Композиционные материалы на основе полиимидов
Различные факторы, влияющие на реакцию имидизации полиамидокислоты. Параметры, влияющие на физико-механические свойства получаемых полиимидных плёнок. Возможности модификации полиимидных материалов с целью улучшения физико-механических характеристик.
Рубрика | Химия |
Вид | статья |
Язык | русский |
Дата добавления | 26.01.2020 |
Размер файла | 695,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Композиционные материалы на основе полиимидов
Д. В. Крамарев
В работе изучаются различные факторы, влияющие на реакцию имидизации полиамидокислоты, исследованы параметры, влияющие на физико-механические свойства получаемых полиимидных плёнок, а также показаны возможности модификации полиимидных материалов с целью улучшения физико-механических характеристик.
Ключевые слова: полиимиды, полиамидокислота, имидизация, эпоксидные смолы, композиционные материалы, модификация полимеров.
полиимид композиционный материал
Анализ разработок в области создания полимерных композиционных материалов, которые сочетают в себе высокие физико-механические показатели, а также термоустойчивость, термостабильность, огнестойкость, химстойкость и способность противодействовать радиации и УФ излучению, показывают, что в качестве полимерной основы могут быть эффективно использованы полиимиды - полимеры из чередующихся ароматических и гетероциклических циклов. Целью настоящей работы является создание композиционного материала на основе полиимидной матрицы с повышенной эластичностью без потери основных эксплуатационных характеристик полиимидов.
Высокая термостойкость полиимидов связана со стабилизацией структуры и упрочнением связей за счёт эффектов сопряжения благодаря наличию неподеленной пары электронов у гетероатома в цикле (у азота) и атомов с высокой электроотрицательностью (кислород в карбонильных группах) [1]. Однако, несмотря на ряд несомненных достоинств полиимидов, они не лишены и ряда недостатков, среди которых сложность в переработке и низкое значение относительного удлинения при растяжении. Чтобы нивелировать эти недостатки, в настоящее время разрабатываются полимидные материалы, содержащие «шарнирные» группы, повышающие гибкость макромолекул [2]. В настоящей работы в качестве преполимера использована полиамидокислота (ПАК), синтезируемая в ОАО «МИПП-НПО «Пластик» из диангидрида 3,3I,4,4I-дифенилоксидтетракарбоновой кислоты (ДФО) производства КНПО «Карболит» (г.Кемерово) и диаминдифенилового эфира резорцина (Диамина Р) производства ВНИПИМ (г.Тула). Схема реакции представлена на рисунке 1.
Рис. 1. Реакция получения полиамидокислоты
В качестве растворителя полученной полиамидокислоты использовался N,N-диметилформамид (ДМФА), в среде которого и проводился синтез. Конечный продукт синтеза- лак ПАК с массовой долей полиамидокислоты ~15% масс. Первой задачей, поставленной нами в ходе данной работы, был поиск оптимальной температуры для проведения реакции имидизации полученной полиамидокислоты с целью получения полиимида с высокими физико-механическими свойствами. Нами были сделаны плёнки ПАК методом полива (подложка - фторопласт). Раствор на подложке помещался в термошкаф при температуре 100оС с целью испарения избыточного количества растворителя. Полученные плёнки далее отдирались от подложки, зажимались в рамки из фторопласта и опять помещались в термошкаф при определенной температуре на 30 минут. При этом протекала реакция имидизации - получение полиимида из полиамидокислоты. Схема реакции имидизации представлена на рисунке 2.
Рис. 2. Схема реакции имидизации
Полученные плёнки оценивались нами по физико-механическим характеристикам, таким как относительное удлинение при растяжении и прочность при растяжении. Полученные данные представлены в Таблице 1.
Таблица 1. Механические свойства плёнок ПИ
Температура циклизации плёнок, оС |
Прочность при растяжении, МПа |
Относительное удлинение при растяжении, % |
|
150 |
64,9 |
7,1 |
|
180 |
64,3 |
6,8 |
|
200 |
70,0 |
7,2 |
|
220 |
61,8 |
8,3 |
|
250 |
66,2 |
11,9 |
|
270 |
71,2 |
12,0 |
|
300 |
66,8 |
10,3 |
|
320 |
65,6 |
9,6 |
Как видно из представленных в таблице 1 данных, прочность полученных плёнок мало зависит от температуры имидизации и находится на достаточно высоком уровне. Относительное удлинение при растяжении более чувствительно к температуре циклизации и повышается по мере ее возрастания до температуры 250-270оС. Циклизация ПИ при температурах, превышающих 270оС, приводит снова к снижению относительного удлинения плёнок при растяжении. Такой ход кривых связан, очевидно, с изменением молекулярной массы полимера в ходе имидизации и с протеканием на заключительных стадиях реакций структурирования, протекающих в зависимости от строения полимера на различную глубину.
Второй задачей, поставленной нами в ходе данной работы, было исследование возможности модификации полимерных полиимидных материалов с целью увеличения их относительного удлинения при растяжении. С этой целью нами были апробированы различные модификаторы, в числе которых были термоустойчивые эпоксидные смолы ЭТФ и Элад ТТ-27, моноглицидиловый эфир 2-этилгексанола (Лапроксид 301г), триглицидиловый эфир полиоксипропилентриола (Лапроксид 703), олигоциклокарбонат марки Лапролат 301г. Все модификаторы были предоставлены компанией «Макромер» (г. Владимир). Модификаторы вводились в лак ПАК. Массовая доля модификатора рассчитывалась исходя из массы полиамидокислоты. Плёнки ПАК с различными модификаторами получали в термошкафу при температуре 100оС при выдержке 60 минут.
Стоит отменить, что положительный эффект удалось достигнуть, вводя в полиамидокислоту термоустойчивую эпоксидную смолу марки ЭТФ. В остальных случаях наблюдалось резкое снижение прочностных характеристик, которое, по-видимому, связано с низкой совместимостью компонентов смеси. При добавлении модификаторов в концентрациях, превышающих 15% масс. относительно массы исходной ПАК, наблюдается заметное охрупчивание материала.
Прочность при растяжении и относительное удлинение при растяжении полученных ПИ-плёнок представлены на рисунке 3.
Рис. 3. Свойства плёнок ПИ при различном содержании ЭТФ
Из рисунка 3 видно, что оптимальное содержание смолы ЭТФ в композициях составляет 2% масс. Дальнейшее добавление смолы ЭТФ нецелесообразно, происходит резкое снижение прочности при растяжении. Полученные плёнки прозрачны, имеют золотистый окрас.
Литература
Михайлин Ю.А. Термоустойчивые полимеры и полимерные материалы.- СПБ.: Профессия, 2006.- 624 с.
Светличный В.М. Термопластичные полиимиды для композиционных материалов: Автореф. дис. доктора техн. наук. -- Санкт-Петербург, 2007.--43 с.
Размещено на Allbest.ru
...Подобные документы
Значение использования прогрессивных видов композиционных материалов, формовочные композиционные материалы с определенными свойствами. Физико-механические свойства полибутилентерефталата, модифицированного высокодисперсной смесью железа и его оксидом.
статья [35,6 K], добавлен 03.03.2010Основные свойства полиимидных пленок, закономерности изменения их структур, происходящие под действием барьерного разряда. Влияние обработки в барьерном разряде на процессы накопления гомозаряда в пленках. Кратковременная электрическая прочность.
дипломная работа [6,7 M], добавлен 03.03.2012Хемосорбционное модифицирование минералов. Свойства глинистых пород. Методика модификации бентонитовой глины месторождения "Герпегеж". Физико-химические способы исследования синтезированных соединений. Определение сорбционных характеристик бентонина.
курсовая работа [9,2 M], добавлен 27.10.2010Переход аллотропной модификации. Электрические, магнитные, оптические, физико-механические, термические свойства алмаза. Изучение структуры графита, его антифрикционные и химические свойства. Образование, применение озона и кислорода. Аллотропия углерода.
реферат [26,0 K], добавлен 17.12.2014Анализ взаимодействия 3,3'-диокси-4,4'-диаминодифенилметана с пиромеллитовым диангидридом и диангидридом 3,3'-4,4'-тетракарбоксидифенилоксида для получения сополибензоксазолимида на основе полиоксиамида и полиамидокислоты, их некоторые свойства.
лекция [104,3 K], добавлен 18.03.2010Изучение характера ориентации кристаллитов в пленке ПЭ и в композициях после их деформирования и отжига. Экструзионная гомогенизация в червячно-осциллирующем смесителе. Механические и релаксационные свойства композиций. Характер их деформационных кривых.
реферат [451,5 K], добавлен 18.03.2010Классификация полиимидов, их виды и свойства. Механические и диэлектрические методы получения. Температурные переходы в ароматических полиимидах. Синтез растворов полиамидокислот. Анализ молекулярной и надмолекулярной структуры ароматических полиимидов.
реферат [874,4 K], добавлен 07.04.2017Расчет физико-химических параметров углеводородов. Тепловые эффекты реакций сгорания. Пожаровзрывоопасные свойства газообразных веществ, составляющих смесь, а также средства тушения пожаров с их участием. Свойства и особенности применения средств тушения.
курсовая работа [121,0 K], добавлен 14.10.2014Физико-механические и физико-химические свойства синтетических волокон. Первое полимерное соединение. Получение синтетических волокон и их классификация. Карбоцепные и гетероцепные, полиакрилонитрильные, поливинилхлоридные, полиамидные волокна.
презентация [2,4 M], добавлен 20.04.2015Влияния ионов титана, алюминия и углерода на микроструктуру, элементно-фазовый состав и физико-механические свойства поверхностного ионно-легированного слоя никеля. Изучение физико-химических процессов формирования ультрадисперсных интерметаллидов.
дипломная работа [1,9 M], добавлен 03.12.2012Промышленный способ получения полипропилена. Основные параметры (отличительные признаки) предварительной обработки пропиленом катализаторного комплекса. Технологическая система производства сотового полипропилена, его физико-механические свойства.
курсовая работа [7,4 M], добавлен 24.05.2015Рассмотрение возможности экологизации раздела химии: "Физико-химические свойства водорода" путем внедрения темы: "Альтернативная энергетика". Обзор сведений о водородной энергетике как альтернативном виде энергии. Выбор наилучших форм организации занятий.
дипломная работа [135,3 K], добавлен 24.12.2009Общая характеристика современных направлений развития композитов на основе полимеров. Сущность и значение армирования полимеров. Особенности получения и свойства полимерных композиционных материалов. Анализ физико-химических аспектов упрочнения полимеров.
реферат [28,1 K], добавлен 27.05.2010- Физико-химические свойства композиций на основе крахмала модифицированного с фосфатными соединениями
Основные функции текстильных вспомогательных веществ в процессах крашения и печатания текстильных материалов. Мероприятия, разработанные для устранения недостатков нативного крахмала. Печатно-технические свойства модифицированного фосфатного крахмала.
статья [136,7 K], добавлен 24.06.2015 Физико-механические свойства гетинакса. Фенолоформальдегидные и крезолоформальдегидные связующие для производства данного вида слоистого пластика. Применение эпоксидных и меламиноформальдегидных смол в качестве связующих. Виды применяемых наполнителей.
реферат [334,1 K], добавлен 18.12.2012Характеристика и назначение лакокрасочных материалов. Понятия дисперсность, суспензия, эмульсия. Основные требования к защитным покрытиям. Преимущества красок на основе акриловых латексов. Свойства лакокрасочных материалов и покрытий на их основе.
реферат [42,9 K], добавлен 17.02.2009История исследования реакций между аминокислотами и сахарами. Механизм образования меланоидинов, предложенный Дж. Ходжем. Факторы, влияющие на реакцию меланоидинообразования. Применение ингибирования для подавления реакции потемнения в пищевых продуктах.
реферат [283,5 K], добавлен 19.03.2015Исследование эволюции физико-химических характеристик ионообменных смол и изготовленных из них мембран в процессах переработки амфолит-содержащих модельных растворов и виноматериалов. Электропроводность ионитов, её связь с другими свойствами ионитов.
дипломная работа [4,6 M], добавлен 18.07.2014Природные полиморфные модификации двуокиси титана, его физико-химические свойства и применение. Основы усовершенствования фотокатализа. Диоксид титана, легированный углеродом. Вещества, используемые в синтезе диоксида титана. Методика проведения синтеза.
курсовая работа [665,5 K], добавлен 01.12.2014Структура поликарбонатов и особенности их кристаллизации. Физико-механические, теплофизические, оптические и электрические свойства поликарбонатов. Применение их во многих отраслях промышленности. Поликонденсация в растворе и межфазная поликонденсация.
курсовая работа [753,7 K], добавлен 30.12.2015