Особенности получения пленок хрома, окиси хрома и оксикарбида хрома по МОС-технологии
Анализ технологии получения пленок оксида и оксикарбида хрома из металлорганических соединений. Описание лабораторных установок для получения пленок на основе хрома и возможного их легирования. Исследования по изменению соотношения МОС-хром–окислитель.
Рубрика | Химия |
Вид | статья |
Язык | русский |
Дата добавления | 21.06.2018 |
Размер файла | 247,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Институт физики полупроводников им. В.Е. Лашкарева Национальной Академии наук Украины
Особенности получения пленок хрома, окиси хрома и оксикарбида хрома по МОС-технологии
Родионова Н.А.1, Шмидко И.Н.2, Родионов Е.В.3
1Кандидат физико-математических наук,
2ORCID: 0000-0002-5411-501X, Соискатель,
3Аспирант, Национальный университет пищевых технологий
Аннотация
оксид металлорганический легирование окислитель
Работа посвящена технологии получения пленок оксида и оксикарбида хрома из металлорганических соединений с использованием окислителя. В работе описываются созданные лабораторные установки для получения пленок на основе хрома и возможного их легирования. Проведенные исследования по изменению соотношения МОС-хром-окислитель, а также легирование рядом примесей дало возможность изменить микротвердость получаемых пленок.
Ключевые слова: оксид и оксикарбида хрома, металлорганические соединения.
Abstract
Rodionova N.A.1, Shmidko I.N.2, Rodionov E.V.3
1 PhD in Physics and Mathematics, 2 ORCID: 0000-0002-5411-501X, Postgraduate student, V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 3Postgraduate student, National University Of Food Technologies
Optical properties of chromium oxide films, obtained by the moc technology
This work is dedicated to the production technology of oxide films and oxycarbide chromium organometallic compounds using an oxidant. It describes laboratory settings for production of such films based on chromium and its possible alloying. The results of performed research on MOC-chromium-oxidant ratio change, as well as a number of different additions to alloying, indicates the way to regulate a value of micro-hardness of the produced films
Keywords: oxide and oxycarbide chromium films, organometallic compounds.
Применение оксидов и оксикарбидов хрома в виде тонких пленок широко известно[1]. Эти пленки используются в качестве укрепляющих покрытий металлоизделий и режущего инструмента в электронной технике.
Метод получения пленок хрома и оксида хрома можно условно поделить на два принципа их получения: вакуумными технологиями и разложением металлорганических соединений[2,3].
Пленки оксидов и оксикарбидов хрома, получаемые из металлоорганических соединений не требуют сложной вакуумной техники, более универсальна[4]. С помощью данной технологии можно менять свойства получаемых пленок, причем, не только механические и оптические, но и электрофизические, такие как величины удельного сопротивления в широких пределах, температурного коэффициента сопротивления в широких пределах, температурного коэффициента сопротивления, типа проводимости и т.д.[5-7].
Данная работа посвящена технологическим особенностям получения пленок хрома, оксида и оксикарбида хрома с использованием бис-ареновых МОС и окислителей при получении оксидов и оксикарбидов.
Методика эксперимента
Методика получения пленок различных материалов по МОС-технологии состоит из двух основных моментов.
Первая часть включает в себя перевод металлорганического соединения в парообразное состояние, в котором оно транспортируется к поверхности нагретой подложки, при этом качественные и количественные параметры определяются следующими факторами: линейной скоростью потоков паров, давлением в потоке, вязкостью и температурой продуктов распада.
Вторым моментом получения пленок является адсорбция молекул МОС на поверхность нагретой подложки, а затем и растущей пленки.
Если при получении покрытий при напылении в вакууме адсорбированные атомы металла на поверхности подложки образуют первоначально зародышевые центры кристаллизации, а затем островковую и кристаллическую структуру конечной пленки, - адсорбция в условиях осаждения их паровой фазы МОС имеет ряд характерных особенностей: высокие температуры в реакционной камере и на поверхности положки, большой размер молекулы МОС, дипольные моменты отдельных частей молекулы и т.д.
Когда молекула МОС захвачена поверхностью, то происходит рассеивание кинетической энергии, так как температура пара МОС значительно ниже температуры подложки, поэтому, термолизируясь, молекула получает от подложки кинетическую энергию. При этом процесс получения металлической пленки по сравнению с вакуумным напылением значительно осложняется из-за состава и величины адсорбированной молекулы, что при ее распаде может приводить к загрязнению получаемой пленки продуктами распада. При этом при достаточной температуре подложки, получают не только оксидную, но и окси-карбидную фракции.
Рис. 1 - Схема установки для получения пленок черного хрома
Для проведения экспериментальных осаждений пленок оксида хрома нами были изготовлены две экспериментальных установки, отличительной особенностью которых является способ транспортировки паров МОС в зону разложения и получения пленок.
В первом случае пары МОС поступали в реакторную зону за счет разряжения, создаваемого с помощью систем откачки (вакуумный насос с фильтрами) и зоны разложения МОС (Рис.1).
Методика получения пленок оксида хрома в окислительной среде из металлорганического соединения биэтилбензохрома следующая: в реакционной камере (1), на кассетах (2) устанавливаются подложки, камера герметизируется и производится откачка воздуха до вакуума 5*10-2 мм.рт.ст. форвакуумным насосом (7), после чего подложки нагреваются до температуры термораспада МОС 450-5000С посредством нагревателя (4), который выполнен в виде спирали на внешней поверхности реакционной камеры (1).
После нагрева реакционной камеры, нагревается ёмкость (5) с металлорганическим соединением посредством нагревателя (12) и доводится до температуры испарения МОС. Затем открывается кран подачи паров МОС через дозатор в реакционную камеру и осуществляется распад МОС-хрома на нагретых поверхностях подложек. При этом металлическая составляющая в виде окислов и карбидов адсорбируется на нагретой поверхности, а органическая - вымораживается в азотной ловушке (10).
Контроль температуры осуществляется с помощью термопары и контрольно-измерительного прибора (13,14). Контроль вакуума осуществляется вакуумметром (8,9). После окончания процесса осаждения пленки закрывают кран подачи МОС и отключают нагреватели. Когда температура подложки становится равной 30-400С камеру разгерметизируют, и подложки с покрытием вынимают.
Во втором случае использовался газ-носитель, подаваемый под давлением в зону образования паров МОС и транспортирующий их в реакционную зону (Рис. 2).
Рис. 2 - Блок-схема двухканальной установки для получения пленок оксикарбида хрома с использованием газотранспортера. 1 - источник газа носителя, 2 - регулятор расхода, 3 - система подогрева, 4 - смеситель, 5 и 5` - источники МОС, 6 и 6` - системы нагрева тигля, 7 и 7` - регуляторы подачи паров МОС, 8 - система создания однородности потока газов, 9 - реактор, 10 - подложка держатель с образцом, 11 - нагреватель подложек, 12 - фильтр, 13 - регулятор скорости откачки, 14 - откачная система.
Вторая созданная установка была значительно более универсальной. В ней имелось три нагревательных тигля, позволяющие использовать три разных МОС и имеющие различные температурные испарения. В качестве газа-транспортера может использоваться как инертный, так и реакционный газ, например, окислитель (воздух или кислород).
Для предотвращения охлаждения нагретых паров МОС и их обратного возвращения в твердое состояние, газ-транспортер предварительно подогревается до температуры выше температуры паров МОС, но ниже температуры термодеструкции МОС.
На каждом трубопроводе газа-транспортера и паров МОС стоят регуляторы давления и количества паров. Все три канала поставки паров МОС из трех разных источников снабжены заслонками, позволяющими перекрывать любой из каналов перед поступлением газов-носителей с пара МОС в смеситель и затем в реакционную зону, где находится подложка, на которую планируется осаждение пленки, получаемой из МОС.
Подложка нагревается температуры, выше температуры разложения МОС, а улучшение термодинамического равновесия обеспечивается нагретым газом-носителем. Продукты распада и газ-носитель принудительно удаляется из реакционной зоны. Использование трехканальной установки для получения пленок из металлорганических соединений в нашем случае позволяет получать пленки оксида хрома, оксикарбида хрома и легировать их в процессе работы, например, Al, Mo, Ni или другими примесями.
Имеется возможность одновременного легирования двумя примесями, а так же получения многослойной пленочной структуры.
Рассчитав, или экспериментально получив скорость роста плёночного покрытия, можно периодически останавливая подачу паров МОС в реакционную камеру, добиться получения пленок методом эпитаксии «атомными слоями»[8].
Металлорганические соединения МОС - это вещества, молекулы которых содержат связи металл-углерод. Связь между металлом и органической частью молекулы МОС можно представить как два вида электронного взаимодействия:
а) металлорганические соединения, содержащие G-связи металл-углерод;
б) металлорганические соединения, образованные за счет заполнения d-оболочек металла р электронами ненасыщенных систем.
Однако, металлорганические соединения переходных металлов, содержащие G-связи малостабильны. Для них более характерными являются образования р-комплексов с органическими радикалами [9]. Используемый нами дибензолхром является именно таким МОС (Рис. 3). В стандартных условиях молекула МОС-хрома всегда термодинамически устойчива [10,11]. Для получения пленок оксида хрома разложение паров нейтральных бис-ареновых р-комплексов хрома (к которым относится и дибензолхром) производят при использовании в качестве окислителя многоатомного спирта (глицерин, этиленгликоль и т.п.) при их отношении от 1,0 до 10.
Рис. 3 - Молекула дибензолхрома
Кроме дибензолхрома мы получаем пленки оксида хрома из других бис-ареновых МОС хрома. Однако получаемые из бискулмолхрома пленки получились менее прочными при испытании их на истирание при малых нагрузках. Использование бис-бензолхрома в установке (Рис. 2) приводило к неполному разложению МОС-соединения и соответственно к загрязнению получаемой пленки оксида хрома продуктами распада МОС-соединения.
В литературе [12] описываются способы получения пленок хрома термическим разложением арентрикарбонильных соединений хрома. Они разлагаются при температурах 400-500 0С с образованием зеркальной металлической пленки. Однако скорость роста пленки хрома крайне мала и составляет порядка 2ч5 Е/сек. Для увеличения скорости роста пленки хрома из бис-бензолхрома нами использовался катализатор в виде CrI2, который подавался в зону разложения МОС-хрома [12].
Выбор соотношений скоростей подачи паров МОС-хрома, окислителя и катализатора позволили получить окисно-хромовую пленку насыщенного черного цвета.
Нарушение выбранных соотношений и проведение процесса вне указанных граничных условий приводило или к получению порошкообразных осадков зеленого цвета (Cr2O3) при более высоких скоростях подачи окислителя, или к получению тонких пленок коричневого цвета при низком соотношении скоростей.
В установке (Рис. 1) процесс проводят в диапазоне температур 420-4600С при остаточном давлении 10-2-10 мм.рт.ст. Продукты распада собирают в азотной ловушке для предотвращения попадания в атмосферу. Используя выбранные скорости подачи паров МОС и количественный состав окислителя, были получены пленки черного цвета, обладающие определенными физико-механическими свойствами.
По схеме (Рис. 1) наибольшая скорость разложения и наибольшая чистота металла при разложении бис-бензолхрома получилась при пониженном давлении 5*10-2-10-1 мм.рт.ст. Была получена равномерная зеркальная пленка хрома. При этом, скорость осаждения достигла 10-12 мг/час*см2. При изменении сопротивления полученных пленок, было установлена их зависимость от температуры разложения: при повышении температуры от 300 до 4500С сопротивление пленки возрастало с 6 до 11-12 Ом/? (при одинаковой толщине пленки 0,5 мкм), при одинаковой скорости осаждении при более высокой температуре сопротивлении возрастало до 20-30 Ом/?.
Адгезия пленок хрома, оксида хрома и оксикарбида хрома, полученных по МОС технологии из паровой фазы, очень высокая, однако сильно зависит от чистоты поверхности независимо от материала подложки: стекло, сталь или ситалл. Микротвердость пленок хрома достигает величины 1500 кг/мм2. Пленки оксида хрома имеют твердость 800-2000 кг/мм2, а при увеличении в составе пленки углерода до 10%, оксикарбидные пленки имеют твердость 1400-2200 кг/мм2.
Вводя в состав реакционной смеси МОС на основе ацетилацетонатов Al, Mo, Va можно получить следующие значения микротвердости с МОС-Al - 2100-2300 кг/мм2, МОС-Mo - 2300-2500 кг/мм2, МОС-Va - 2400-2700 кг/мм2.
В Таблице 1 приведены данные получаемых пленок оксида хрома от состава: окислитель-МОС-хром.
Таблица 1. Данные получаемых пленок оксида хрома
Выводы
Таким образом, имея концентрацию окислителя в составе исходных компонент МОС-окислитель, можно управлять свойствами получаемой пиролитической пленки. Незначительное количество окислителя (10-20%) в реакционной камере приводит, в основном, к образованию карбидных фаз в оксикарбиде хрома, что способствует получению высокопрочных покрытий.
Введение значительного количества окислителя (30-50%) в состав исходных компонент способствует, в основном, оксидной фазы хрома, что приводит к разрыхлению получаемой пленки и, как следствие, к уменьшению микротвердости.
Литература
1. В. Ф. Корзо, В. А. Курочкин, В. П. Демин. / Пленки из элементоорганических соединений в радиоэлектронике / - Москва: Энергия, 1973. - 192 с.
2. Г. Разуваев, Б. Грибов, Г. Домрачев, Б. Саламатин, Металлоорганические соединения в электронике / Москва: Наука, 1972.
3. Харвуд, Дж. / Промышленное применение металлоорганических соединений / Д. Харвуд . - : Химия , 1970 . - 350 с.
4. В. Ф. Корзо, В. Н. Черняев / Диэлектрические пленки в микроэлектронике / - М.: Энергия, 1977. - 368 с.
5. В.П.Васильченко, М.Я.Рахлин, В.Е.Родионов / Получение диэлектрических слоев из металлорганических соединений и их применение и свойства / Уч. записки ТГУ, Тарту, №908, 1999, С.85-100
6. Родионова Н.А., Шмидко И.Н., Родионов Е.В. / Оптические характеристики пленок оксида хрома, полученных по МОС технологии / Research Journal of International Studies, Екатеринбург, №7 (38), 2015 г., С.40-43.
7. Родионова Н.А., Шмидко И.Н., Родионов Е.В. / Механические свойства пленок оксида хрома в зависимости от технологических факторов / Research Journal of International Studies, Екатеринбург, №7 (38), 2015 г., С.44-46.
8. Ави Дауах / Электрические свойства тонкопленочных структур, полученных методом эпитаксии атомными слоями / Journal of Applied Physics, 1993, V.74, No 9, P.5575
9. Федоренко А.И. / Эффекты межфазного взаимодействия в тонких пленках / Диссертация доктора физ.-мат. наук, 1978, Харьков, ХПИ.
10. Берсукер И.Б. / Электронное строение и свойства координационных соединений / -- Л.: Химия, 1986. -- 288 с.
11. Рабинович И.Б., Нистратов В.П. / Трактат по химии и химическим технологиям / вып.1, 1974, С.16-28
12. Грибов Б.Г., Румянцева В.П., Травкин Н.н. и др. Получение пленок хрома термическим разложением галоидных производных бис-ареновых соединений хрома // Электронная техника, 1971. Т. 3, вып. 1. С. 21-24.
Размещено на Allbest.ru
...Подобные документы
Распространение хрома в природе. Особенности получения хрома и его соединений. Физические и химические свойства хрома, его практическое применение в быту и промышленности. Неорганические пигменты на основе хрома, технология и способы их получения.
курсовая работа [398,7 K], добавлен 04.06.2015Электронная формула и степень окисления хрома, его общее содержание в земной коре и космосе. Способы получения хрома, его физические и химические свойства. Взаимодействие хрома с простыми и сложными веществами. Особенности применения, основные соединения.
презентация [231,9 K], добавлен 16.02.2013Степени окисления, электронные конфигурации, координационные числа и геометрия соединений хрома. Характеристика комплексных соединений. Многоядерные комплексы хрома, их электронные соединения. Фосфоресцирующие комплексы, высшие состояния окисления хрома.
курсовая работа [1,1 M], добавлен 06.06.2010Изучение физических и химических свойств хрома, вольфрама, молибдена. Оксид хрома, как самое устойчивое соединение хрома. Гидроксиды, соли кислородосодержащих кислот элементов шестой Б группы. Пероксиды, карбиды, нитриды, бориды элементов шестой Б группы.
лекция [4,5 M], добавлен 29.06.2011Получение чистого металлического хрома электролизом водных растворов хлорида хрома. Основные физические и химические свойства хрома. Характеристика бихромата аммония, дихромида калия, их токсичность и особенности применения. Получение хромового ангидрида.
курсовая работа [1,6 M], добавлен 07.01.2015Характеристика химических свойств хрома в чистом виде и в различных соединениях. Изучение истории открытия этого элемента, особенностей его применения в химической промышленности. Виды хромитов, легирование хромом стали, методы получение чистого хрома.
реферат [25,1 K], добавлен 23.01.2010Проведение качественного анализа смеси неизвестного состава и количественного анализа одного из компонентов по двум методикам. Методы определения хрома (III). Ошибки определения по титриметрическому и электрохимическому методу и их возможные причины.
курсовая работа [130,8 K], добавлен 17.12.2009Электрохимические методы формных процессов и исследование процесса электрохимического осаждения хрома. Оценка его значения в полиграфическом производстве. Приготовление, корректирование и работа хромовых ванн. Проверка качества и недостатки хромирования.
реферат [24,2 K], добавлен 09.03.2011Химические свойства марганца и его соединений. Промышленное получение марганца. История открытия хрома, общие сведения. Нормы потребления марганца и хрома, их биологическая роль. Влияние недостатка или переизбытка микроэлементов на организм человека.
реферат [67,8 K], добавлен 20.01.2015Характеристика твердых отходов процесса хромирования. Титрование сульфатом железа и перманганатом. Теория определения хрома экспериментально. Качественный анализ компонентов твердых отходов процесса хромирования. Колометрические методы определения хрома.
курсовая работа [23,9 K], добавлен 31.05.2009Химические методы получения тонких пленок. Способы получения покрытий на основе нитрида алюминия. Преимущества газофазной металлургии. Сущность электрохимического осаждения, процесса газового анодирования. Физикохимия получения пленочных покрытий.
курсовая работа [5,4 M], добавлен 22.06.2011Понятие степени окисления элементов в неорганической химии. Получение пленок SiO2 методом термического окисления. Анализ влияния технологических параметров на процесс окисления кремния. Факторы, влияющие на скорость получения и качество пленок SiO2.
реферат [147,2 K], добавлен 03.12.2014Аналитический обзор термохимических методов нанесения металлических покрытий. Описание процесса осаждения металлических пленок из паровой фазы. Технология герметизации альфа-источников с осаждением хромового покрытия при термическом разложении хрома.
дипломная работа [6,2 M], добавлен 27.11.2013Материалы, используемые для производства термоусадочных пленок. Методики получения полимерных композиций. Методы исследования технологических и эксплуатационных свойств полимерных композиций. Рентгенографический анализ и измерения вязкости расплава.
курсовая работа [1,3 M], добавлен 20.07.2015Хром - твёрдый блестящий металл. Хром входит в состав нержавеющих, кислотоупорных, жаропрочных сталей. Соединения хрома. Кислород – самый распространенный элемент земной коры. Получение и свойства кислорода. Применение кислорода.
доклад [14,8 K], добавлен 03.11.2006Исследование общих сведений о многоядерных комплексах, процесса приготовления компонентов реакционной смеси. Обзор фильтрования, очистки и сушки полученного вещества. Анализ получения биядерного аммиачного комплекса, реактивов, использованных в синтезе.
практическая работа [162,3 K], добавлен 18.02.2012Как распространены оксидные соединения в природе. Какие оксиды образуют природные минералы. Химические свойства диоксида углерода, углекислого газа, карбона (II) оксида, красного, магнитного и бурого железняков, оксида хрома (III), оксида кальция.
презентация [1,7 M], добавлен 19.02.2017Общая характеристика сварочных аэрозолей. Основные неорганические загрязнители воздуха рабочей зоны и их действие на организм человека. Методика фотометрического определения оксида хрома (VI), марганца, оксида железа (III) и озона в сварочном аэрозоле.
дипломная работа [529,8 K], добавлен 27.12.2012Закономерности деформации профилированных пленок. Способы получения фибриллированных волокон и нитей. Дифрактограммы малоуглового рассеяния поляризованного света составными частями пленки. Зависимость продольной вязкости полимера от условий деформации.
реферат [422,2 K], добавлен 18.03.2010Исследование влияния параметров метода химического осаждения на структуру, толщину, морфологию поверхности и эксплуатационные характеристики тонких пленок кобальта из металлоорганического соединения с заданными магнитными и электрическими свойствами.
дипломная работа [5,8 M], добавлен 09.07.2014