеров. Пленка. Мелиорация. Строительство. Коврики из синтетической травы. Машиностроение. Промышленность.
реферат [19,8 K], добавлен 11.08.2002Понятие и номенклатура фенолов, их основные физические и химические свойства, характерные реакции. Способы получения фенолов и сферы их практического применения. Токсические свойства фенола и характер его негативного воздействия на организм человека.
курсовая работа [292,0 K], добавлен 16.03.2011Физические и физико-химические свойства ферритов. Структура нормальной и обращенной шпинели. Обзор метода спекания и горячего прессования. Магнитные кристаллы с гексагональной структурой. Применение ферритов в радиоэлектронике и вычислительной технике.
курсовая работа [97,0 K], добавлен 12.12.2016Общая характеристика, классификация и номенклатура моносахаридов, строение их молекул, стереоизомерия и конформации. Физические и химические свойства, окисление и восстановление глюкозы и фруктозы. Образование оксимов, гликозидов и хелатных комплексов.
курсовая работа [1,6 M], добавлен 24.08.2014Общие сведения о крахмале; полимеры амилоза и амилопектин. Образование и структура крахмальных зерен. Классификация крахмала, его физико-химические свойства и способы получения. Применение в промышленности, фармацевтической химии и технологии, медицине.
курсовая работа [939,9 K], добавлен 09.12.2013История развития науки о полимерах - высокомолекулярных соединений, веществ с большой молекулярной массой. Классификация и свойства органических пластических материалов. Примеры использования полимеров в медицине, сельском хозяйстве, машиностроении, быту.
презентация [753,4 K], добавлен 09.12.2013Понятие, назначение и классификация индикаторов. Строение и свойства полианилина. Влияние природы инициатора и полимерной матрицы на структуру и свойства композиционных материалов. Синтез композитных материалов на основе пленки Ф-4СФ и полианилина.
курсовая работа [2,2 M], добавлен 18.07.2014Физические свойства целлюлозы. Реакции гидролиза и этерификации целлюлозы; ее нитрирование и взаимодействие с уксусной кислотой. Применение в производстве бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха.
презентация [572,9 K], добавлен 25.02.2014Металлический барий и его распространенность в природе. Получение металлического бария. Электролиз хлорида бария. Термическое разложение гидрида. Химические и физические свойства. Применение. Соединения (общие свойства). Неорганические соединения.
автореферат [21,0 K], добавлен 27.09.2008