Особенности химического уровня организации материи

Катализатор – вещество, которое, фактически не вступая в химическую реакцию, резко изменяет ее скорость. Сущность периодического закона Д.И. Менделеева. Связь квантовой трактовки химизма с представлениями корпускулярно-волнового дуализма электрона.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 22.04.2018
Размер файла 30,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

1. Предмет химии

Химия - наука, изучающая превращения веществ, сопровождающиеся изменениями их состава и строения.

Процесс превращения вещества рассматривается в традиционной химии на уровне атомов и молекул, а в новейшей квантовой химии - на уровне валентных электронов взаимодействующих частиц. Поэтому химия тесно связана со сферой физического знания, особенно термодинамикой, электродинамикой и квантовой механикой. Поэтому выдвигается тезис, что в теоретическом отношении химия может быть сведена к физике. Однако развитие химической науки свидетельствует о том, что химия достаточно обособленное научное направление, развивающееся в настоящее время гораздо стремительнее физики. Особое значение имеет прикладная направленность химии.

2. Основные понятия и законы классической химии

Химическая система - сложная структура, включающая помимо веществ, непосредственно участвующих в процессе, вещества, которые оказывают то или иное воздействие на химическую реакцию. Речь идет об ингибиторах и катализаторах. Ингибиторы - соединения, замедляющие динамику химической реакции. Напротив, катализаторы - соединения, ускоряющие ход химической реакции.

Химическое взаимодействие осуществляют электроны атомов, обладающие наибольшей энергией. Выявляются несколько типов химического взаимодействия.

На уровне атомов существует три типа химической связи:

- ковалентная связь, когда валентные электроны принадлежат всем атомам молекулы (двухатомная молекула с одинаковыми ядрами - Н2 , О2 и др.);

- ионная связь, когда происходит полный перенос валентного электрона с одного атома на другой (NaCl, KCl и др.);

- металлическая связь, характерная для соединений металлов.

На уровне молекул выделяют два типа химической связи:

- «Ван-дер-ваальсова» связь, действующая между электрически нейтральными молекулами, а также атомами;

- водородная связь, образуемая поляризованными водородом и молекулой с электроотрицательным атомом.

Подавляющая часть известных химических веществ способны участвовать в соответствующих реакциях, т.е. обладают реакционной способностью или скоростью химической реакции. Однако реакционная способность конкретных химических веществ зависит от свойств соединений, вступающих в химический процесс, от внешних условий, в которых происходит реакция (температура, давление, наличие катализаторов).

Таким образом, скорость химических процессов имеет большое значение. Основные факторы, влияющие на нее, это концентрация реагирующих веществ, температура, наличие катализатора.

Влияние концентрации. Увеличение концентрации взаимодействующих веществ - один из самых распространенных приемов интенсификации процесса. Зависимость скорости химических реакций от концентрации определяется законом действия масс. Согласно этому закону скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степени, равной стехиометрическому коэффициенту, стоящему перед формулой вещества в уравнении реакции:

v= K CanCbm,

где К - константа скорости реакции; Ca и Cb - концентрации веществ а и b, участвующих в химической реакции; n и m - стехиометрические коэффициенты.

Константа скорости реакции численно равна скорости реакции при концентрации реагирующих веществ, равной единице. Она зависит от природы реагирующих веществ, температуры, наличия катализаторов и не зависит от концентрации этих веществ. Для определения этих констант выведены соответствующие формулы, основанные на экспериментальных данных.

Влияние температуры. Известно, что с повышением температуры скорость реакции возрастает, что связано с увеличением константы скорости реакции. Согласно правилу Вант-Гоффа повышение температуры на 10оС увеличивает скорость реакции в 2-4 раза. Это правило приближенное и применимо к реакциям, протекающим в интервале температур от 0 до 300оС.

Характер влияния температуры и концентрации реагирующих веществ на скорость химических реакций можно объяснить теорией активных столкновений. Молекулы, обладающие определенной энергией, избыточной по сравнению со средней, способной разорвать химические связи, называются активными. Избыточная энергия при этом называется энергией активации и зависит от природы вступающих в реакцию веществ. При повышении температуры количество активных молекул увеличивается, число столкновений между ними возрастает, в результате чего растет скорость реакции. С увеличением концентрации реагирующих веществ общее число столкновений, в том числе эффективных, также возрастет, в результате увеличивается скорость реакции.

Влияние катализатора. Катализатор - это вещество, которое, фактически не вступая в химическую реакцию, резко изменяет ее скорость. В присутствии катализатора реакции ускоряются в тысячи раз, могут протекать при более низких температурах, что экономически выгодно.

Катализаторами преимущественно служат металлы в чистом виде (никель, кобальт, железо, платина), в виде оксидов или солей (оксиды ванадия, алюминия, соединения железа, магния, кальция, меди и т.п.). Неорганические катализаторы термостабильны, и реакция с ними протекают при сравнительно высоких температурах.

К катализаторам также относятся вещества биологического происхождения: витамины, ускоряющие химические процессы в тысячи десятки тысяч раз, а также ферменты, ускоряющие эти процессы в миллионы раз.

Перечислим основные законы классической химии.

1. Законы стехиометрии. Это учение о количественных соотношениях между веществами, вступающими в химическую реакцию. Оно включает систему законов, а также правил составления химических формул и уравнений.

2. Закон о постоянстве состава химически индивидуальных веществ. Его суть заключается в том, что химически чистое соединение имеет одинаковый состав независимо от способов его получения. К примеру, чистая поваренная соль имеет одинаковый химический состав во всем мире.

3. Закон пропорциональности. Весовые количества веществ; участвующих в тождественном химическом процессе, всегда определенны. Скажем, для нейтрализации конкретного количества кислоты требуется вполне определенное количество щелочи.

4. Закон простых кратных отношений. При переходе от одного соединения к другому, состоящему из одних и тех же элементов состав меняется скачками. В процессе, например, соединений азота и кислорода получается качественно новое вещество (окись азота), обладающее индивидуальными свойствами.

5. Законы (теория) химического строения вещества. Устанавливаются закономерности структуры органических соединений.

6. Теория радикалов. Одна из первых теорий органической химии. Ее основатель шведский химик Й. Берцелиус (1779-1848) полагал, что лишь неорганические вещества подчиняются законам химической атомистики. Именно это обстоятельство и обусловливает различия между неорганическими и органическими веществами. Получение мочевины (органического вещества) из циано-кислого аммония (неорганического вещества) немецким химиком Ф. Велером (1800-1882) показало, во-первых, возможность искусственно-синтетического приготовления органического вещества. А во-вторых, отсутствие «водораздела» между соединениями органического и неорганического типа.

7. Теория типов. Французский химик Ш. Жерар (1816--1856) заложил основы органической химии. Его работы касались трех направлений исследований, а именно: критика «теории радикалов» и создание «теории типов» в органической химии; разработка общей классификации органических веществ; обоснование молекулярной теории в химии. Согласно теории типов, для органических соединений свойственно не существование неизменных радикалов, а наличие нескольких характерных типов соединений (тип воды, водорода, аммиака и др.). Органическое вещество получается в результате замещения в молекуле определенного типа одного или нескольких атомов на другие группы атомов.

8. Теория химического строения. Значительный вклад в изучение органических веществ внес русский химик А. Бутлеров (1828-1886), создавший и обосновавший теорию химического строения. В ее рамках сущность органических соединений определяется не наличием «радикалов» или «типов», а химическим строением молекул. При этом химические свойства вещества находятся в непосредственной зависимости от строения его молекул. Истинность теории подтверждалась существованием изомеров -- веществ, имеющих одинаковый состав, но разную структуру, а значит, различные свойства. Позднее теория химического строения была дополнена квантово-механическими представлениями.

9. Периодический закон химических элементов. Открыт Д. Менделеевым (1834--1907). Периодический закон химических элементов обусловил рационализацию значительного эмпирического материала, накопленного химией.

3. Систематизация химических элементов. Периодический закон Д.И. Менделеева

Русский ученый Д.И. Менделеев в 1869 г. открыл периодический закон химических элементов при сопоставлении свойств всех известных в то время элементов и величин их атомных весов. Термин «периодический закон* Менделеев впервые употребил в ноябре 1870, а в октябре 1871 дал окончательную формулировку. Периодический закон: «свойства элементов, а потому и свойств образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Графическим (табличным) выражением периодического закона явилась разработанная Менделеевым Периодическая система элементов.

Физический смысл периодического закона был вскрыт лишь после выяснения того, что заряд ядра атома возрастает при переходе от одного химического элемента к соседнему (в периодической системе) на единицу элементарного заряда. Численно заряд ядра равен порядковому номеру (атомному номеру Z) соответствующего элемента в периодической системе, т.е. числу протонов в ядре, в свою очередь равному числу электронов, соответствующего нейтрального атома. Химические свойства атомов определяются структурой их внешних электронных оболочек, периодически изменяющейся с увеличением заряда ядра, и, следовательно, в основе периодического закона лежит представление об изменении заряда ядра атомов, а не атомной массы элементов. Наглядная иллюстрация периодического закона -- кривые периодические изменения некоторых физических величин (ионизационных потенциалов, атомных радиусов, атомных объемов) в зависимости от Z.Какого-либо общего математического выражения периодического закона не существует.

Периодический закон имеет огромное естественнонаучное и философское значение. Он позволил рассматривать все элементы в их взаимной связи и прогнозировать свойства неизвестных элементов. Благодаря периодическому закону многие научные поиски (например, в области изучения строения вещества в химии, физике, геохимии, космохимии, астрофизике) получили целенаправленный характер. Периодический закон - яркое проявление действия общих законов диалектики, в частности закона перехода количества в качество.

Периодическая система элементов Д.И. Менделеева как естественная классификация химических элементов, являющаяся табличным (графическим) выражением периодического закона, была разработана Д.И. Менделеевым в 1869--1871 гг.

Попытки систематизации химических элементов предпринимались различными учеными в Германии, Франции, Англии, США с 30-х годов XIX в. Предшественники Менделеева: И. Деберейнер, Ж. Дюма, французский химик А. Шанкуртуа, английские химики У. Одлинг, Дж. Ньюлендс и др. установили существование групп элементов, сходных по химическим свойствам, так называемых «естественных групп» (например, «триады» Деберейнера). Однако ЭТИ ученые не шли дальше установления частных закономерностей внутри групп. В 1864 г. Л. Мейер на основании данных об атомных весах предложил таблицу, показывающую соотношение атомных весов для нескольких характерных групп элементов. Теоретических обобщений из своей таблицы Мейер не сделал.

Прообразом научной Периодической системы элементов явилась таблица «Опыт системы элементов, основанной на их атомном весе и химическом сходстве», составленная Менделеевым 1 марта 1869 г. На протяжении последующих двух лет автор совершенствовал эту таблицу: ввел представления о группах, рядах и периодах элементов; сделал попытку оценить емкость малых и больших периодов, содержащих, по его мнению, соответственно по 7 и 17 элементов. В 1870 г. он назвал свою систему естественной, а в 1871 г. - периодической. Уже тогда структура Периодической системы элементов приобрела во многом современные очертания.

Чрезвычайно важным для эволюции Периодической системы элементов оказалось введенное Менделеевым представление о месте элемента в системе; положение элемента определяется номерами периода и группы. Опираясь на это представление, Менделеев пришел к выводу о необходимости изменения принятых тогда атомных весов некоторых элементов (U, In, Се и его аналогов), в чем состояло первое практическое применение Периодической системы элементов, а также впервые предсказал существование и основные свойства нескольких неизвестных элементов, которым соответствовали незаполненные клетки Периодической системы элементов. Классическим примером является предсказание «экаалюминия» (будущего Gа, открытого П. Лекоком де Буабодраном в 1875 г.), «экабора» (Sс, открытого шведским ученым Л. Нильсоном в 1879 г.) и «экасилиция» (Gе, открытого немецким ученым К. Винклером в 1886 г.). Кроме того, Менделеев предсказал существование аналогов марганца (будущие Тс и Не), теллура (Ро), йода (Аt), цезия (Fr), бария (Rа), тантала (Та).

Периодическая система элементов не сразу завоевала признание как фундаментальное научное обобщение. Положение существенно изменилось лишь после открытия Gа, Sс, Gе и установления двухвалентности Ве (он долгое время считался трехвалентным). Тем не менее Периодическая система элементов во многом представляла эмпирическое обобщение фактов, поскольку был неясен физический смысл периодического закона, и отсутствовало объяснение причин периодического изменения свойств элемент в зависимости от возрастания атомных весов. Поэтому вплоть до физического обоснования периодического закона и разработки теории Периодической системы элементов многие факты не удавалось объяснить. Так, неожиданным явилось открытие в конце XIX в. инертных газов, которые, казалось, не находили места в Периодической системе элементов; эта трудность была устранена благодаря включению в Периодическую систему элементов самостоятельной нулевой группы (впоследствии VIIIа-подгруппы). Открытие многих «радиоэлементов» в начале XX в. привело к противоречию между необходимостью их размещения в Периодической системе элементов и ее структурой (для более чем 30 таких элементов было 7 «вакантных» мест в шестом и седьмом периодах), Это противоречие было преодолено в результате открытия изотопов. Наконец, величина атомного веса (атомной массы) как параметра, определяющего свойства элементов, постепенно утрачивала свое значение.

Одна из главных причин невозможности объяснения физического смысла периодического закона и Периодической системы элементов состояла в отсутствии на тот момент теории строениям атома. Поэтому важнейшей вехой на пути развития Периодической системы элементов явилось создание планетарной модели атома, предложенная Э. Резерфордом в 1911 г. На ее основе голландский ученый А. ван ден Брук высказал предположение (1913), что порядковый номер элемента в Периодической системе элементов (атомный номер Z) численно равен заряду ядра атома (в единицах элементарного заряда). Это было экспериментально подтверждено Г. Мозли (1913--1914). Так удалось установить, что периодичность изменения свойств элементов зависит от атомного номера, а не от атомного веса. В результате на научной основе была определена нижняя граница Периодической системы элементов (водород как элемент с минимальным Z= 1); точно оценено число элементов между водородом и ураном; установлено, что «пробелы» в Периодической системе элементов соответствуют неизвестным элементам с Z =43;61;72;75;85;87.

Оставался, однако, неясным вопрос о точном числе редкоземельных элементов, и (что особенно важно) не были вскрыты причины периодического изменения свойств элементов в зависимости от Z. Эти причины были найдены в ходе дальнейшей разработки теории Периодической системы элементов на основе квантовых представлений о строении атома. Физическое обоснование периодического закона и открытие явления изотонии позволили научно определить понятие «атомная масса» («атомный вес»).

Таким образом, периодический закон стал одним из основных в системе естествознания. Именно в его рамках раскрывается взаимосвязь различных уровней материи: электронов, атомов, молекул, кристаллов. Введение порядкового или атомного номера в качестве фундаментальной характеристики элемента позволило ввести уточнение многих других свойств химических элементов, «например: установить взаимную связь между физическими (плотность, электролиз и др.) и химическими свойствами, оценить их изменения в зависимости от атомного номера.

Если периодический закон дал исходные теоретические принципы для обобщения экспериментальных данных в физике микромира, то развитие физических наук, в свою очередь, способствовало углублению содержания периодического закона. Именно физические исследования показали: по мере возрастания зарядов ядер в атомах элементов происходит последовательное увеличение количества электронов в виде периодического повторения исходных группировок во внешних слоях электронных оболочек. Тем самым периодичность получает подтверждение на микроуровне.

4. Особенности развития химии на рубеже ХIХ-ХХ вв.

В конце XIX -- начале XX в. для химии, как и для естествознания в целом, стали характерны кризисные тенденции. Это выражалось в том, что подверглась сомнению истинность сложившейся атомно-молекулярной концепции химизма. Оказалась под вопросом реалистичность «химической картины мира», основанной на целостной системе понятий («атом», «молекула», «химический элемент», «валентность» и др.). Если классическая концепция в химии исходила из «неделимого атома», то углубленное изучение вещества (выявление радиоактивного распада, открытие электрона и др.) показало его «делимость». Тем самым разрушались, как казалось многим химикам, основы объективного анализа химических процессов.

Преодолеть возникший «кризис» в химии призвана была в частности, теория «энергетизма». Один из ее основателей, немецкий физико-химик
В. Оствальд (1853--1932) доказывал, что ценность физико-химических превращений связана с энергетическими процессами. Иными словами, предлагалось заменить атомно-молекулярную концепцию химизма энергетической. Позднее стало очевидным, что «химическая картина мира» оказалась сложнее, чем это представлялось в XIX в. Впрочем, химия постепенно готовилась к выходу на уровень микромолекулярных исследований. Это было связано с активным развитием физической химии, а также ее разнообразных направлений (химическая термодинамика, электрохимия, кристаллохимия, коллоидная химия и др.). Тем самым выявлялась взаимосвязь микро- и макроуровней изучения вещества. Произошло не крушение атомистической концепции в химии, а ее развитие.

5. Развитие химического атомизма в первой половине XX в. Квантовый уровень химии

В химии продолжилось выявление и изучение качественного многообразия форм вещества. Анализировались атомные структуры (простые ионы, изотопы и др.), молекулярные структуры (сложенные ионы, свободные радикалы, комплексные частицы и др.), надмолекулярные структуры (мицеллы, макромолекулы и др.). Химия все более активно проникала как «вглубь» (микромир), так и «вширь» (макромир) вещества, уделяя особое внимание изучению его разнообразных дискретных форм. Атом, считавшийся прежде неделимым, предстал как сложная и изменчивая ядерно-электронная система. Молекулярные химические связи стали рассматриваться на электронном уровне, как «обобществление» электронных оболочек, взаимодействующих атомов. Атом уже не рассматривается в качестве неизменной частицы; отпал принцип абсолютной одинаковости атомов одного и того же химического элемента. Утратил свое значение и принцип универсальности молекулярной формы вещества. Оказалось, что многие вещества, особенно неорганические, состоят не из молекул, а из ионов (например, хлористый натрий). Вещество может находиться как в виде сложной химической частицы (молекулы, свободного радикала и др.), так и в виде макромолекулы или макротела. Все более активно химия выходит за пределы классической атомно-молекулярной концепции, Возникает квантовый уровень химии.

Квантовая трактовка химизма связана с представлениями корпускулярно-волнового дуализма (двойственности) электрона, дискретности (прерывности) изменений энергии. Именно квантово-механический подход содержит в себе возможность эффективного описания процессов, происходящих в электронных оболочках атомов и молекул. Тем самым анализ химических процессов выходит на фундаментальный теоретический уровень (квантовая химия). Ее объект -- субатомные частицы (атомные ядра и электроны). На этой основе складывается электронная теория вещества. Наиболее распространенный и эффективный метод -- спектральный анализ. Истинное познание вещества предполагает взаимодействие физических и химических теорий, характерное для квантовой химии. Проникновение физических методов в химию способствует повышению ее гносеологических (познавательных) возможностей.

6. Концепция химической эволюции

Идея эволюции, развитая в химии, возникла и выкристаллизовалась не сразу. Первоначально она расплывалась, растворялась в общих представлениях об изменениях, превращениях веществ. Натурфилософия классической древности не знала различий между процессами химическими и физическими, изменениями агрегатного состояния тел и химическими преобразованиями веществ. Стихийная диалектика древних включала в себя учение о всеобщем круговороте веществ на основе взаимных переходов, трансмутации первичных элементов, установленных еще Фалесом, родоначальником греческой науки.

Вот как впоследствии писал об этом Платон в своем диалоге «Тимей»: «Но возьмем для начала хотя бы то, что мы теперь называем водой: когда она сгущается, мы полагаем, что видим рождение камней и земли, когда же она растекается и разрежается, соответственно рождаются ветер и воздух, а последний, возгораясь, становится огнем; затем начинается обратный путь, так что огонь, сгустившись и угаснув, снова приходит к виду воздуха, а воздух опять собирается и сгущается в облака и тучи, из которых при дальнейшем уплотнении изливается вода, чтобы в свой черед дать начало земле и камням».

Эти натурфилософские представления во многом были заимствованы средневековыми алхимиками и затем включены в систему классического немецкого идеализма. Даже Гегель полагал, что падающие с неба метеориты рождаются путем сгущения воздуха. Алхимики в своих поисках философского камня не только надеялись- найти способ превращения неблагородных металлов в золото, но и рассчитывали создать самодвижущуюся, циклически эволюционирующую химическую систему. Так, Парацельс и его ученики верили, что им при помощи химических выделений и растворений удастся создать микрокосм и «сохранить его в вечном движении». Английский химик Р. Бойль (1627--1691) утверждал, что на основе непрерывной химической реакции ему удалось создать самодвижущуюся жидкость.

Лавинообразное накопление в XIX в. конкретного материала о тысячах химических соединений потребовало его общего рассмотрения и систематизации. Элементы периодической таблицы Менделеева первоначально рассматривались как неизменные, не связанные друг с другом единой цепью происхождения. Но открытие радиоактивности коренным образом изменило понимание периодического закона, вскрыв его внутреннюю эволюционную природу. По утверждению российского химика Б. Кедрова, «идея развития вещества получает теперь новое блестящее подтверждение; это и есть как раз то новое, что внесла наука XX в. в понятие «химический элемент». Открытие изотопов как разновидностей элементов, равно как и обнаружение радиоактивности, сохранило основу менделеевского определения (место в системе определяет вид атомов), но подорвало разделявшееся Менделеевым дальтоновское истолкование элементов в духе их полной неизменности».

Исторический метод в химии возник в первую очередь в результате прогресса двух ветвей естествознания: геохимии и биохимии. Первая прослеживает действительную судьбу химических соединений в неживой, а вторая -- в живой природе. Высшие формы проявления химизма, связанные с функционированием живых систем, исследует ныне целый комплекс наук: биохимия, молекулярная биология, палеобиохимия. Химические превращения, свойственные неорганической природе, являются объектом собственно геохимии и ее многочисленных дочерних наук (гидрохимии, химии атмосферы, радиохимии и др.). Связь между этими областями природы осуществляет созданная В.И. Вернадским биогеохимия, которая рассматривает судьбу химических элементов в поле биологического действия.

Конкретный естественнонаучный подход к решению загадки происхождения жизни был предложен российским ученым А.И. Опариным (1894--1980). Заслуга гипотезы Опарина состоит в том, что в ней биопоэз рассматривается как многостадийный исторический процесс, важнейшей составной частью которого является химическая эволюция вещества от простейших соединений до невероятно сложных молекул белковой природы. Гипотеза Опарина открыла ключ к химическому моделированию процессов формирования исходных молекул аминокислот, нуклеиновых оснований, углеводов в условиях гипотетической первичной атмосферы Земли. После исследований С. Миллера и других ученых стало известно, что эти важные биоорганические молекулы могут образовываться в самых разнообразных смесях, содержащих комбинации водорода, воды, аммиака, азота, синильной кислоты, углекислого газа, метана и др., под воздействием различных видов излучения.

В космосе были обнаружены такие сложные молекулы, как цианацетилен, ацетальдегид, формамид, метилформиат. Большинство молекул, обнаруженных в космосе, непосредственно причаастны к привычным для нас биоорганическим соединениям или очень легко могут трансформироваться в них. Так, цианацетилен при взаимодействии с водой легко может быть превращен в жизненно важную пировиноградную кислоту и также относительно просто в аминокислоту -- аланин.

Следующие, более сложные звенья эволюционной цепочки были обнаружены при изучении вещественного состава метеоритов и лунных пород, доставленных с нашего вечного спутника космическими аппаратами. В этих космических телах присутствуют весьма сложные и разнообразные органические молекулы. В лунном грунте и в метеоритах Оргейль, Муррей, Мерчисон обнаружены аминокислоты: глицин, глутаминовая кислота, аланин, аспараги-новая кислота, серин. В метеоритах найдены алифатические и ароматические углеводороды, предшественники нуклеиновых кислот, аденин и гуанин, а также простейший химический предшественник хлорофилла -- порфирин.

Дополнительные сведения для восстановления картины химической эволюции дают успехи палеобиохимии и палеоорганической химии, наук об исторической судьбе соединений углерода на протяжении миллиардов лет развития нашей планеты. В древних отложениях, насчитывающих сотни миллионов и миллиарды лет обнаружено множество органических соединений, которые постепенно проливают свет на пути развития жизни (аминокислоты, углеводороды фитан и пристан, порфирины и др.).

Эволюция химических соединений на нашей планете прошла три основные стадии: неорганическую, органическую и биохимическую. Каждая последующая стадия базировалась на предыдущей, исторически вырастала из нее и потом подчиняла себе, становясь ведущей формой развития. Поразительная общность основных кирпичиков жизни (аминокислот, углеводов, нуклеотидов, витаминов) для всех организмов говорит в пользу единого происхождения всего живого.

Проблемы зарождения химических элементов коснулся американский физик российского происхождения Г. Гамов в своей теории «Великий синтез химических элементов при Большом взрыве Вселенной». Он разработал теорию образования химических элементов, согласно которой все вещество изначально состояло из нейтронов. Сталкиваясь, два нейтрона образуют дейтрон (ядро, состоящее из нейтрона и протона) и электрон. Захватывая нейтрон, дейтрон превращается в ядро трития (ядро, содержащее два нейтрона и один протон), которое в свою очередь тоже может захватить нейтрон, и так до образования ядер с массой порядка 250.

Согласно модели Гамова синтез всех элементов происходил во время Большого взрыва в результате неравновесного захвата атомными ядрами нейтронов с испусканием квантов и последующим распадом тяжелых ядер. Однако детальные расчеты показали, что в этой модели невозможно объяснить образование элементов тяжелее Li . На начальном этапе эволюции Вселенной, примерно через 100 с после Взрыва, в термоядерных реакциях образовались лишь самые легкие атомные ядра: изотопы водорода и гелия.

Согласно современным представлениям, образование более тяжелых ядер на этом этапе оказывается невозможным. Более тяжелые ядра образовались лишь через миллиарды лет после Большого взрыва в процессе звездной эволюции. В 1939 г. Г. Бете впервые рассмотрел CNO-цикл как один из путей образования гелия из водорода в звездах. Особенность
СNO-цикла состоит в том, что он, начинаясь с ядра углерода, сводится к последовательному добавлению четырех протонов с образованием в конце CNO-циклаядра 4He.

М. Бербидж, Г. Бербидж, В. Фаулер, Ф. Хойл в 1957 г. дали следующее описание основных процессов звездной эволюции, в которых происходит образование атомных ядер:

· горение водорода, в результате которого образуются ядра 4Не;

· горение гелия, в результате которого из 4Hе образуются ядра 12С;

· б-процесс, когда в результате последовательного захвата б-частиц образуются ядра 160,30Ne,24Мg, 28Si ...;

· е-процесс: при достижении температуры (5*109)є К в звездах в условиях термодинамического равновесия протекает большое количество разнообразных реакций, в результате чего образуются атомные ядра вплоть до Fе и Ni. Ядра с Z ~ 60 -- наиболее сильно связанные атомные ядра. Поэтому на них кончается цепочка ядерных реакций синтеза, сопровождающихся выделением энергии;

· процесс: ядра тяжелее Fе образуются в реакциях последовательного захвата нейтронов, последующий в-распад повышает порядковый номер образующихся атомных ядер, интервал времени между последовательными захватами нейтронов больше периодов в-распада;

· процесс: если скорость последовательного захвата нейтронов гораздо больше скорости в-распада атомного ядра, то оно успевает захватить большое число нейтронов и лишь затем, в результате последовательной цепочки в-распадов, превращается в стабильное ядро (обычно считается, что г-процессы происходят в результате взрывов сверхновых);

· процесс: некоторые стабильные нейтронодефицитные ядра (так называемые обойденные ядра) образуются в реакциях захвата протона, в реакциях (b,п) или в реакциях под действием нейтрино;

· процесс: образование легких ядер Li, Ве, В (в то время не был известен; образовавшись в звездах, эти ядра должны были интенсивно разрушаться в реакциях под воздействием протонов). Сегодня считается, что эти ядра образуются в результате взаимодействия космических лучей с космической пылью.

Наиболее подробно разработанным вариантом общей теории химической эволюции и биогенеза является теория саморазвития элементарных открытых каталитических систем. В общем виде она была выдвинута российским химиком А. Руденко в 1964 г. Эта теория решает в комплексе вопросы о движущих силах и механизме эволюционного процесса, т.е. о законах химической эволюции об отборе элементов и структур и их причинной обусловленности, об уровне химической организации и об иерархии химических систем в процессе эволюции. Ряд химических процессов невозможно провести без участия катализаторов. На химическом уровне организации материи возникает способность многократного самоускорения, изменения и развития. Каталитические реакции исключительно разнообразны, многочисленны и являются главным предметом Исследований современной химии.

Свою теорию А. Руденко считает развитием мультиплетной теории катализа А. Баландина. Выделив четыре принципа описания процесса развития (вероятностный, кинетический, термодинамический и информационный), Руденко сформулировал с их помощью основной закон саморазвития: «В процессе развития каталитических систем складываются механизмы конкуренции и естественного отбора по параметру абсолютной каталитической активности. химический катализатор волновой

Основой существования любой элементарной открытой каталитической системы является базисная реакция и катализатор, способом существования -- обмен веществ и энергии базисной реакции, а формой неравновесной структурной и функциональной организации -- устойчивый порядок функционирования катализатора (механизм базисной реакции), зависящий только от природы базисной реакции и катализатора. Таким образом, сама химическая эволюция представляет собой последовательное изменение и усложнение механизма (аппарата осуществления) базисной реакции при неизменной природе последней.

Гипотеза о механизме зарождения макромолекул, необходимых для строительства белка, высказана Эйгеном в работе «Самоорганизация материи в ходе химической эволюции» (1971). Эйген распространил на процессы, которые должны были происходить при эволюционном скачке, принцип дарвиновского отбора и ввел понятие конкуренции гиперциклов или циклов химических реакций, которые приводят к образованию белковых молекул. Циклы, работающие быстрее и эффективнее остальных, выживают и побеждают в конкурентной борьбе. Пищей служат молекулы мономеров, которые поглощаются при полимеризации или в ходе циклов реакций. В «первичном бульоне» присутствуют и катализаторы химических реакций, которые образуются в них как промежуточные продукты, т.е. возникает автокаталитическая самоорганизующаяся система.

Древнейшая жизнь, вероятно, существовала в качестве гетеротрофных бактерий, получавших пищу и энергию от органического материала, образовавшегося на еще более ранней стадии эволюции Земли. Исходя из этого, можно представить, что начало жизни на нашей планете отодвигается более чем на 4 млрд лет назад.

Таким образом, проблема химической эволюции и биогенеза вызвала своеобразную экспансию других наук в область химии, привнесшую новые для традиционной химии подходы к проблеме и собственное понимание задач исследования и предмета в области химической эволюции. При этом был разработан биохимический подход к проблеме, рассматривающий осуществившуюся когда-то на Земле химическую эволюцию ретроспективно, со стороны биологии, на основе ее известного конечного результата.

В настоящее время именно успехи «стыковых» (синтетических) наук и направлений обеспечивают фундаментальность современных химических исследований. Химическая картина мира, являясь дополнительной по отношению к представлениям об объективной реальности, формируется в рамках единой системы наук о природе.

В заключение главы отметим факт постоянно возрастающего влияния, которое достижения современной химии оказывают на развитие человечества и окружающей среды в целом.

Важным последствием этого влияния является химизация человеческой деятельности, включающая в себя:

· рост масштабов количества используемых химических веществ, как естественных, так и синтетических (полимерных материалов, полупроводников и др.);

· расширение применения химических технологий и частичная замена технологий механического типа;

· повышение эффективности производства аграрной сферы (создание минеральных и органических удобрений, химических средств борьбы с вредителями сельскохозяйственных культур).

Химия во все большей мере ориентируется на создание структур (от микро- до макроуровня), связанных с удовлетворением технологических потребностей. Создаются новые вещества, не встречающиеся в природе (синтетика). Химический синтез приобретает медико-биологическую направленность (получение лекарственных средств, заменителей тканей, антибиотиков и др.). Химические вещества и технологии являются фактором отрицательного воздействия на биосферу. Традиционные химические технологии связаны с выбросами в природную среду различного рода вредных веществ. Поэтому современные формы химические технологии (относительно замкнутые производственные циклы) позволяют рационализировать использование материальных и энергетических ресурсов, уменьшить выбросы в биосферу, осуществить экологизацию химической технологии.

Размещено на Allbest.ru

...

Подобные документы

  • Формулировка периодического закона Д. И. Менделеева в свете теории строения атома. Связь периодического закона и периодической системы со строением атомов. Структура периодической Системы Д. И. Менделеева.

    реферат [9,1 K], добавлен 16.01.2006

  • Сущность и содержание периодической системы, попытки других ученых вывести данную закономерность. Предпосылки открытия периодического закона. День великого открытия, его обстоятельства и причины. Применение Д.И. Менделеевым методов научного познания.

    реферат [30,1 K], добавлен 28.03.2011

  • Роль химии в системе современного научного знания. Проблема соотношения химизма с более сложной формой материи - биологической. Три точки зрения на проблему химической формы материи и движения. Идея перехода химического знания к эволюционной парадигме.

    реферат [27,5 K], добавлен 27.12.2016

  • Роль физической химии и хронология фундаментальных открытий. Экспериментальные основы квантовой механики. Корпускулярно-волновая природа излучения. Волны материи и простейшие полуклассические модели движений. Квантование энергии частицы и формула Бора.

    реферат [38,0 K], добавлен 28.01.2009

  • Методы и концепции познания в химии. Понятие состава вещества, анализ структуры веществ в рамках химической системы. Общая характеристика концептуальных уровней в познании веществ и химические системы. Сущность периодического закона Д.И. Менделеева.

    реферат [115,8 K], добавлен 01.12.2010

  • Изучение периодического закона и периодической системы химических элементов Д.И. Менделеева как основы современной химии, которые относятся к научным закономерностям, отражают явления, реально существующие в природе. Основные сведения строения атомов.

    реферат [28,9 K], добавлен 18.01.2011

  • История открытия периодического закона Д.И. Менделеева, его авторская и современная формулировка. Важнейшие направления развития химии на основе данного закона. Структура системы химических элементов. Строение атома, основные положения его ядерной модели.

    презентация [3,1 M], добавлен 02.02.2014

  • Определение молекулярности и порядок химической реакции. Изменение свободной энергии, сопровождающее химическую реакцию, ее связь с константой равновесия. Расчет теплового эффекта. Метод диспергирования. Физические методы конденсации. формула мицеллы.

    контрольная работа [42,6 K], добавлен 25.07.2008

  • Краткая биография Д.И. Менделеева, история его жизни и деятельности, основные труды в области химии. Открытие Менделеевым периодического закона и составление Периодической таблицы. Принципиальная новизна закона и его значение для химии и естествознания.

    реферат [291,3 K], добавлен 11.07.2011

  • Гомогенные и гетерогенные реакции: мрамора с соляной кислотой. Факторы, влияющие на скорость химических реакций. Закон действующих масс. Правило Вант-Гоффа. Катализатор нейтрализации выхлопных газов автомобиля. Три признака химического равновесия.

    презентация [304,0 K], добавлен 27.04.2013

  • Изменение свободной энергии, сопровождающее химическую реакцию, связь с константой равновесия. Расчет теплового эффекта реакции. Классификации дисперсных систем по размерам дисперсных частиц, агрегатным состояниям дисперсной фазы и дисперсионной среды.

    контрольная работа [49,7 K], добавлен 25.07.2008

  • Происхождение Дмитрия Ивановича Менделеева, русского химика. Судьба его родителей. Обучение в гимназии и педагогическом институте. Открытие им периодического закона и создание периодической системы химических элементов. Всемирное признание ученого.

    презентация [211,0 K], добавлен 05.04.2015

  • История открытия периодического закона. Принципы построения периодической системы, отражение в ней взаимосвязи между химическими элементами. Распределение электронов по слоям и оболочкам. Значение открытия Д.И. Менделеева для познания и развития мира.

    реферат [23,9 K], добавлен 29.03.2011

  • Изменение энтропии в химических и фазовых переходах. Простые и сложные вещества. Скорость химической реакции. Смещение химического равновесия, принцип Ле Шателье. Модель атома Томсона. Классификация элементарных частиц. Двойственная природа электрона.

    шпаргалка [364,1 K], добавлен 12.01.2012

  • История жизни и деятельности Д.И. Менделеева: детство, обучение в Главном педагогическом институте. Работа в области химии, творческие поиски ученого в областях науки и техники, его научная и педагогическая работа. Открытие периодического закона.

    реферат [43,4 K], добавлен 12.03.2010

  • Классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра - графическое выражение периодического закона Д.И. Менделеева: история открытия, структура и роль в развитии атомно-молекулярного учения.

    презентация [401,4 K], добавлен 26.09.2012

  • Химическая кинетика как раздел химии, изучающий скорость химической реакции. Факторов влияющие на скорость химической реакции: природа реагирующих веществ, температура, концентрация реагирующих веществ, катализатор, площадь соприкосновения веществ.

    презентация [2,2 M], добавлен 23.02.2015

  • Основные направления научных достижений Д.И. Менделеева. Его значение в истории мировой науки, в области физической химии. Изучение упругости газов, химической теории растворов, создание периодического закона. Создание учебника-монографии "Основы химии".

    реферат [24,0 K], добавлен 19.03.2011

  • Развитие периодического закона в XX веке. Периодические свойства химических элементов: изменение энергии ионизации, электроотрицательности, эффекты экранирования и проникновения. Изменение величин атомных и ионных радиусов. Общие сведения о неметаллах.

    презентация [155,9 K], добавлен 07.08.2015

  • Понятие и предмет изучения химической кинетики. Скорость химической реакции и факторы, влияющие на нее, методы измерения и значение для различных сфер промышленности. Катализаторы и ингибиторы, различие в их воздействии на химические реакции, применение.

    научная работа [93,4 K], добавлен 25.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.