Potentiometric determination of «available chlorine» in electrochemically treated chlorinated electrolytes
The role of the technique of volumetric titration with a working solution of sodium thiosulfate with a visual indication of the starch equivalence point during the analysis of the residual active chlorine. Evaluation of its advantages and disadvantages.
Рубрика | Химия |
Вид | статья |
Язык | английский |
Дата добавления | 10.05.2018 |
Размер файла | 390,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Potentiometric determination of «available chlorine» in electrochemically treated chlorinated electrolytes
The water for different application is disinfected by chlorine to provide sanitary, hygienic indices of drinking, household, technical water, technological liquids and to solve environmental problems. During the last years and today in water purifying installations (both in Russia and other countries), liquefied chlorine for disinfection of water is being replaced by the other analogous methods that are more simplified and rather safe. According to our data and data obtained by the scientists of developed countries, the most promising way of disinfection of water is electrolytic sodium hypochlorite treatment. The basis of the technique is electrolysis of water solution of sodium chloride in flowing condition.
Control of residual available chlorine is obligatory after chlorination. The term of «available chlorine» means total content of strong chlorinated oxidants in water i.e. sodium hypochlorite, molecular dissolved chlorine and chloramines. The most of analyses of residual available chlorine are carried out by traditional chemical technique based in the methods of volumetric titration by means of working solution of sodium thiosulphate with visual indication of equivalence point on starch. The main disadvantages of the methods are low chemical stability of sodium thiosulphate solutions, necessity of periodic control of titre, high limit of available chlorine content and therefore low sensitivity of the technique and relatively significant error of determination [1, P. 224]. Systematic error of iodide-starch methods is about 8 relative% at CAch = 0.3-0.7 mg/l and it is reduced to 4 relative% at CAch = 1.5 mg/l. It is known that research work on developing instrumental methods of available chlorine control is carried out. Its purpose is to eliminate the disadvantages of classic volumetric analysis, to automatize it and reduce labour intensity.
Electrochemical and especially anodic treatment (activation) is widly used for sample preparation in algorithm of various electrochemical and other physics-chemical methods of analysis [2, P. 11].
The purpose of the paper is to develop the technique of determination of available chlorine in electrochemically treated liquid by indirect potentiometric method.
Electrochemical generation of available chlorine in sodium chloride solution (salt content is from 0.001 to 1.0 mole/dm3) was carried out in anodic chamber of two-chamber flowing electrolyzer with electrodes in the from of graphite disks. The experiment was made in condition of direct and pulse current (from 0.05 to 0.5 A; the interval of current density was from 8 to 70 A/m2). Formation of oxidation-reduction potential was controlled with potentiometric measurements (indicator-point-platinum electrode ЭПВ-1, chloride-silver reference electrode ЭВЛ 1 М3) in both anolyte flow and a sampler at mixing by means of magnetic mixer. A fragment of anolyte forms galvanic cell.
Analytical control of available chlorine content (mAch or CAch, mg/dm3 or mole/dm3) in electrochemically treated liquid (i.e. in anolyte) was carried out by iodometric titration technique with visual indication of the end point of titration according to ГОСТ 18190-72 [3, P. 3-6]. Unlike the standard methods we selected several times smaller volume of liquid sample to analyze.
Methods of determination of available chlorine by volume iodometric titration.
0.5-1.0 of dry potassium iodide is put into conic retort of 100 cm3, it is dissolved in 1-2 cm3 of distilled water, then 1 cm3 of buffer solution with pH = 4.5 and 25 cm3 of anolyte or proper model solution is added. Isolated iodine is titrated by means of thiosulfate solution of С(Na2S2O3) = 0.005 mole/dm3concentration up to light-yellow colour. Then 1 cm3 of 0.5% starch solution is added and titrated until blue colour disappears.
Mass fraction of available chlorine (mAch, mg/dm3) is calculated according to the formula
thiosulfate sodium chlorine electrolyte
(1)
- the quantity of 0.005 (normal) sodium thiosulfate solution used for titration, cm3;
К - coefficient of correction of sodium thiosulfate solution normality;
0.177 - available chlorine content that is equivalent to 1 cm3 of 0.005 N sodium thiosulfate solution;
V - the volume of water sample selected for the analysis, cm3;
1000 - conversion coefficient to converse gramme of mass into milligramme.
Molar concentration of available chlorine in anolyte (CAch, mole/dm3) is calculated according to the formula
(2)
- total volume of used for titration (up to the end point of titration), cm3;
Vx - volume of anolyte for one analysis, cm3.
The other method of quantity determination of available chlorine in electrochemically treated solution (i.e. in anolute) with various content of sodium chloride is indirect potentiometric method without titration (one-point oxidation-reduction titration), based on measurement of two values of oxidation-reduction potential in reversible (balance) electrochemical iodine-iodide system with Pt-indicator electrode: after mixing the sample and reagent (KI) - (E1) and after adding the dose of standard (fiksanalny) solution of iodine (E2). Primary isolation in the mix tested (E1) is conditioned by the reaction of available chlorine (oxidizer) with iodide-ions [4, P. 24], [5, P. 1951].
Various techniques of similar determination for control of residual quantity of available chlorine in drinking, industrial water and sewage, have been published. Apparently, potentiometric determination of available chlorine in electrochemically treated chlorinated electrolytes on the base of potentials have never been carried out. Fs it was mentioned above, reversible potentials are an important characteristic of oxidation-reduction properties of electrochemically treated liquid [6, P. 1739], [7, P. 30].
According to the theoretical analysis in the previous works [8, P. 724-726] the following dominating volumetric equilibrium reaction proceed in I2 - KI - NaCl system:
(3)
(4)
Electrochemical reactions are localized on the surface of platinum electrode:
(5)
(6)
(7)
In the experimental conditions iodine is separated at considerable surplus of NaCl and KI, thus it is possible to describe concentration of iodine C(I2) in the tested solution
С(I2) = [I2] + [I3-] + [I2Cl-] (8)
In consideration of equilibrium of all reactions (3-7) we can describe oxidation-reduction potential of the studied system in the terms of Nernst equation for electrochemical reaction (6). Expressing the concentration [I3-] from the equation (8) at
(9)
(10)
we can obtain
(11)
- formal potential of the reaction (6);
- concentration constant of formation of [9, P. 1459];
- concentration constant of formation of I2Cl particle [9, P. 1461].
Taking into consideration relatively high ionic strength of the tested solution from the equation (11)
We can obtain
(12)
The correlation (12) agree with experimental data: experimental dependence of electromotive force of voltic cell on is linear and it is withing the range C(I2) = 2. 0-4 - 1. 0-2 mole/dm3. Therefore, the average experimental value of the slope of the electrode function is S = 29.9 mV. The results obtained confirm that it is possible to use indirect potentiometric method of determination of available chlorine without titration in electrochemically treated salt solution.
Methods of determination of available chlorine in electrochemically treated liquid by indirect potentiometric technique. 50 cm3 of anolyte solution is put into a beaker of 100 cm3, then 0.5 g of dry potassium iodide is added and dissolved; the firs value of oxidation-reduction potential E1 is measured. Then 1 cm3 additive of standard (fiksanalny) solution of iodine of C(I2) = 0.1 mole/dm3concentration is put in and the second value of oxidation-reduction potential E2 is measured. The difference of potentials
(13)
The content of available chlotine CAch, mole/dm3 is calculated by means of the formula
(14)
C(I2) - concentration of fiksanalny solution of iodine mle/dm3;
- the volume of standard iodine additive, cm3
Vx - the volume of anolyte for one experiment, cm3;
S - the slope of the electrode function, mV.
CAch is multiplied by 0.0355 to evaluate the content of available chlorine according to mass fraction mAch, mg/dm3.
The results of available chlorine determination in analyte of flowing two-chamber electrolyzer at various modes of electrolysis by iodometric titration and indirect potentiometric techniques are shown in tables 1 and 2.
The obtained results are considered to be quite reliable as there is satisfactory accordance between techniques of iodometric titration and indirect potentiometry: more then half results of anolyte samples by criterion F in tables 1 and 2; by t-criterion it has been established almost complete absence of significative systematic error [10. P. 47].
Table 1. The results determination of available chlorine mass fraction in the anolyte samples of flowing two-chamber electrolyzer by iodometric titration method (n=3; P=0.95; tp=4.30)
Table 2. The results of determination of available chlorine mass fraction in anolyte samples of flowing two-chamber electrolyzer by the method of indirect potentiometry (without titration). The conditions of electrolysis - see table 1 (n=3; P=0.95; F (P, f1, f2)=19.00; tp=4.30
At = 19.00 the value of t-criterion is using the formula
(15)
n1=n2=3, C1 and C2 are average values of according to the results of chemical and electrochemical analysis.
At= 19,00 the value of t-criterion is using the formula
(16)
taking into account that the results of chemical analysis C2 are the nearest tj the true value of m(ACh) concentration [10. P. 60]. According to tables 1 and 2 the conditions of electrolysis (amperage, velocity of electrolyte current) do not influence sensitively the results of determination of CAch.
Suggested in the paper variant of indirect potentiometric method of total content determination of available chlorine without using buffer system leads to quite reliable data about CAch in electrochemically (by anode) treated chlorinated water solutions with pH about 1.5 - 3.5 (HCl formation).
The method can be used by control-analytical services that makes it possible to reduce labour intensity of the analysis of residual available chlorine determination and to enhance its sensibility.
Reference
thiosulfate sodium chlorine electrolyte
1. Determination of chlorine oxides by amperometric titrator using current-integration method / Watanabe T., Tanaka M., Shu-ming Chen, et al // Bunseki Kagaku. - 1991. - Vol.40, №12. - P.221-226.
2. Svintsova L.D., Chernyshova N.N. Sample preparation by electrochemical pretreatment in the membranous electrolyzer // Int. Congress on Analyt. Chem.: Abstracts / Moscow. St. Univ. - M., 1997. - Vol.1. - P.10-12.
3. GOST 18190-72. Voda pit'evaja. Metody opredelenija soderzhanija ostatochnogo aktivnogo hlora. [Drinking water. Methods for determining the content of residual active chlorine]. Vved.1974-01-01. - M.: Izd-vo standartov, 2010. - 12 p. [in Russian]
4. Serikov U.A. Potenciometricheskoe opredelenie aktivnogo hlora v promyshlennyh i stochnyh vodah titanomagnievogo proizvodstva [Potentiometric determination of available chlorine in industrial water and sewage of titanium-magnesium production] / U.A. Serikov, T.V. Noskova // Zavodskaja laboratorija [Laboratory Manager]. - 1988. - №7. - P.23 - 26. [in Russian]
5. Vlasov M. Ju. Potenciometricheskoe opredelenie ostatochnogo aktivnogo hlora [Potentiometric determination of residual active chlorine] / M. Yu. Vlasov, Yu.I. Nikolayev, A.M. Pisarevsky and others // Zhurnal prikladnoj himii [Journal of Applied Chemistry]. - - Vol. 57, №. 9. - P.1949-1954. [in Russian]
6. Pisarevskij A.M. Potenciometricheskoe opredelenie aktivnogo hlora s ispol'zovaniem kulonometricheskogo vvedenija standartnoj dobavki ioda [Potentiometric determination of active chlorine using coulometric injection of a standard iodine supplement] / A.M. Pisarevskij, Yu.A. Serikov, Т.D. Shigaeva and others // Zhurnal prikladnoj himii [Journal of Applied Chemistry]. - Vol. 59, №. 8. - P.1737-1743. [in Russian]
7. Pisarevskij A.M. Vozmozhnosti potenciometricheskoj metodiki opredelenija ostatochnogo aktivnogo hlora v pit'evoj vode [Possibilities of potentiometric technique for determination of residual active chlorine in drinking water] / A.M. Pisarevskij, I.P. Polozova, Yu.I. Nikolaev and others // Vestnik SPbGU. Serija 4 [Bulletin of St. Petersburg State University. Series 4]. - - Vol. 1, №. 4. - P.29-35. [in Russian]
8. Turyan A.I. Okislitel'no-vosstanovitel'nye processy v sisteme I2+KI+NaCl i potenciometricheskoe opredelenie iodida kalija v povarennoj soli [Oxidation-reduction processes in the system I2+KI+NaCl and potentiometric determination of potassium iodide in sodium chloride] / A.I. Turyan, L.M. Maluka, T.R. Markova // Zhurnal analiticheskoj himii [Analytical chemistry journal]. - 1992. - Vol.47, №4. - P. 723-730. [in Russian]
9. Turyan A.I. Kosvennoe redoks-potenciometricheskoe opredelenie medi [Indirect redox-potentiometric determination of copper] / A.I. Turyan, L.M. Maluka, T.R. Markova // Zhurnal analiticheskoj himii [Analytical chemistry journal]. - 1992. - Vol.47, №8. - P. 1456-1463. [in Russian]
10. Doerfel K. Statistics in analytical chemistry / Transl. from German. - М.:Mir, 1969. - 248 p.
Размещено на Allbest.ru
...Подобные документы
Oxygen carriers in CLC process. State of art. General oxygen carriers characteristics. Dry impregnation method. Fluidized Beds. Advantages and disadvantages of the Fluidized-Bed Reactor. Gamma alumina. Preparing of solution. Impregnation calculations.
курсовая работа [5,9 M], добавлен 02.12.2013La decomposition du percarbonate de 0. 0-t-butyle et 0-isopropenyle en solution: dans de nombreux composes (S-H) possedant des atomes d'hydrogene labiles permet de rtaliser acetonylation radicalaire de ces substrats. Cas de Н acetate de mithyle.
реферат [482,7 K], добавлен 16.03.2009Chemistry and thermodynamics of process. Reforming catalysts. Raw materials. Process parameters. Reforming industrial devices. Criteria of an assessment of catalysts. Catalyst promoters. Temperature influence The volumetric feed rate. Rigidity of process.
презентация [193,6 K], добавлен 29.04.2016The oxidative dehydrogenation of CH3OH and C2H5OH on different matrix, containing copper, and compared with each other. It was found that Y123 and Bi2212 are less active to compare with Cu-containing zeolites. The conversion of ethanol on zeolites.
статья [1,1 M], добавлен 10.02.2015Theoretical basis of a role plays as a teaching aid. Historic background of game origin. Psychological value of a role plays. The main function and principles of game organization. Gaming technique. Classification of role plays. Advantages of a game.
курсовая работа [50,7 K], добавлен 26.04.2013Types of Firms. Advantages of sole proprietorships. Disadvantages of sole proprietorships. Disadvantages of partnerships. Advantages of partnerships. Types of Stock. Advantages of Corporations. Disadvantages of Corporations. Forming a Corporation.
презентация [4,6 M], добавлен 29.11.2014Constructed and calculated at a three - phase rectifier working on active-inductive load. The review of constructive solutions. Calculation of rectifier working on active-inductive load. Principle of designed scheme operation, construction of the device.
курсовая работа [413,6 K], добавлен 10.08.2015Organizational structure: types of organizational structures (line organizations, line-and-Stuff organizations, committee and matrix organization). Matrix organization for a small and large business: An outline, advantages, disadvantages, conclusion.
реферат [844,8 K], добавлен 20.03.2011Static model analysis. Proof mass, suspension beams, static deflection. Residual stress and Poisson’s ratio. Spring constants. Strain under acceleration. Sensitivity, thermal noise. Resolution due to the ADC. Maximum acceleration. Dynamic model analysis.
курсовая работа [1,2 M], добавлен 21.09.2010Nature of infrared analysis and nature of mass spectrometry. Summary of the uses in forensic analysis. Critical comparison of infrared analysis and spectrometry. Gathering of the information about positional isomers with the help of infrared analysis.
эссе [21,8 K], добавлен 08.12.2011Types of translation theory. Definition of equivalence in translation, the different concept; formal correspondence and dynamic equivalence. The usage of different levels of translation in literature texts. Examples translation of newspaper texts.
курсовая работа [37,6 K], добавлен 14.03.2013The place and role of contrastive analysis in linguistics. Analysis and lexicology, translation studies. Word formation, compounding in Ukrainian and English language. Noun plus adjective, adjective plus adjective, preposition and past participle.
курсовая работа [34,5 K], добавлен 13.05.2013Diesel fuel is any fuel used in diesel engines. Chemical composition and cetane number. Boiling point and freezing point of representative diesel fuel hydrocarbons. Disadvantages of Diesel Fuel. Environment hazards of sulfur. Fuel value and price.
реферат [39,2 K], добавлен 25.05.2012The process of scientific investigation. Contrastive Analysis. Statistical Methods of Analysis. Immediate Constituents Analysis. Distributional Analysis and Co-occurrence. Transformational Analysis. Method of Semantic Differential. Contextual Analysis.
реферат [26,5 K], добавлен 31.07.2008The standard role of adjectives in language. The definition to term "adjective", the role of adjectives in our speech, adjectives from grammatical point of view. The problems in English adjectives, the role and their grammatical characteristics.
курсовая работа [24,9 K], добавлен 07.07.2009Origin of the comparative analysis, its role and place in linguistics. Contrastive analysis and contrastive lexicology. Compounding in Ukrainian and English language. Features of the comparative analysis of compound adjectives in English and Ukrainian.
курсовая работа [39,5 K], добавлен 20.04.2013The problem of evaluation, self-assessment of personality as a psychological category. Factors of formation evaluation and self-esteem of children of primary school age. An experimental study of characteristics evaluation and self-esteem of junior pupils.
курсовая работа [28,6 K], добавлен 19.05.2011Применение службы каталога Active Directory для решения задач управления ресурсами в сетях под управлением Windows. Обеспечение доступа к базе данных, в которой хранится информация об объектах сети. Логическая и физическая структура Active Directory.
презентация [207,2 K], добавлен 10.09.2013Evaluation of urban public transport system in Indonesia, the possibility of its effective development. Analysis of influence factors by using the Ishikawa Cause and Effect diagram and also the use of Pareto analysis. Using business process reengineering.
контрольная работа [398,2 K], добавлен 21.04.2014Понятия доменной архитектуры. Модели управления безопасностью. Реализации службы каталогов. Возможности Active Directory. Установка контроллеров домена. Поиск объектов в глобальном каталоге. Использование сайтов, упрощение процессов Active Directory.
презентация [243,9 K], добавлен 05.12.2013