Процессы ацилирования в химической технологии биологических активных веществ

Введение в молекулу органического соединения ацильного остатка. Ацилирование по атому углерода. Замена водорода в амино-, гидроксигруппе ацильным остатком. Скорость реакции ацилирования, условия ее проведения. Химическая реакция с гидроксисоединениями.

Рубрика Химия
Вид лекция
Язык русский
Дата добавления 02.04.2019
Размер файла 533,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http: //www. allbest. ru/

1. Процессы ацилирования в химической технологии БАВ

Ацилирование, т.е. введение в молекулу органического соединения ацильного остатка (-С=О), является одним из наиболее распространенных процессов в синтезе лекарственных веществ и витаминов. Ацильная группа может вводиться в молекулу органического вещества как с целью временной защиты какой-либо химически лабильной группы (чаще всего -NH2), так и с целью изменения углеродного скелета молекулы и придания веществу новых свойств. Ацильные группы содержатся в составе многих лекарственных веществ. В этих случаях деацилирование происходит непосредственно в живом организме. При этом, как правило, по мере прохождения деацилирования образуется вещество с большей биологической активностью (обычно и с большей токсичностью), которое не могло быть введено в организм сразу в большой дозе из-за токсичности или по иным причинам.

По механизму и способам осуществления реакции ацилирования родственны реакции алкилирования.

1.1 Ацилирование по атому углерода (С-ацилирование)

Так же как и алкилирование, ацилирование является реакцией электрофильного замещения. Активным реагентом в этой реакции является катион RCO, который значительно более стабилен, чем алкилкатион. Органические кислоты в среде минеральных кислот превращаются в ионы ацилия практически нацело:

Выделены и охарактеризованы соли ацилия (например, борфторид ацетилия CH3COBF4).

При проведении ацилирования по Фриделю-Крафтсу роль кислот Льюиса практически та же, что и в реакциях алкилирования:

Кинетические исследования показывают, что наиболее вероятным реагентом является не свободный ацилий-катион, а биполярный комплекс. Кроме того, следует иметь в виду, что образующийся при ацилировании кетон образует комплексное соединение с кислотой Льюиса и таким образом извлекается из сферы реакции:

Поэтому ацилирование по Фриделю-Крафтсу всегда проводят в присутствии значительного количества (не менее 1 моль на моль) кислоты Льюиса. В противном случае становится возможным образование вторичной активной частицы, способной ацилировать субстрат, а следовательно и образование побочных продуктов реакции:

В аналогичных условиях ацилируются циклоалканы и алкены.

В отличие от алкилирования при проведении реакций ацилирования перегруппировок не наблюдается, однако, при разветвленном радикале может отщепляться -С=О и проходит не ацилирование, а алкилирование более простым карбокатионом:

При ацилировании алкенов наряду с продуктами ацилирования, образуются и продукты присоединения:

Во многих случаях продукт присоединения может быть основным:

Формилхлорид (HCOCl) является нестабильным соединением. Однако соответствующий ему ион образуется при пропускании в смесь ароматического соединения, хлористого алюминия и полухлористой меди, безводных окиси углерода и хлористого водорода (ацилирование по Гаттерману-Коху):

Выходы альдегидов обычно составляют около 50-60%. В реакцию вступают конденсированные полициклические углеводороды, полиалкилбензолы, галогенбензолы. Фенолы не реагируют. При проведении реакции под давлением (3-9 МПа, 25-60°С) выходы альдегидов достигают 90%. В ароматическое ядро вступает лишь одна формильная группа, почти исключительно в пара-положение к имеющемуся заместителю.

По современным представлениям реакция протекает через промежуточное образование ацилиевого комплекса:

Другим методом синтеза альдегидов является использование амидов муравьиной кислоты (диметилформамида) в присутствии хлорокиси фосфора (реакция Вильсмайера):

Формилированием по Вильсмайеру получают также альдегиды 5-членных ацидофобных гетероциклов:

Ароматические о-гидроксиальдегиды получают взаимодействием фенолов с хлороформом в щелочном растворе (реакция Раймера-Тимана). Активным реагентом в этом процессе, по-видимому, является дихлоркарбен, который образуется при взаимодействии хлороформа со щелочью.

Аналогично реагируют соответствующие производные хинолина, индола, тиазола и т.п.:

Большая реакционная способность ароматического кольца фенолятов позволяет получать гидроксикислоты при взаимодействии безводных фенолятов с двуокисью углерода (реакция Кольбе-Шмидта).

Процесс проводят в автоклаве, снабженном мощной лопастной мешалкой и специальной рубашкой для обогрева паром высокого давления.

Безводный фенолят натрия нагревают до 180°С и под давлением вводят в автоклав двуокись углерода. При этом образуется натриевая соль салициловой кислоты:

В настоящее время считают, что реакция проходит через стадию образования -комплекса:

В присутствии воды фенолят как сильное основание полностью диссоциирует, а потому реакция не проходит.

Ацилирование фталевым ангидридом используется при синтезе фенолфталеина, применяющегося не только как индикатор, но и в качестве слабительного средства (пурген). Процесс проводят в присутствии хлорида цинка при температуре 100-105°С:

Хлорид цинка используют также в синтезе гептилрезорцина:

Кислоты и ангидриды кислот используют для С-ацилирования субстратов с повышенной реакционной способностью, в том числе для ацилирования пятичленных гетероароматических соединений с одним гетероатомом:

Наиболее распространенным вариантом С-ацилирования в синтезе лекарственных веществ является использование хлорангидридов кислот с хлористым алюминием:

1.2 Ацилирование по атому азота (N-ацилирование)

Ацилирование может иметь целью получение нового соединения, свойства которого во многом определяются наличием ацильного остатка. В других случаях введение ацильного остатка применяется как временная мера для защиты амино- или гидроксигруппы. В этом случае ацилирование играет вспомогательную роль. Замена водорода в амино- или гидроксигруппе ацильным остатком делает эту группу менее реакционноспособной и позволяет осуществлять такие превращения ацилированного продукта, которые при наличии свободной амино- или гидроксигруппы были бы невозможны. После проведения этих превращений ациламиногруппу снова превращают в аминогруппу.

В качестве ацилирующих агентов применяются сами кислоты, их ангидриды, хлорангидриды, а в некоторых случаях - также эфиры и амиды кислот.

Скорость реакции ацилирования и условия ее проведения в значительной мере зависят от природы ацилирующего агента. Очевидно, что чем больше положительный заряд на активном атоме углерода ацилирующего агента, тем легче и быстрее пойдет реакция:

Если рассматривать ацилирующий агент

где X = -OH, -Cl, -OА

c и т.п., то чем больше электроотрицателен Х, тем труднее могут быть смещены от него электроны по направлению к ацильному радикалу и тем больший положительный заряд будет на карбонильном углероде.

Таким образом, хлорангидриды должны обладать наибольшей ацилирующей способностью, ангидриды кислот должны быть более слабыми агентами, органические кислоты должны ацилировать еще слабее, а сложные эфиры должны обладать наименьшей активностью. Эти теоретические рассуждения хорошо согласуются с экспериментальными данными.

Реакция ацилирования аминов карбоновыми кислотами является обратимой:

Обратимостью этой реакции пользуются для "снятия" ацильной группы в тех случаях, когда ацилирование проводится для временной защиты аминогруппы (например, при реакции нитрования).

Для сдвига равновесия вправо в случае ацилирования аминов кислотой целесообразно применять избыток кислоты или выводить образующуюся воду из сферы реакции (например, отгонять или связывать водоотнимающими средствами).

Реакции ацилирования хлорангидридами и ангидридами кислот необратимы. Поэтому реагенты можно брать в стехиометрических соотношениях.

Формилирование аминов обычно проводят при нагревании амина с избытком муравьиной кислоты. В качестве примера можно привести формилирование анилина:

Реакцию проводят в избытке муравьиной кислоты при нагревании до 150°С. Образующаяся при реакции вода отгоняется вместе с избытком муравьиной кислоты. Окончательную отгонку остатков муравьиной кислоты проводят в вакууме.

Для формилирования можно применять не муравьиную кислоту, а ее амид (формамид), который получают из окиси углерода и аммиака:

Ацетилирование анилина и его гомологов можно вести уксусной кислотой с добавкой бензола. Образующаяся по мере прохождения реакции вода отгоняется в виде азеотропной смеси с бензолом. Это позволяет проводить реакцию с почти количественным выходом. Ацилирование уксусной кислотой обычно ведут при температуре 110-115°С. В технике часто используют не только "ледяную" (100%-ную), но и 80%-ную уксусную кислоту, которую берут с 50%-ным избытком.

После ацетилирования уксусной кислотой остается 2-3% непрореагировавшего амина, который доацетилируют уксусным ангидридом. Для более полного прохождения реакции ацилирования кислотой последнюю берут в избытке, либо отгоняют или связывают выделяющуюся воду, или же в конце реакции добавляют ангидрид соответствующей кислоты. Значительно ускоряет реакцию также добавление минеральной кислоты, в качестве катализатора.

При синтезе нафтизина -нафтилуксусную кислоту смешивают с концентрированной HCl (36%-ой), нагревают до 113-114°С и начинают отгонку воды с одновременным подъемом температуры. При 170-190°С отгонка воды прекращается, затем температуру повышают до 270°С. Таким образом проходит двойное ацилирование с замыканием цикла

При синтезе сульфаниламидных препаратов ацетилирование используют для временной защиты аминогруппы:

Энергичным ацилирующим агентом является уксусный ангидрид:

Уксусный ангидрид применяется для ацетилирования ароматических аминов в тех случаях, когда ацилирование уксусной кислотой проходит медленно или продукт образуется с малым выходом. Ацилирование уксусным ангидридом обычно ведут при температуре 30-50°С. Ацетилирование уксусным ангидридом ускоряется при добавлении к реакционной массе небольших количеств серной, фосфорной или хлорной кислот:

Если выше приведенную реакцию проводить в неводной среде, то образуется О-ацетильное и О,N-диацетильное производные:

Ацетилирование уксусным ангидридом используют также в синтезе рентгеноконтрастного препарата триомбрин:

и многих других.

В том случае, когда реакцию нужно ускорить, ее проводят в присутствии серной кислоты

Большое значение в химико-фармацевтической промышленности в качестве ацилирующего средства приобрел метиловый эфир хлоругольной кислоты, получаемый из метилового спирта, фосгена и мела:

Метиловый эфир хлоругольной кислоты является сырьем для синтеза важнейшего промежуточного продукта в синтезе сульфамидных препаратов - фенилуретилана (карбметоксианилина):

При обработке хлорсульфоновой кислотой фенилуретилан, в свою очередь, дает важный ацилирующей агент - фенилуретилансульфохлорид (хлорангидрид карбометоксисульфаниловой кислоты):

на основе которого синтезируют многие сульфаниламидные препараты:

Хлорангидриды карбоновых кислот также являются хорошими ацилирующими средствами и часто используются для введения ацильного остатка при синтезе химико-фармацевтических препаратов. Для связывания выделяющегося хлористого водорода часто используют щелочные агенты.

Интересным ацилирующим агентом является дихлорангидрид угольной кислоты (фосген).

В зависимости от соотношения реагентов и условий проведения реакции, можно использовать как оба атома хлора, входящие в его молекулу, так и один:

1.3 Ацилирование по атому кислорода (О-ацилирование)

ацилирование атом углерод химический

Ацилирование гидроксигруппы проводится несколько реже, чем ацилирование аминогруппы.

В качестве ацилирующих агентов применяются те же вещества, что и при ацилировании аминогруппы. Поскольку реакция с гидроксисоединениями идет менее энергично, для связывания выделяющейся воды или хлористого водорода применяют соответствующие реагенты.

В ряде случаев при ацилировании кислотой для связывания выделяющейся воды применяют треххлористый фосфор (PCl3) или хлорокись фосфора (POCl3). Возможно, что в присутствии этих реагентов реакция протекает через стадию образования хлорангидрида кислоты. В качестве примера можно привести получение салола:

При ацилировании хлорангидридами кислот для связывания выделяющегося хлористого водорода применяют вещества основного характера или ведут реакцию в таких условиях (среда, температура), когда выделяющийся хлористый водород легко удаляется из реакционной массы.

Другой важной группой ацилирующих агентов являются ангидриды кислот. Так, ацилированием салициловой кислоты уксусным ангидридом получают ацетилсалициловую кислоту:

В ряде случаев ацилирование уксусным ангидридом ведут в смеси уксусной и серной кислот (например, при получении изафенина):

Ацилирование уксусным ангидридом в водных щелочных растворах проводят при температуре около 60°С, так как на холоду уксусный ангидрид реагирует с гидроксисоединениями значительно быстрее, чем с водой. В среде же уксусной кислоты или в неводных растворителях ацилирование обычно ведут при температуре кипения реакционной массы. В качестве примера можно привести два О-ацилирования из синтеза тропафена:

Ацилирование карбоновыми кислотами обычно ведут в присутствии сильных минеральных кислот. Чаще других для активации ацилирующего агента используют серную кислоту:

Размещено на Allbest.ru

...

Подобные документы

  • Ацилирование как введение ацильной группы (ацила) RC в молекулу органического соединения путем замещения атома водорода, функции данных реакций и их полезные свойства. Получение соединений различных классов благодаря реакциям ацилирования C-, O- и N-.

    курсовая работа [221,0 K], добавлен 10.08.2009

  • Химическая кинетика как раздел химии, изучающий скорость химической реакции. Факторов влияющие на скорость химической реакции: природа реагирующих веществ, температура, концентрация реагирующих веществ, катализатор, площадь соприкосновения веществ.

    презентация [2,2 M], добавлен 23.02.2015

  • Основные понятия химической кинетики. Сущность закона действующих масс. Зависимость скорости химической реакции от концентрации веществ и температуры. Энергия активации, теория активных (эффективных) столкновений. Приближенное правило Вант-Гоффа.

    контрольная работа [41,1 K], добавлен 13.02.2015

  • Скорость химической реакции. Понятие про энергию активации. Факторы, влияющие на скорость химической реакции. Законы Бойля-Мариотта, Гей-Люссака, Шарля. Влияние температуры, давления и объема, природы реагирующих веществ на скорость химической реакции.

    курсовая работа [55,6 K], добавлен 29.10.2014

  • Органический синтез как раздел химии, предмет и методы его изучения. Сущность процессов алкилирования и ацилирования, характерные реакции и принципы протекания. Описание реакций конденсации. Характеристика, значение реакций нитрования, галогенирования.

    лекция [2,3 M], добавлен 28.12.2009

  • Ознакомление с понятием и предметом химической кинетики. Рассмотрение условий химической реакции. Определение скорости реакции как изменения концентрации реагирующих веществ в единицу времени. Изучение общего влияния природы веществ и температуры.

    презентация [923,5 K], добавлен 25.10.2014

  • Номенклатура, классификация, химические свойства аминов. Основные и кислотные свойства, реакции ацилирования и алкилирования. Взаимодействие аминов с азотистой кислотой. Восстановление азотсодержащих органических соединений, перегруппировка Гофмана.

    курсовая работа [608,4 K], добавлен 25.10.2014

  • Понятие и предмет изучения химической кинетики. Скорость химической реакции и факторы, влияющие на нее, методы измерения и значение для различных сфер промышленности. Катализаторы и ингибиторы, различие в их воздействии на химические реакции, применение.

    научная работа [93,4 K], добавлен 25.05.2009

  • Электрофильное замещение в ароматическом ряду: электрофильные агенты, механизм реакции, классификация заместителей. Повышенная чувствительность фурана, пиррола и тиофена к электрофильному замещению. Реакции ацилирования, нитрования и галогенирования.

    курсовая работа [138,0 K], добавлен 14.01.2011

  • Рассмотрение методов проведения реакций ацилирования (замещение водорода спиртовой группы на остаток карбоновой кислоты). Определение схемы синтеза, физико-химических свойств метилового эфира монохлоруксусной кислоты и способов утилизации отходов.

    контрольная работа [182,3 K], добавлен 25.03.2010

  • Определение содержания химической кинетики и понятие скорости реакции. Доказательство закона действующих масс и анализ факторов, влияющих на скорость химических реакций. Измерение общей энергии активации гомогенных и гетерогенных реакций, их обратимость.

    презентация [100,2 K], добавлен 11.08.2013

  • Реакция присоединения протона енолят-аниона к атому углерода или кислорода, механизм их взаимодействия с алкилгалогенидами. Сущность и примеры таутомерного превращения. Реакции альдольного присоединения и конденсации, катализаторы и частный случай.

    лекция [137,1 K], добавлен 03.02.2009

  • Факторы, влияющие на скорость реакции: концентрация реагирующих веществ или давление, природа реагирующих веществ, температура процесса и наличие катализатора. Пример гомогенных и гетерогенных реакций. Принцип Ле Шателье. Распределение молекул по энергии.

    лекция [144,0 K], добавлен 22.04.2013

  • Общее понятие о химической реакции, ее сущность, признаки и условия проведения. Структура химических уравнений, их особенности и отличия от математических уравнений. Классификация и виды химических реакций: соединения, разложения, обмена, замещения.

    реферат [773,3 K], добавлен 25.07.2010

  • Зависимость химической реакции от концентрации реагирующих веществ при постоянной температуре. Скорость химических реакций в гетерогенных системах. Влияние концентрации исходных веществ и продуктов реакции на химическое равновесие в гомогенной системе.

    контрольная работа [43,3 K], добавлен 04.04.2009

  • Акролеин как простейший альдегид этиленового ряда, его получение методом окисления олефинов по насыщенному атому углерода. Расчет материального и теплового балансов стадии синтеза. Термодинамический анализ основной реакции и расчет константы равновесия.

    курсовая работа [546,4 K], добавлен 12.03.2015

  • Изменение скорости химической реакции при воздействии различных веществ. Изучение зависимости константы скорости автокаталитической реакции окисления щавелевой кислоты перманганатом калия от температуры. Определение энергии активации химической реакции.

    курсовая работа [270,9 K], добавлен 28.04.2015

  • Понятие о химической кинетике. Взаимодействие кислорода с водородом. Механизмы химических реакций. Влияние температуры на скорость реакций. Понятие об активном комплексе. Влияние природы реагирующих веществ на скорость реакций. Закон действия масс.

    реферат [237,9 K], добавлен 27.04.2016

  • Определение скорости химической реакции. История открытия, понятие и типы каталитических реакций. Мнения видных деятелей химии о явлении катализа, физические и химические его аспекты. Механизм гетерогенного катализа. Ферментативный катализ в биохимии.

    реферат [19,5 K], добавлен 14.11.2010

  • Изучение возможности существования форм жизни, которым свойственны биохимические процессы, полностью отличающиеся от возникших на Земле. Попытки замены углерода в молекулах органических веществ на другие атомы, и воды как растворителя на другие жидкости.

    реферат [15,7 K], добавлен 06.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.