Исследование сорбции ионов хрома (III) шерстяным волокном
Разработка сорбента с улучшенными сорбционными свойствами для очистки водных растворов от ионов тяжелых металлов и установление закономерностей протекания процесса сорбции с участием данного сорбента. Расчет времени достижения сорбционного равновесия.
Рубрика | Химия |
Вид | статья |
Язык | русский |
Дата добавления | 12.02.2019 |
Размер файла | 82,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Ивановский государственный химико-технологический университет
ИССЛЕДОВАНИЕ СОРБЦИИ ИОНОВ ХРОМА (III) ШЕРСТЯНЫМ ВОЛОКНОМ
Дымова Татьяна Андреевна
магистрант
Аннотация
Представлены результаты исследования процесса сорбции ионов Cr(III) шерстяным волокном. Время достижения сорбционного равновесия в системе «водный раствор соли хрома - шерстяное волокно» составило 105 мин. Изотерма сорбции ионов Cr(III) обработана в рамках модели Ленгмюра.
Ключевые слова: ионы хрома, сорбция, шерстяное волокно
Введение
Загрязнение биосферы тяжелыми металлами в результате антропогенной деятельности человека вызывает серьезное беспокойство во всем мире. Металлы способны накапливаться в растениях, водоемах, почве, а затем с продуктами питания и питьевой водой поступать в организм человека.
Увеличивающиеся масштабы производства и повышение требований к качеству воды диктуют поиск все более эффективных способов удаления загрязнений из природных и сточных вод, возврата очищенных стоков для повторного использования. Среди методов, успешно применяющихся для решения этой задачи, сорбционная очистка является одним из наиболее эффективных. К преимуществам сорбционного метода относятся: возможность удаления загрязнений чрезвычайно широкой природы практически до любой остаточной концентрации независимо от их химической устойчивости, отсутствие вторичных загрязнений и управляемость процессом. сорбент очистка ион металл
Сорбция позволяет добиться глубокой очистки воды до норм ПДК вредных веществ в воде промышленного, оборотного, санитарно-бытового и рыбохозяйственного назначения с одновременной утилизацией или регенерацией извлеченных компонентов [1].
В связи с этим актуальна задача разработки сорбентов, способных эффективно извлекать ионы тяжелых металлов из водных сред. С целью создания ресурсосберегающих технологических процессов большой интерес представляет разработка сорбентов на основе доступных и экологически чистых побочных продуктов или отходов сельского хозяйства, текстильной и целлюлозно-бумажной промышленности.
Целью настоящей работы является разработка сорбента с улучшенными сорбционными свойствами для очистки водных растворов от ионов тяжелых металлов, а также установление закономерностей протекания процесса сорбции с участием данного сорбента.
Экспериментальная часть. Кинетику сорбции ионов хрома исследуют в статических условиях при перемешивании методом ограниченного объема раствора [2]. Для получения кинетических кривых в серию пробирок помещают навески сорбента массой по 0,10 г, заливают их 10 см3 водного раствора хлорида металла. Начальная концентрация ионов хрома составляла 5,0?10-4 моль/л. Через определенные промежутки времени раствор отделяют от сорбента фильтрованием и определяют в нем текущую концентрацию ионов металлов (Сt) методом атомно-абсорбционной спектроскопии на приборах 210VGP.
Сорбционную емкость сорбента в каждый конкретный момент времени t рассчитывают по формуле (1):
, (1)
где Сsorb.- сорбционная емкость, ммоль/г; С0 - начальная концентрация ионов металла, моль/л; С - концентрация ионов металла в момент времени, моль/л; m - масса навески сорбента, г; V - объем раствора, л.
Для исследования влияния концентрации металла в растворе на равновесие в ионообменной системе снимают изотермы сорбции. Для получения изотерм процесс сорбции проводят следующим образом: в серию пробирок помещают навески сорбента массой по 0,10 г и заливают их 10 мл водного раствора хлорида металла с концентрациями металла в интервале 5,010-4 - 810-2 моль/л и выдерживают при перемешивании до установления состояния равновесия (время достижения сорбционного равновесия определяют при исследовании кинетики сорбции). Затем раствор отделяют от сорбента фильтрованием и определяют в нем равновесную концентрацию ионов металла (Се) методом атомно-абсорбционной спектроскопии. В условиях установившегося равновесия в системе определяют равновесную концентрацию ионов металла в растворе (Се) и рассчитывают равновесную сорбционную емкость:
, (2)
где Сsorb.,e - равновесная сорбционная емкость, мг/г; Се - равновесная концентрация ионов металла, моль/л.
Степень извлечения a определяют следующим образом:
(3)
Коэффициент распределения KD рассчитывают как отношение концентрации ионов металла в фазе полимера (Сsorb.) к его содержанию в растворе:
(4)
Результаты и их обсуждение
Для определения параметров, характеризующих сорбционные свойства шерстяного волокна, была получена кинетическая кривая сорбции ионов Cr(III). Результаты эксперимента на рисунке 1.
Рисунок 1 Кинетическая кривая сорбции ионов хрома из водных растворов шерстяным волокном
Согласно полученным данным шерстяное волокно сравнительно эффективно сорбирует ионы хрома. Среднее время достижения сорбционного равновесия в гетерогенной системе водный раствор сульфата металла - сорбент составляет 105 мин.
Для определения предельной сорбционной емкости шерстяного волокна была получена изотерма сорбции ионов Cr(III) из водных растворов хлоридов. Результаты эксперимента представлены на рисунке 2.
Рисунок 2 Изотерма сорбции ионов хрома сорбентом из шерстяного волокна
Полученные экспериментальные данные описаны уравнением изотермы адсорбции Ленгмюра:
где АR - предельная или максимальная сорбционная емкость полимера по данному металлу, моль/кг; К - концентрационная константа сорбционного равновесия, характеризующая интенсивность процесса сорбции, л/моль; Се - равновесная концентрация сорбата, моль/л [3].
Линеаризация изотермы сорбции по уравнению (5) позволяет графически определить в уравнении Ленгмюра величины А и К из опытных данных по распределению исследуемого сорбата в гетерофазной системе водный раствор - сорбент шерстяное волокно.
Результаты обработки изотермы сорбции ионов Cr (III) шерстяным волокном по модели Ленгмюра представлены на рисунке 3 и в таблице 1.
Рисунок 3 Обработка изотермы сорбции ионов хрома по модели Ленгмюра
Таблица 1
Параметры обработки изотермы сорбции по модели Ленгмюра методом наименьших квадратов
Катион металла |
1/АК |
1/А |
Коэффициент корреляции |
А, моль/кг |
|
Cr(III) |
0,01 ± 510-4 |
6,9 ± 0,05 |
0,99 |
0,14 |
Таким образом, как видно из рис. 3 в координатах Се/А - Се наблюдается линейная зависимость с коэффициентом корреляции (R) 0,99. Это говорит о том, что экспериментальные данные по сорбции ионов хрома на волокнах шерсти хорошо аппроксимируются уравнением Ленгмюра, а из значений величин предельной сорбции (А8) (табл. 1,), полученных в ходе обработки изотерм сорбции с использованием этого уравнения следует, что данный сорбент обладает сравнительно невысокой связывающей способности по отношению к ионам хрома.
Выводы. Исследованы сорбционные свойства сорбента - шерстяного волокна по отношению к ионам хрома.
Экспериментальная изотерма сорбции Сr3+ обработана в рамках модели сорбции Ленгмюра. Показано, что данная модель позволяет достаточно хорошо, с коэффициентом корреляции 0,99, описать процесс сорбции в линейной форме уравнения. Установлено, что предельная сорбция А8, полученная с использованием модели Ленгмюра, согласуется с опытными данными.
Библиографический список
1. Никифорова, Т.Е. Особенности сорбции ионов тяжелых металлов белковым сорбентом из водных сред / Т.Е. Никифорова, В.А. Козлов, М.В. Родионова // Журн. Прикл. Химии. 2010. Т. 83, Вып. 7. С. 1073-1078.
2. Кокотков Ю.А., Пасечник В.А. Равновесие и кинетика ионного бомена. Л.: Химия, 1970. 336 с.
3. Фролов Ю. Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы; 2-е изд., перераб. и доп. М.: Химия, 1989. 464 с.
Размещено на Allbest.ru
...Подобные документы
Кинетика ионного обмена. Определение лимитирующей стадии процесса сорбции и установление механизма сорбции хлорокомплексов палладия (II) на волокнах ЦМ-А2, Мтилон-Т и ВАГ из хлоридных растворов. Влияние температуры и способов регенерации сорбентов.
дипломная работа [405,1 K], добавлен 01.04.2011Измерение теплоты сорбции акрилонитрила (АН) капроновым волокном и зависимости ее от концентрации сорбированного АН, а также изучение особенностей сорбции АН в промышленное капроновое волокно и в капроновое волокно, модифицированное прививкой АН.
статья [138,0 K], добавлен 18.03.2010Слоистые двойные гидроксиды (СДГ), их структура и методы синтеза. Изучение сорбции марганца(II) на образцах Mg,Al-CO3 СДГ в статических условиях. Кинетика сорбции марганца(II). Зависимость оптической плотности от времени сорбции марганца(II) из раствора.
курсовая работа [648,6 K], добавлен 13.10.2017Понятие ионитов, ионообменников, ионообменных сорбентов, их свойства и практическое значение. Отличительные особенности и преимущества использования волокнистых ионитов, методы их синтеза. Возможность и механизм сорбции ионов на волокнистых ионитах.
курсовая работа [70,9 K], добавлен 05.09.2013Особенности получения наночастиц серебра методом химического восстановления в растворах. Принцип радиационно-химического восстановления ионов металлов в водных растворах. Образование золей металла. Изучение влияния рН на величину плазмонного пика.
курсовая работа [270,7 K], добавлен 11.12.2008Характеристика, классификация и химические основы тест-систем. Средства и приёмы анализа различных объектов окружающей среды с использованием тест-систем. Определение ионов кобальта колориметрическим методом из растворов, концентрации ионов меди.
дипломная работа [304,6 K], добавлен 30.05.2007Селективные свойства сорбента "ПЭГ-400-В-ЦД" по отношению к структурным и оптическим изомерам органических соединений. Влияние добавки макроциклического В-ЦД на хроматографическое удерживание и термодинамические функции сорбции исследуемых сорбатов.
дипломная работа [2,3 M], добавлен 09.08.2016Хроматографический метод разделения и анализа сложных смесей был открыт русским ботаником М.С. Цветом. Хроматография - многократное повторение актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента.
курсовая работа [1,7 M], добавлен 13.03.2011Кремнеземы с иммобилизованными серосодержащими группировками. Методика фотометрического определения металлов в водной фазе. Приготовление рабочих растворов. Метод рентгеновского определения металлов в фазе сорбента. Определение кинетических параметров.
дипломная работа [1,9 M], добавлен 25.05.2015Целлюлоза как сорбент в аналитической химии. Флуориметрическое определение металлов с использованием тиосемикарбазонов. Использование тиосемикарбазонов в хроматографических методах анализа. Изучение влияния кислотности среды на процесс сорбции металлов.
дипломная работа [233,3 K], добавлен 14.10.2013Определение ионов Ва2+ с диметилсульфоназо-ДАЛ, с арсеназо III. Определение содержания ионов бария косвенным фотометрическим методом. Определение сульфатов кинетическим турбидиметрическим методом. Расчёт содержания ионов бария и сульфат-ионов в растворе.
контрольная работа [21,4 K], добавлен 01.06.2015Состав и физико-химические свойства техногенного карбонатсодержащего отхода Ростовской ТЭЦ-2. Возможности применения КСО для очистки сточных вод от ионов тяжелых металлов (Fe3+, Cr3+, Zn2+, Cu2+ и Ni2+), определение условий их выделения с использованием.
статья [13,3 K], добавлен 22.07.2013Определение анодных и катодных процессов, составление суммарного уравнения коррозийного процесса и схемы коррозийного элемента. Возникновение электрического тока во внешней цепи. Обнаружение ионов железа в растворе. Восстановление воды до гидроксид-ионов.
лабораторная работа [49,3 K], добавлен 02.06.2015Изучение физико-химических свойств меди, арсеназо и полигексаметиленгуанидина. Природа поверхности кремнезема, модифицированные кремнеземы. Методика сорбционного концентрирования меди с использованием кремнезема, нековалентно-модифицированного арсеназо I.
курсовая работа [282,2 K], добавлен 20.05.2011Основные физические и химические свойства платиновых металлов и их соединений, способы их вскрытия и реагентная способность. Технология проведения аффинажа различных платиновых металлов, важнейшие этапы процесса экстракции и сорбции их комплексов.
курс лекций [171,2 K], добавлен 02.06.2009Исследование зависимости выхода по току от потенциала для бромид-ионов, их концентраций в растворах при совместном присутствии. Анализ методики электрохимического окисления иодид-ионов при градуировке. Описания реактивов, растворов и средств измерения.
дипломная работа [213,7 K], добавлен 25.06.2011Принципы отбора проб. Источники поступления загрязнений. Азот и его соединения. Кальций, магний, хлор, сульфат-ион. Определение ионов: водорода, аммония, нитрит-ионов, хлорид-ионов, Ca2+. Результаты химического анализа снежного покрова в г. Рязань.
курсовая работа [224,5 K], добавлен 15.03.2015Физико-химическая характеристика кобальта. Комплексные соединения цинка. Изучение сорбционного концентрирования Co в присутствии цинка из хлоридных растворов в наряде ионитов. Технический результат, который достигнут при осуществлении изобретения.
реферат [34,9 K], добавлен 14.10.2014Рассмотрение превращения энергии (выделение, поглощение), тепловых эффектов, скорости протекания химических гомогенных и гетерогенных реакций. Определение зависимости скорости взаимодействия веществ (молекул, ионов) от их концентрации и температуры.
реферат [26,7 K], добавлен 27.02.2010Характерные особенности изотерм динамического поверхностного натяжения водных растворов некоторых ПАВ и их взаимосвязь со свойствами раствора. Исследование динамического поверхностного натяжения методом максимального давления в газовом пузырьке.
дипломная работа [788,3 K], добавлен 10.02.2012