Теория кристаллического поля
Изучение взаимодействия иона в окружении своих лигандов с учетом электронного строения центрального иона, структуры комплекса, разлных орбиталей и лиганд. Расщепление энергетических уровней d-электронов в октаэдрическом и тетраэдрическом полях лигандов.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 21.10.2018 |
Размер файла | 117,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Федеральное агентство по образованию
Государственное учреждение профессионального высшего образования
Санкт-Петербургский государственный горный институт им. Г.В. Плеханова
(технический университет)
Кафедра общей и физической химии
РЕФЕРАТ
Теория кристаллического поля
Выполнил
студент гр. ЭП-04
Федотов А.А.
Проверил
Чиркст Д.Э.
Санкт-Петербург, 2004
Теория была предложена в 1929-1932 гг. X. А. Бете и Дж. Ван Флеком. Ион рассматривается в окружении своих лигандов. Название теории связано с тем, что в ней подход к молекуле аналогичен подходу к кристаллической решетке. Эта теория логически продолжила электростатическую теорию. Все взаимодействия здесь изучаются как ион-ионные или ион-дипольные, но с учетом электронного строения центрального иона, структуры комплекса и взаимодействия различных орбиталей с лигандами.
Возьмем октаэдрический комплекс, в центре которого находится ион или атом какого-либо d-элемента, а в вершинах -- анионы или диполи, обращенные к центру отрицательным полюсом (рис. 1). Известно, что в свободном атоме или ионе энергетические уровни всех пяти d-орбиталей одинаковы. В октаэдрическом поле лигандов вырождение снимается. Это связано с тем, что орбитали и , обозначаемые , вытянуты в направлении лигандов и благодаря их взаимному отталкиванию энергия орбиталей становится выше ее уровня в свободном ионе. Орбитали , и , обозначаемые , наоборот, расположены между лигандами и поэтому обладают меньшей, чем свободный ион энергией (рис. 2, а).
При тетраэдрическом окружении, наоборот, орбитали обладают более низкой, а -- более высокой энергией, чем в свободном ионе (рис. 2, б). Расщепление
Рис. 1. Орбитали (а) и (б) в октаэдрическом поле лигандов ? в тетраэдрическом окружении составляет 4/9 ее величины в октаэдрическом поле.
Его определяют экспериментально по спектрам поглощения комплексов или рассчитывают теоретически методами квантовой химии.
Расщепление d-орбиталей в комплексах хорошо объясняет спектральные особенности, и в частности, окраску d-комплексов. Дело в том, что при неполном заполнении подуровней и появляется возможность перехода электронов с нижнего уровня на верхний, что сопровождается поглощением соответствующего кванта энергии в спектре и изменением окраски комплекса, если это поглощение происходит в видимой части спектра. Если ионы имеют все 10 d-электронов, такие переходы невозможны. Поэтому ионы Сu+, Аg+, Zn2+, Сd2+, Нg2+ с электронной конфигурацией d10 бесцветны. Потеря еще одного электрона ионом Сu+ и переход его в Сu2+ сопровождается появлением глубокого синего цвета.
Рис. 2. Расщепление энергетических уровней d-электронов в октаэдрическом (а) и тетраэдрическом (б) полях лигандов
Замена лигандов приводит к изменению цвета закомплексованного иона. Например, при смене лиганда L окраска медного комплекса [ ] изменяется от зеленого при L = , через голубой при L = Н2Oк интенсивно синему при L=NНз, в точном соответствии со спектрохимическим рядом.
Теория кристаллического поля смогла объяснить также магнитные свойства комплексов, которые вызваны наличием в них неспаренных электронов. Комплексы, обладающие неспаренными электронами и, следовательно, магнитным моментом, называются высокоспиновыми, а не обладающие магнитными свойствами -- низкоспиновыми. Согласно теории, в пределах одной группы орбиталей или электроны располагаются в полном соответствии с правилом Хунда, сообщая комплексу максимальный спин. Поэтому ионы с электронной конфигурацией d1, d2, d3 (Sс2+, Тi2+, Сr3+) в октаэдрическом поле -- высокоспиновые. Четвертый электрон (например, в ионах Сr2+ или Мn4+), попадая в вон, может заполнить одну из ячеек нижнего уровня ( в октаэдрическом поле) или занять вакантную ячейку ( ) более высокого уровня. Обе возможности связаны с затратами энергии. Энергия «спаривания» электронов и обычно определяется квантово-химическими расчетами. Если U >?, электрон предпочитает занять более высокую орбиталь и тем самым увеличить спин комплекса, если U <? , электрон вдет на уже занятую электроном орбиталь и снижает общий спин. Например, для комплексного иона Fе2+ с конфигурацией d6U=210 кДж/моль, ? (Н2O)=124 кДж/моль, ? ( ) = 397 кДж/моль. Поэтому комплекс [Fе (Н2O)6]2+ -- высокоспиновый, а [Fе(СN)6]4 - - низкоспиновый. В ионе [Fе (СN)6]4 - все электроны находятся на «связывающих» орбиталях в отличие от иона [Fе (Н2O)6]2+ поэтому прочность связи и химическая устойчивость цианидного иона должна быть много выше, чем аквоиона, что и наблюдается на практике. лиганда ион электрон
Отсутствие электронов на «разрыхляющих» орбиталях обычно приводит к упрочнению комплекса или даже к изменению его конфигурации. В ионе Сu2+, имеющем конфигурацию d9, не хватает одного электрона на «разрыхляющей» орбитали что усиливает связь с четырьмя лигандами, находящимися в плоскости XY.
Поэтому для этого иона весьма характерно плоское строение комплексов с КЧ=4 (квадрат с центральным ионом Сu2+).
Таким образом, теория кристаллического поля охватывает гораздо большую совокупность физико-химических свойств, чем электростатическая теория Косселя-Магнуса. Однако и эта теория, также основанная на чисто электростатических представлениях, не позволяет объяснить свойства комплексов металлов с неполярными лигандами, например СО, C6H6, С5H5 и т. д., рассчитать энергии связи, волновые функции и другие параметры химических связей, предсказать структуру комплекса, особенно в случаях, когда КЧ отличается от 4 и 6.
Список используемой литературы
1. Дибров И. А. Неорганическая химия. СПб.: «Лань», 2001. (Учебник для вузов. Специальная литература).
2. Лекции. - Чиркст Д. Э.
Размещено на Allbest.ru
...Подобные документы
Характеристика и специфика аналитических и качественных химических реакций на катионы и анионы, особенности их обнаружения и наличие группового реагента. Способы выявления бромид-иона, бромат-иона, арсенит-иона, нитрат-иона, цитрат-иона, бензоат-иона.
дипломная работа [1,2 M], добавлен 21.10.2010Описание процесса диссоциации солей. Комплексные соединения и положения координационной теории Вернера и Чугаева. Характеристики лигандов: дентантность, внутренняя и внешняя сфера, координационное число. Пространственное строение комплексного иона.
презентация [152,7 K], добавлен 19.03.2014Описание строения и свойств комплексных (координационных) соединений, закономерности их образования, классификация, практическое значение. Анализ существующих видов изометрий и типов химических связей. Теория поля лигандов. Хелаты и хелатный эффект.
курсовая работа [441,6 K], добавлен 25.03.2015Понятие комплексного химического соединения, его номенклатура и содержание координационной теории Вернера. Изучение типов центральных атомов и лигандов, теория кристаллического поля. Спектры и магнитные свойства комплексов, их устойчивость в растворе.
лекция [1014,9 K], добавлен 18.10.2013Химические и кислотно-основные свойства кобаламина. Характеристика его производных с разными типами лигандов. Свойства соединений серы. Сернистая кислота и ее соли. Строение сульфит-иона. Проведение спектрофотометрических и кинетических исследований.
курсовая работа [769,6 K], добавлен 19.03.2015Основные положения координационной теории. Комплексообразователи: положительные ионы неметаллов, ионы металлов, нейтральные атомы. Номенклатура комплексных соединений и порядок перечисления ионов и лигандов. Понятие константы нестойкости комплекса.
реферат [142,9 K], добавлен 08.08.2015Анализ комплексного соединения гексанитрокобальтата (III) натрия и изучение его свойств. Химическая связь и строение иона Co(NO2) с позиции валентных связей. Физические и химические свойства данного вещества. Способы разрушения комплексного иона Co(NO2).
курсовая работа [417,9 K], добавлен 13.11.2010Основные понятия координационной химии. Номенклатура и классификация комплексов. Моноядерные и полиядерные, нейтральные, анионные и катионные комплексы. Координационное число КЧ. Классификация комплексов по специфике электронной конфигурации лигандов.
реферат [2,3 M], добавлен 27.01.2009Координационная связь. Электронное строение комплексов переходных элементов и теория полной гибридизации. Кристаллическое поле. Октаэдрическое, тетраэдрическое поле. Энергия расщепления. Степень окисления центрального атома. Число и расположение лигандов.
презентация [426,5 K], добавлен 22.10.2013Методы определения плутония в объектах окружающей среды. Расчет доли и концентрации форм состояния гидролизующихся лигандов в растворе во всем диапазоне рН. Определение возможности образования истинных коллоидов гидроксида плутонила в растворе.
курсовая работа [459,4 K], добавлен 02.12.2014Химическая характеристика хлорид-иона, особенности его реакционной способности и степень вреда для окружающей среды. Наиболее частые пути попадания хлорид-иона в атмосферу, почву и воду, основные методы его определения и химической нейтрализации.
курсовая работа [597,1 K], добавлен 13.10.2009Методы определения хлорат-иона. Титриметрический, спектрофотометрический, хроматографический, потенциометрический, полярографический, амперометрический метод. Чувствительность методики, хлорат-иона в речной воде. Загрязнение хлоратами природных водоёмов.
курсовая работа [1,1 M], добавлен 16.06.2017Сущность фотометрического метода анализа. Особенности применения фотоэлектроколориметра КФК-2 для определения нитрат-иона в воде, технология анализа. Организация его проведения, расчет необходимых затрат. Экономическое обоснование работы лаборатории.
контрольная работа [1,6 M], добавлен 12.12.2010Основные достоинства и недостатки теории валентных связей. Приближенные квантовохимические способы расчета волновых функций, энергетических уровней и свойств молекул. Метод молекулярных орбиталей Хюккеля. Связывающие и разрыхляющие молекулярные орбитали.
презентация [180,6 K], добавлен 31.10.2013Обзор методов качественного и количественного определения нитрит-ионов. Характеристика и особенности разнообразия методов определения нитрит-ионов. Метрологические особенности и погрешности тест-методов. Тестовое хемосорбционное определение нитрит-иона.
курсовая работа [91,9 K], добавлен 30.10.2009Основные комплексы переходных и непереходных элементов. Теория кристаллического поля. Основные факторы, влияющие на величину расщепления. Энергия стабилизации кристаллическим полем. Энергия спаривания электронов. Сильное и слабое октаэдрическое поле.
презентация [427,0 K], добавлен 15.10.2013Структура азотной кислоты. Безводная азотная кислота. Дымящая азотная кислота. Строение кислоты с МВС. Нитроний-ион. Соли нитрония. С метода молекулярных орбиталей нитрония-иона.
курсовая работа [46,2 K], добавлен 02.07.2002Различия в свойствах элементов. Схожесть свойств элементов и схожесть их внутреннего строения. Электроны в атоме. Число энергетических уровней в атоме химического элемента. Определение максимального числа электронов, находящихся на энергетическом уровне.
презентация [2,9 M], добавлен 13.01.2012Реакции переноса электронов. Элементарные стадии с участием комплексов металлов. Реакции замещения, координированных лигандов, металлоорганических соединений. Координационные, металлоорганические соединения на поверхности. Каталитические реакции.
реферат [670,1 K], добавлен 27.01.2009Простейшая одноэлектронная двуцентровая связь, иона водорода. Максимальное число возможных в природе различных химических связей между парами атомов. Круг специфических физических явлений, приводящих к образованию химических связей, теории валентности.
реферат [169,5 K], добавлен 29.01.2009