Элементы VIIIA группы

Общая характеристика элементов VIIIA группы. Гелий, неон, ксенон и аргон - строение атома, история открытия, нахождение в природе, химические и физические свойства, биологическая роль. Подгруппа криптона и радона. Химические свойства инертных газов.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 04.02.2020
Размер файла 73,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Элементы VIIIA группы

1. Общая характеристика элементов VIIIA группы

VIIIА группа включает инертные или благородные газы: гелий, неон, аргон и элементы подгруппы криптона - криптон, ксенон и радон.

На единственном электронном уровне атома гелия располагаются два электрона (1s2), т.е. гелий является s-элементом. Остальные представители группы являются p-элементами, у них на внешнем электронном уровне находятся восемь электронов (ns2np6), поэтому атомы благородных газов обладают повышенной устойчивостью.

С точки зрения электронного строения неон и более тяжёлые благородные газы следует поместить в VIIIА группе. Гелий как s-элемент формально можно было бы отнести ко IIА группе, однако он очень отличается по свойствам от элементов IIА группы, поэтому его также поместили в VIIIА группе вместе с подобными ему газами.

Все электроны в атомах гелия, неона и аргона очень прочно связаны с ядром, поэтому эти элементы не вступают в химические реакции. Энергия р-орбиталей криптона, ксенона и радона позволяет им быть донорами р-электронов при образовании химических связей с наиболее электроотрицательными элементами - фтором, кислородом. Поэтому прежнее название «инертные» сейчас уступает место названию «благородные» газы.

Благородные газы - бесцветные одноатомные газы без цвета и запаха.

Благородные газы обладают более высокой электропроводностью по сравнению с другими газами и при прохождении через них тока ярко светятся: гелий ярко-жёлтым светом, потому что в его сравнительно простом спектре двойная жёлтая линия преобладает над всеми другими; неон огненно-красным светом, так как самые яркие его линии лежат в красной части спектра.

Насыщенный характер атомных молекул благородных газов сказывается и в том, что они имеют более низкие точки сжижения и замерзания, чем другие газы с тем же молекулярным весом. Из подгруппы тяжелых инертных газов аргон - самый легкий. Он тяжелее воздуха в 1,38 раза. Жидкостью становится при -186 °C, затвердевает при -189 °C (в условиях нормального давления).

В отличие от гелия и неона, аргон довольно хорошо адсорбируется на поверхностях твердых тел и растворяется в воде (3,29 см3 в 100 г воды при 20 °C). Еще лучше растворяется аргон во многих органических жидкостях. Аргон практически нерастворим в металлах и не диффундирует сквозь них.

Таблица 9 - Некоторые физические свойства благородных газов

Элемент

He

Ne

Ar

Kr

Xe

Rn

Агрегатное состояние при обычных условиях

Бесцветные газы

Состав молекул

Молекулы одноатомны

Плотность с, г/л (293 К)

0,1785

0,89994

1,784

3,7493

5,8971

9,73

Температура плавления tпл, °С

-272

-249

-189

-157

-112

-71

Температура кипения tкип, °С

-269

-246

-186

-153

-108

-62

Стандартная энтропия S°298, Дж/(кг · К)

126,04

146,22

154,73

163,98

169,57

167,76

Удельная теплоемкость с*р, Дж/(кг · К)

5190

1030

520

248

150

90

Растворимость в 1 л H2O при 0°С, мл

10

-

60

-

500

-

Криптон, ксенон и радон характеризуются меньшей энергией ионизации атомов, чем типические элементы VIIIА группы.

Элементы подгруппы криптона отличаются от других благородных газов большими размерами атомов и большей их поляризуемостью.

Увеличение поляризуемости молекул по мере роста размера атомов в ряду He-Ne-Ar-Kr-Xe характеризуется следующими соотношениями: 1:2:3:12:20 (поляризуемость молекул Xe в 20 раз выше, чем He).

Возрастание поляризуемости сказывается на усилении межмолекулярного взаимодействия, а последнее - на возрастании температур кипения и плавления простых веществ.

В ряду He-Ne-Ar-Kr-Xe-Rn усиливается также растворимость газов в воде и других растворителях, возрастает склонность к адсорбции и т. д. В твердом состоянии, подобно Ne и Ar, криптон, ксенон и радон имеют кубическую гранецентрированную кристаллическую решетку.

2. Гелий

Гелий впервые был идентифицирован как химический элемент в 1868 г. П.Жансеном при изучении солнечного затмения в Индии.

В феврале 1895 г. У. Рамзай получил письмо от лондонского метеоролога М. Маерса, где тот сообщал об опытах американского геолога М. Гиллебранда, который кипятил в серной кислоте редкие минералы урана и наблюдал выделение газа, по свойствам своим напоминающий азот. Чем больше урана содержится в минералах, тем больше выделялось газа. Гиллебранд условно предположил, что этот газ является азотом.

Вскоре Рамзай послал своих помощников в лондонские химические магазины за урановым минералом клевеитом. Было куплено 30 грамм клевеита, и в тот же день Рамзай со своим помощником Метьюзом извлек несколько кубических сантиметров газа. Рамзай подверг этот газ спектроскопическому исследованию. Он увидел яркую желтую линию, очень похожую на линию натрия, но в тоже время отличающуюся от нее по своему положению в спектре. Рамзай был настолько удивлен, что разобрал спектроскоп, почистил его, но при новом опыте снова обнаружил яркую желтую линию, не совпадавшую с линей натрия. Рамзай просмотрел спектры всех элементов. Наконец он вспомнил о загадочной линии в спектре солнечной короны. В 1868 г. во время солнечного затмения французский исследователь П. Жансен и англичанин Д. Н. Локьер обнаружили в спектре солнечных протуберанцев яркую желтую линию, которой не оказалось в земном спектре источников света. В 1871 г. Локьер высказал предположение, что эта линия принадлежит спектру неизвестного на Земле вещества. Он назвал этот гипотетический элемент гелием, то есть «солнечным». Но на земле он обнаружен не был. Физики и химики им не заинтересовались.

Гелий - одноатомный газ без цвета и запаха. По сравнению с другими элементами гелий обладает наибольшей энергией ионизации атома (24,59 эВ). Особая устойчивость электронной структуры атома отличает гелий от всех остальных химических элементов периодической системы.

Гелий по физическим свойствам наиболее близок к молекулярному водороду. Вследствие ничтожной поляризуемости атомов гелия у него самые низкие температуры кипения (-269 °С) и плавления (-272 °С при 2,5*10-6 Па).

Гелий хуже других газов растворяется в воде и других растворителях. В 1 л воды, например, при 0 °С растворяется менее 10 мл He, т.е. в два с лишним раза меньше, чем H2, и в 51000 раз меньше, чем HCl.

Жидкий гелий - оквантовая жидкость, т.е. жидкость, в макроскопическом объеме которой проявляются квантовые свойства составляющих ее атомов. При 2,17 °К и давлении паров 0,005 МПа жидкий Не претерпевает фазовый переход второго рода (от Не I к Не II), сопровождающийся резким изменением ряда свойств: теплоемкости, вязкости, плотности и др.

Гелий не образует валентных соединений.

Гелий является важным источником низких температур. При температуре жидкого гелия тепловое движение атомов и свободных электронов в твердых телах практически отсутствует, что позволяет изучать многие новые явления, например сверхпроводимость в твердом состоянии.

Газообразный гелий используют как легкий газ для наполнения воздушных шаров. Поскольку он негорюч, его добавляли к водороду для заполнения оболочки дирижабля.

Так как гелий хуже растворим в крови, чем азот, большие количества гелия применяют в дыхательных смесях для работ под давлением, например при морских погружениях, при создании подводных тоннелей и сооружений. При использовании гелия декомпрессия (выделение растворенного газа из крови) у водолаза протекает менее болезненно, менее вероятна кессонная болезнь, исключается такое явление, как азотный наркоз, - постоянный и опасный спутник работы водолаза. Смеси He-O2 применяют, благодаря их низкой вязкости, для снятия приступов астмы и при различных заболеваниях дыхательных путей.

Гелий используют как инертную среду для дуговой сварки, особенно магния и его сплавов, при получении Si, Ge, Ti и Zr, для охлаждения ядерных реакторов.

Другие применения гелия - для газовой смазки подшипников, в счетчиках нейтронов (гелий-3), газовых термометрах, рентгеновской спектроскопии, для хранения пищи, в переключателях высокого напряжения. В смеси с другими благородными газами гелий используется в наружной неоновой рекламе (в газоразрядных трубках). Жидкий гелий выгоден для охлаждения магнитных сверхпроводников, ускорителей частиц и других устройств. Необычным применением гелия в качестве хладагента является процесс непрерывного смешения 3He и 4He для создания и поддержания температур ниже 0,005 K.

3. Неон

Этот элемент открыт Рамзаем и Траверсом в 1898 г., через несколько дней после открытия криптона. Ученые отобрали первые пузырьки газа, образующегося при испарении жидкого аргона, и установили, что спектр этого газа (ярко-красными линиями) указывает на присутствие нового элемента. Рамзай выбран название для этого элемента неон, в переводе с греческого - новый.

Неон - одноатомный газ без цвета и запаха, температура кипения 27,07 К (0,1 МПа); плотность в твердом состоянии 1,444 г/см3 (24,66 °К), в жидком 1,24 г/см3 (25,0 °К), в газообразном 0,90035 кг/м3 (273 °К, 0,1 МПа); критическая температура 44,4 °К, критическое давление 2,65 МПа. Растворимость неона в воде при 0,1 МПа (м3/кг): 0, 014•10-3 (273 °К), 0,010*10-3 (298 °К).

Неон, как и гелий, обладает очень высокими ионизационным потенциалом (21,57 эВ), поэтому соединений валентного типа не образует.

Основное отличие его от гелия обуславливается относительно большей поляризуемостью атома, т. е. несколько большей склонностью образовывать межмолекулярную связь. Неон имеет очень низкие температуры кипения (-245,9 °С) и плавления (-248,6 °С), уступая лишь гелию и водороду. По сравнению с гелием у неона несколько большая растворимость и способность адсорбироваться.

Неон используется, как наполнители в неоновых лампах и лампах дневного свата.

4. Аргон

В 1785 г. английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно химически устойчивый. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось. Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал «Nature» обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин. Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот, и крайне инертного химически. Когда они выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, составляющую почти 1 %.

В 1894 г. аргон получил свое имя, которое в переводе с греческого значит «недеятельный». Его предложил председательствовавший на собрании доктор Медан. Между тем нет ничего удивительного в том, что аргон так долго ускользал от ученых. Ведь в природе он себя решительно ничем не проявлял. Напрашивается параллель с ядерной энергией: говоря о трудностях ее выявления, А. Эйнштейн заметил, что нелегко распознать богача, если он не тратит своих денег. Скепсис ученых был быстро развеян экспериментальной проверкой и установлением физических констант аргона. Но не обошлось без моральных издержек: расстроенный нападками коллег (главным образом химиков) Рэлей оставил изучение аргона и химию вообще и сосредоточил свои интересы на физических проблемах.

Рэлей - известный ученый, в физике достиг выдающихся результатов, за что в 1904 г. был удостоен Нобелевской премии. Тогда в Стокгольме он вновь встретился с Рамзаем, который в тот же день получал Нобелевскую премию за открытие и исследование благородных газов, в том числе и аргона. Первый благородный газ, аргон, был открыт в 1894 г.

Аргон - одноатомный газ без цвета и запаха; температура кипения 87,29 °К; плотность 0,001784 г/см3 (жидкого при 87 °К - 1,40 г/см3, твердого при 40 К - 1,40 г/см3); критическое давление - 0,4894 МПа.

Валентный слой атома аргона, как и неона, содержит восемь электронов. Вследствие большой устойчивости электронной структуры атома (энергия ионизации 15,76 эВ) соединения валентного типа для аргона не получены. Имея относительно большой размер атома (молекулы), аргон более склонен к образованию межмолекулярных связей, чем гелий и неон. Поэтому аргон в виде простого вещества характеризуется высокими температурами плавления (-184,3 °С) и кипения (-185,9 °С). Он лучше адсорбируется.

Аргон валентных соединений не образует, но для него получены соединения клатратного типа: Аr•6H2O.

На Земле аргона намного больше, чем всех прочих элементов его группы, вместе взятых. Его среднее содержание в земной коре (кларк) в 14 раз больше, чем гелия, и в 57 раз больше, чем неона. Есть аргон и в воде, до 0,3 см3 в литре морской и до 0,55 см3 в литре пресной воды. Любопытно, что в воздухе плавательного пузыря рыб аргона находят больше, чем в атмосферном воздухе. Это потому, что в воде аргон растворим лучше, чем азот. Главное «хранилище» земного аргона - атмосфера. Его в ней (по весу) 1,286 %, причем 99,6 % атмосферного аргона - это самый тяжелый изотоп - аргон-40. Еще больше доля этого изотопа в земной коре. Между тем у подавляющего большинства легких элементов картина противополодная - преобладают легкие изотопы. Причина этой аномалии обнаружена в 1943 г. В земной коре находится мощный источник аргона-40 - радиоактивный изотоп калия 40К. Этого изотопа на первый взгляд в недрах немного - всего 0,0119 % от общего содержания калия. Однако абсолютное количество калия-40 велико, поскольку калий - один из самых распространенных на нашей планете элементов. В каждой тонне изверженных пород 3,1 г калия-40.

Период полураспада 40К достаточно велик - 1,3 млрд лет. Поэтому процесс образования 40Аr в недрах Земли будет продолжаться еще очень долго и хотя чрезвычайно медленно, но неуклонно будет возрастать содержание аргона в земной коре и атмосфере, куда аргон попадает в результате вулканических процессов, выветривания и перекристаллизации горных пород.

За время существования Земли запас радиоактивного калия основательно истощился - он стал в 10 раз меньше (если возраст Земли считать равным 4,5 млрд лет.). Соотношение изотопов 40К и 40Ar в горных породах легло в основу аргонного метода определения абсолютного возраста минералов. Очевидно, чем больше эти отношения, тем древнее порода. Аргонный метод считается наиболее надежным для определения возраста изверженных пород и большинства калийных минералов.

Практически весь аргон-40 произошел на Земле от калия-40. Поэтому тяжелый изотоп и доминирует в земном аргоне. Этим фактором объясняется одна из аномалий периодической системы. Вопреки первоначальному принципу ее построения - принципу атомных весов - аргон поставлен в таблице впереди калия. Если бы в аргоне, как и в соседних элементах, преобладали легкие изотопы (как это, по-видимому, имеет место в космосе), то атомный вес аргона был бы на две-три единицы меньше.

Част изотопов 36Аr и 38Аr, как считают, появилась в земной атмосфере из космоса при формировании нашей планеты и ее атмосферы. Но большая часть легких изотопов аргона родилась на Земле в результате ядерных процессов. Вероятно, еще не все такие процессы обнаружены. Скорее всего некоторые из них давно прекратились, так как исчерпались короткоживущие материнские атомы, но есть и поныне протекающие ядерные процессы, в результате которых появляются аргон-36 и аргон-38. Это в-распад хлора-36, обстрел б-частицами (в урановых минералах) серы-33 и хлора-35:

3617Cl в-> 3618Ar + 0-1e + н,

3316S + 42He > 3618Ar + 10n,

3517Cl + 42He > 3818Ar + 10n + 0+1e.

В материи Вселенной аргон представлен еще обильнее, чем на нашей планете. Особенно много его в веществе горячих звезд и планетарных туманностей. Подсчитано, что аргона в космосе больше, чем хлора, фосфора, кальция, калия - элементов, весьма распространенных на Земле. В космическом аргоне главенствуют изотопы 36Аr и 38Аr, аргона-40 во Вселенной очень мало. На это указывает масс-спектральный анализ аргона из метеоритов. В том же убеждают подсчеты распространенности калия. Оказывается, в космосе калия примерно в 50 тыс. раз меньше, чем аргона, в то время как на Земле их соотношение явно в пользу калия - 660:1.

При вдыхании смеси из 69 % Ar, 11 % азота и 20 % кислорода под давлением 4 атм возникают явления наркоза, которые выражены гораздо сильнее, чем при вдыхании воздуха под тем же давлением. Наркоз мгновенно исчезает после прекращения подачи аргона. Причина заключается в неполярности молекул аргона, причем повышенное давление усиливает растворимость аргона в нервных тканях.

Обнаружено, что аргон благоприятствует росту растений. Даже в атмосфере чистого аргона прорастают семена риса, кукурузы, огурцов и ржи. Лук, морковь и салат хорошо прорастают в атмосфере, содержащей 98 % аргона и только 2 % кислорода.

5. Подгруппа криптона

Открытие криптона

После того как Рамзай открыл аргон и гелий, перед ним возник вопрос о расположении новых элементов в периодической системе. Воспользовавшись методом Менделеева («по образцу нашего учителя Менделеева», как писал Рамзай), он поместил новые газы в соседстве с другими элементами в порядке возрастания атомных масс. При этом ясно обнаружилось, что между гелием и аргоном остается пустая клетка. Ниже аргона, между бромом и рубидием, и еще ниже, между йодом и цезием, тоже имелись пустые места. Это позволило предположить, что инертные газы составляют особую группу периодической системы. Осенью 1897 г. Рамзай в качестве президента Химического отделения Британской ассоциации научных работников должен был выступить с докладом на очередном съезде ассоциации в Торонто. Темой доклада он избрал «Еще неоткрытый газ» и, говоря о нем, продемонстрировал свою таблицу. Доклад Рамзая побудил исследователей к интенсивным поискам неоткрытых газов в различных минералах и минеральных водах, но честь отыскать его выпала на долю того же Рамзая.

В 1898 г. совместно со своим ассистентом Траверсом Рамзай спектроскопически обнаружил один из предсказанных им газов в пробе аргона, а затем выделил его в более чистом виде путем испарения жидкого воздуха. Новый газ был назван криптоном от греч. - «секретный, скрытый».

Рамзай нашел способ, как разместить оба вновь открытых газа в периодической системе, хотя формально места для них не было. К известным восьми группам элементов он добавил нулевую группу, специально для нульвалентных, нереакционноспособных благородных газов, как теперь стали называть новые газообразные элементы.

Когда Рамзай разместил благородные газы в нулевой группе по их атомной массе - гелий 4, аргон 40, то обнаружил, что между ними есть место еще для одного элемента. Рамзай сообщил об этом осенью 1897 г. в Торонто на заседании Британского общества. После многих неудачных опытов Рамзаю пришла в голову мысль искать их в воздухе. Тем временем немец Линде и англичанин Хемпсон практически одновременно опубликовали новый способ сжижения воздуха. Этим методом и воспользовался Рамзай и, действительно, с его помощью смог обнаружить в определенных фракциях сжиженного воздуха недостающие газы: криптон («скрытый»), ксенон («чужой») и неон («новый»).

Открытие ксенона

После того как были открыты гелий, неон, аргон и криптон, завершающие четыре первых периода таблицы Менделеева, уже не вызывало сомнений, что пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу. Это и неудивительно: в 1 м3 воздуха 9,3 л аргона и всего лишь 0,08 мл ксенона.

Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен жидкий водород. Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее труднолетучей фракции воздуха, образующейся после отгонки гелия, водорода, неона, кислорода, азота и аргона. Остаток содержал сырой (то есть неочищенный) криптон. Однако после откачки его в сосуде неизменно оставался пузырек газа. Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой. В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около ста тонн жидкого воздуха. Индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см3 этого газа. Для того времени это была необычайная тонкость эксперимента.

Характерные спектральные линии - визитная карточка элемента. У Рамзая и Траверса были все основания считать, что открыт новый инертный газ. Его назвали ксеноном, что в переводе с греческого значит «чужой»: в криптоновой фракции воздуха он действительно выглядел чужаком. Любопытно, что с точки зрения химика ксенон на самом деле оказался «чужим» среди инертных газов.

Открытие радона

Английский ученый Э. Резерфорд в 1899 г отметил, что препараты тория испускают, кроме б-частиц, и некое неизвестное ранее вещество, так что воздух вокруг препаратов тория постепенно становится радиоактивным. Это вещество он предложил назвать эманацией (от латинского emanatio - истечение) тория и дать ему символ Em. Последующие наблюдения показали, что и препараты радия также испускают некую эманацию, которая обладает радиоактивными свойствами и ведет себя как инертный газ.

Первоначально эманацию тория называли тороном, а эманацию радия - радоном. Было доказано, что все эманации на самом деле представляют собой радионуклиды нового элемента - инертного газа, которому отвечает атомный номер 86. Впервые его выделили в чистом виде Рамзай и Грей в 1908 г, они же предложили назвать газ нитон (от лат. nitens, светящийся). В 1923 г. газ получил окончательное название радон и символ Em был сменен на Rn.

После этих открытий стало ясно, что в природе существует группа новых химических элементов и для нее нужно найти место в системе химических элементов. Поскольку эти новые элементы были исключительно инертными и не проявляли химических свойств, то по предложению бельгийского химика Эрреры, а также Рамзая, и по согласованию с Д.И. Менделеевым в 1900 г. в Периодическую систему была введена нулевая группа химических элементов, в которую вошли названные элементы.

Нулевая группа располагалась перед первой группой; номер группы в Периодической системе связан с максимальной валентностью химических элементов, проявляемой ими в кислородных соединениях, или с максимальной степенью окисления. Огромные усилия химиков разных стран, направленные на выявление реакционной способности новых элементов, были тщетными. Они не вступали во взаимодействие ни с какими, даже самыми активными веществами, потому был сделан вывод, что валентность и степень окисления благородных газов равны нулю. В связи с этим их назвали «инертными газами». Впоследствии это название было заменено термином «благородные газы». гелий неон ксенон

Открытие благородных газов имело огромное значение для научного сообщества. В частности, оно помогло в проведении спектральных исследований. Оранжевая линия спектра стабильного изотопа криптона-86 принята в качестве международного эталона длины волны света. Однако самое большое значение открытие этих элементов имело для развития понятия валентности и учения о межмолекулярных силах. В этом направлении работали ученые Коссель и Льюис, которые выдвинули гипотезу о том, что электронная оболочка из 8 электронов наиболее устойчива и различные атомы стремятся приобрести ее путем присоединения или отдачи электронов.

До 1962 г. считалось, что инертные газы не вступают ни в какие реакции. В 1962 г. канадский ученый Н. Бартлетт смог получить соединение ксенона и гексафторида платины XePtF6. Бартлетт впервые получил соединение, в которое была вовлечена восьмиэлектронная оболочка ксенона. Таким образом, был разрушен миф об абсолютной инертности благородных газов. После этого название «инертные газы» уже не соответствовало действительности, поэтому по аналогии с малоактивными благородными металлами эту группу химических элементов назвали благородными газами. Поскольку были получены химические соединения, в которых максимальная валентность благородных газов равна VIII, вместо нулевой группы их стали считать главной подгруппой VIII группы (или VIIIА группой) Периодической системы.

Химические свойства инертных газов

Долгое время не находили условий, при которых благородные газы могли бы вступать в химическое взаимодействие. Они не образовывали истинных химических соединений. Малая химическая активность благородных газов объясняется жёсткой восьми электронной конфигурацией внешнего электронного слоя. Поляризуемость атомов растёт с увеличением числа электронных слоёв. Следовательно, она должна увеличиваться при переходе от гелия к радону. В этом же направлении должна увеличиваться и реакционная способность благородных газов.

Так, уже в 1924 г. высказывалась идея, что некоторые соединения тяжелых инертных газов (в частности, фториды и хлориды ксенона) термодинамически вполне стабильны и могут существовать при обычных условиях. Через девять лет эту идею поддержали и развили известные теоретики - Полинг и Оддо. Изучение электронной структуры оболочек криптона и ксенона с позиций квантовой механики привело к заключению, что эти газы в состоянии образовывать устойчивые соединения с фтором. Нашлись и экспериментаторы, решившие проверить эту гипотезу. Были поставлены эксперименты, но фторид ксенона получить не удавалось. Постепенно почти все работы в этой области были прекращены, и утвердилось мнение об абсолютной инертности благородных газов.

Однако в 1961 г. Бартлетт, сотрудник одного из университетов Канады, изучая свойства гексафторида платины, соединения более активного, чем сам фтор, установил, что потенциал ионизации у ксенона ниже, чем у кислорода. Между тем кислород образовывал с гексафторидом платины соединение состава O2PtF6. Бартлетт ставит опыт и при комнатной температуре из газообразного гексафторида платины и газообразного ксенона получает твердое оранжево-желтое вещество - гексафтороплатинат ксенона XePtF6, поведение которого ничем не отличается от поведения обычных химических соединений. При нагревании в вакууме XePtF6 возгоняется без разложения, в воде гидролизуется, выделяя ксенон:

2XePtF6 + 6Н2О = 2Хе + О2 + 2PtО2 + 12HF.

Последующие работы Бартлетта позволили установить, что ксенон в зависимости от условий реакции образует два соединения с гексафторидом платины: XePtF6 и Xe(PtF6)2; при гидролизе их получаются одни и те же конечные продукты. Убедившись, что ксенон действительно вступил в реакцию с гексафторидом платины, Бартлетт выступил с докладом и в 1962 г. опубликовал в журнале «Proceedingsof the Chemical Society» статью, посвященную сделанному им открытию. Статья вызвала огромный интерес, хотя многие химики отнеслись к ней с нескрываемым недоверием. Но уже через три недели эксперимент Бартлетта повторила группа американских исследователей во главе с Черником в Аргоннской национальной лаборатории. Кроме того, они впервые синтезировали аналогичные соединения ксенона с гексафторидами рутения, родия и плутония. Так были открыты первые пять соединений ксенона: XePtF6, Xe(PtF6)2, XeRuF6, XeRhF6, XePuF6 - миф об абсолютной инертности благородных газов развеян и заложено начало химии ксенона. Настало время проверить правильность гипотезы о возможности прямого взаимодействия ксенона с фтором.

Смесь газов (1 часть ксенона и 5 частей фтора) поместили в никелевый (поскольку никель наиболее устойчив к действию фтора) сосуд и нагрели под сравнительно небольшим давлением. Через час сосуд быстро охладили и обнаружили в нем бесцветные кристаллы XeF4. Тетрафторид ксенона оказался вполне устойчивым соединением, молекула его имеет форму квадрата с ионами фтора по углам и ксеноном в центре. Тетрафторид ксенона фторирует ртуть:

ХеF4 + 2Hg = Хe + 2HgF2.

Платина тоже фторируется этим веществом, но только растворенным во фтористом водороде.

Интересным в химии ксенона является тот факт, что, меняя условия реакции, можно получить не только XeF4, но и другие фториды ксенона - XeF2, XeF6.

Советские химики В.М. Хуторецкий и В.А. Шпанский показали, что для синтеза дифторида ксенона совсем не обязательны жесткие условия. По предложенному ими способу смесь ксенона и фтора в молекулярном отношении 1:1 подается в сосуд из никеля или нержавеющей стали, при повышении давления до 35 атм начинается самопроизвольная реакция.

Все многообразные соединения благородных газов получают, исходя из фторидов. Сами фториды получают прямым синтезом из простых веществ. Образование фторидов происходит с выделением теплоты.

Соединения с валентными связями Э (II), Э (IV), Э (VI), Э (VIII) хорошо изучены на примере фторидов Kr и Xe, полученных по схеме:

t t t

Xe + nF2 XeF4 XeF6 XeF8.

Химическая связь в соединениях благородных газов не может быть описана с позиций метода ВС, поскольку в соответствии с этим методом в образовании связи должны участвовать d-орбитали. Однако возбуждение одного электрона с p- на d-орбиталь требует для ксенона около 100 кДж/атом, что не компенсируется энергией образования связи.

В соответствии с методом МО, d-орбитали в образовании связей в XeF2 не участвуют (рисунок 27):

Рисунок 27 - Строение молекулы XeF2

XeF2 - единственный фторид ксенона, который можно получить, не используя фтор. Он образуется при действии электрического разряда на смесь ксенона и четырехфтористого углерода. Однако, возможен и прямой синтез. Чистый ХеF2 образуется, если смесь ксенона и фтора облучить ультрафиолетом.

Растворимость дифторида ксенона в воде невелика, однако его раствор - сильнейший окислитель. Постепенно он саморазлагается на ксенон, кислород и фтороводород; особенно быстро разложение протекает в щелочной среде. Дифторид ксенона имеет резкий специфический запах.

Большой теоретический интерес представляет метод синтеза дифторида ксенона, основанный на воздействии на смесь газов ультрафиолетового излучения (длина волн порядка 2500-3500 А). Излучение вызывает расщепление молекул фтора на атомы. В этом и заключается причина образования дифторида: атомарный фтор необычайно активен. Для получения XeF6 требуются более жесткие условия: 700 °С и 200 атм. В таких условиях в смеси ксенона и фтора (отношение от 1:4 до 1:20) практически весь ксенон превращается в XeF6. Гексафторид ксенона чрезвычайно активен и разлагается со взрывом. Он легко реагирует с фторидами щелочных металлов (кроме LiF):

XeF6 + RbF = RbXeF7,

но при 50 °С эта соль разлагается:

2RbXeF7 =XeF6 + Rb2XeF8.

Сообщалось также о синтезе высшего фторида XeF8, устойчивого лишь при температуре ниже минус 196 °C.

Заставить ксенон вступить в реакцию без участия фтора (или некоторых его соединений) пока не удалось. Все известные ныне соединения ксенона получены из его фторидов. Эти вещества обладают повышенной реакционной способностью. Лучше всего изучено взаимодействие фторидов ксенона с водой. Гидролиз ХеF4 в кислой среде ведет к образованию оксида ксенона ХеО3 - бесцветных, расплывающихся на воздухе кристаллов:

6XeF4 + 12H2O = 2XeO3 + 4Xe + 3O2 + 24HF.

Молекула ХеО3 имеет структуру приплюснутой треугольной пирамиды с атомом ксенона в вершине. Это соединение крайне неустойчиво, при его разложении мощность взрыва приближается к мощности взрыва тротила. Однако получение оксида ксенона (VI) слишком дорого, процесс его выделения трудоемок, поскольку ксенона в атмосфере меньше, чем золота в морской воде. Так, для получения 1 м3 ксенона нужно переработать 11 млн. м3 воздуха.

XeO3 хорошо растворим в воде и образует сильную кислоту:

XeO3 + H2O = H2XeO4 > H+ + HXeO4-.

Для Xe (VI) известны фторид XeF6, оксид XeO3, оксофторид XeOF4, гидроксид Xe(OH)6, а также комплексные ионы типа XeO42- и XeO66-.

Неустойчивая кислота шестивалентного ксенона H6XeO6 образуется в результате гидролиза XeF6 при 0 °С:

XeF6 + 6H2О = 6HF + H6XeO6.

Если к продуктам этой реакции быстро добавить Ва(ОН)2, выпадает белый аморфный осадок Ва3ХеО6. При 125 °С он разлагается на оксид бария, ксенон и кислород. Получены аналогичные соли - ксенонаты натрия и калия. При действии озона на раствор ХеО3 в одномолярном растворе гидроксида натрия образуется соль высшей кислоты ксенона Na4ХеО6. Перксенонат натрия может быть выделен в виде бесцветного кристаллогидрата Na4XeO6*6Н2О. К образованию перксенонатов приводит и гидролиз XeF6 в растворах щелочей. Если твердую соль Na4XeO6 обработать раствором нитрата свинца, серебра или уранила, то получаются соответствующие перксенонаты: PbXeO6 и (UO2)2XeO6 желтого цвета и Ag4XeO6 черного. Аналогичные соли дают калий, литий, цезий, кальций.

Гексафторид ксенона очень активен, реагирует с кварцем:

2XeF6 + SiO2 = 2XeOF4 + SiF4.

Производные Xe (VI) - сильные окислители, например:

Xe(OH)6 + 6KI + 6HCl = Xe + 3I2 + 6KCl + 6H2O.

Окcид, соответствующий высшей кислоте ксенона, получают взаимодействием Na4XeO6 с безводной охлажденной серной кислотой. Это оксид ксенона ХеO4. В ней, как и в октафториде, валентность ксенона равна восьми. Твердый оксид при температуре выше 0 °С разлагается на ксенон и кислород, а газообразный (при комнатной температуре) - на оксид ксенона, ксенон и кислород. Молекула ХеO4 имеет форму тетраэдра с атомом ксенона в центре. В зависимости от условий гидролиз гексафторида ксенона может идти двумя путями; в одном случае образуется XeOF4, в другом - XeO2F2. Прямой синтез из простых веществ приводит к образованию ХеОF2. Все это бесцветные твердые вещества, устойчивые при обычных условиях.

Очень интересна реакция дифторида ксенона с безводной НС1O4. В результате этой реакции получено новое соединение ксенона ХеСlO4 - чрезвычайно мощный окислитель, вероятно, самый сильный из всех перхлоратов.

Синтезированы также соединения ксенона, не содержащие кислорода. Преимущественно это двойные соли, продукты взаимодействия фторидов ксенона с фторидами сурьмы, мышьяка, бора, тантала: XeF2*SbF5, ХеF6*AsF3, ХеF6*ВF3 и ХеF2*2ТаF5. Получены вещества типа XeSbF6, устойчивые при комнатной температуре и нестойкий комплекс XeSiF6.

В распоряжении химиков имеются весьма незначительные количества радона, однако, удалось установить, что он также взаимодействует с фтором, образуя нелетучие фториды. Для криптона выделены и изучены дифторид KrF2 и тетрафторид KrF4, которые по своим свойствам напоминают соединения ксенона.

Получение благородных газов

Благородные газы встречаются в земной коре и в атмосфере. Содержание их в воздухе колеблется от 6•10-20 % (радон) до 0,934 % по объему (аргон). Содержание ксенона составляет 8,6*10-6 %, содержание криптона - 1,1*10-4 %, содержание гелия - 5*10-4 %, содержание неона - 1,8*10-3 %.

Гелий в промышленности получают из природных газов методом глубокого охлаждения. При этом он, как самое низкокипящее вещество, остается в виде газа, тогда как все другие газы конденсируются.

Неон получают совместно с гелием в качестве побочного продукта в процессе сжижения и разделения воздуха. Разделение гелия и неона осуществляется за счет адсорбции или конденсации. Адсорбционный метод основан на способности неона в отличие от гелия адсорбироваться активированным углем, охлажденным жидким азотом. Конденсационный способ основан на вымораживании неона при охлаждении смеси жидким водородом. Аргон получают при разделении жидкого воздуха, а так же из отходов газов синтеза аммиака. В природных условиях образуется при распаде изотопа калия за счет электронного захвата 1s-электрона калия ядром. Криптон извлекают вместе с ксеноном при ректификации жидкого воздуха. Радон получают как побочный продукт в процессе переработки урансодержащих руд после перевода Ra в 1 %-ные растворы соляной или бромистоводородной кислоты. Выделяемую из растворов смесь газов - Н2, О2, Не, Rn, CO2, Н2О, углеводородов очищают от Н2 и О2 на нагретых до 1000 К медных сетках, затем радон конденсируют охлаждением жидким N2 и отгонкой удаляют остаточные газы.

Применение

Области применения ксенона разнообразны и порой неожиданны. Человек использует его инертность и способность вступать в реакцию со фтором. В светотехнике признание получили ксеноновые лампы высокого давления. В таких лампах светит дуговой разряд в ксеноне, находящемся под давлением в несколько десятков атмосфер. Свет в ксеноновых лампах появляется сразу после включения, он ярок и имеет непрерывный спектр - от ультрафиолетового до ближней области инфракрасного. Ксенон используют в медицине - при рентгеноскопических обследованиях головного мозга. Как и баритовая каша, применяющаяся при просвечивании кишечника, ксенон сильно поглощает рентгеновское излучение и помогает найти места поражения. Активный изотоп ксенона-133, используют при исследовании функциональной деятельности легких и сердца.

Продувкой аргона через жидкую сталь из нее удаляют газовые включения. Это улучшает свойства металла.

Все шире применяется дуговая электросварка в среде аргона. В аргонной струе можно сваривать тонкостенные изделия и металлы, которые прежде считались трудносвариваемыми. Не будет преувеличением сказать, что электрическая дуга в аргонной атмосфере внесла переворот в технику резки металлов. Процесс намного ускорился, появилась возможность резать толстые листы самых тугоплавких металлов. Продуваемый вдоль столба дуги аргон в смеси с водородом предохраняет кромки разреза и вольфрамовый электрод от образования оксидных, нитридных и иных пленок. Одновременно он сжимает и концентрирует дугу на малой поверхности, отчего температура в зоне резки достигает 4000-6000 °С. К тому же эта газовая струя выдувает продукты резки. При сварке в аргонной струе нет надобности во флюсах и электродных покрытиях, а стало быть, и в зачистке шва от шлака и остатков флюса.

Криптоном наполняют обычные лампы с целью уменьшения испарения и увеличения яркости свечения вольфрамовой нити. Ксеноном наполняют кварцевые лампы высокого давления, являющиеся наиболее мощными источниками света. Гелий и аргон используется в газовых лазерах.

Физиологическое действие

Поскольку благородные газы являются весьма химически инертными веществами, следовало ожидать, что они не должны оказывать негативного влияния на живые организмы. Однако это не так. Вдыхание высших инертных газов в смеси с кислородом приводит человека в состояние, сходное с алкогольным опьянением. Наркотическое действие инертных газов обуславливается растворением в нервных тканях. Чем выше атомная масса инертного газа, тем больше его растворимость, тем сильнее его наркотическое действие.

Список литературы

1. Ахметов, Н.С. Общая и неорганическая химия / Н.С. Ахметов. - М. : Высшая школа,1988. - 639 с.

2. Гиллеспи, Р. Модель отталкивания электронных пар валентной оболочки и строение молекул / Р. Гиллеспи, И. Харгиттаи. - М. : Мир, 1992. - 296 с.

3. Глинка, Н.Л. Общая химия / Н.Л. Глинка.- М.: Изд-во «Химия», 1999. - 520 с.

4. Карапетьянц, М.Х. Строение вещества / М.Х. Карапетьянц, С.И. Дракин. - 3-е изд., перераб. и доп. - М. : Высшая школа, 1978. - 303 с.

5. Кукушкин, Ю.Н. Химия координационных соединений / Ю.Н. Кукушкин. - М. : Высш. шк., 1985. - 455 с.

6. Лилич, Л.С. Растворы как химические системы: учеб. пособие / Л.С. Лилич, М.К. Хрипун. - СПб. : Изд-во СПбГУ, 1994. - 216 с.

7. Некрасов, Б.В. Основы общей химии / Б.В. Некрасов. - М. : Химия, 1972-1973. - Т.1. - 656 с.; Ч. 2. - 688 с.

8. Пиментел, Дж.К. Возможности химии сегодня и завтра / Дж. Пиментел, Дж. Кунрод. - М. : Мир, 1992. - 285 с.

9. Полторак, О.М., Ковба Л.М. Физико-химические основы неорганической химии / О.М. Полторак, Л.М. Ковба. - М. : Изд-во Моск. ун-та, 1984. - 288 с.

10. Практикум по неорганической химии / под ред. В.П. Зломанова. -

3-е изд., перераб. и доп. - М. : Изд-во Моск. ун-та, 1994. - 320 с.

11.Спицын, В.И. Неорганическая химия / В.И. Спицын, Л.И. Мартыненко. - М. : Изд-во Моск. ун-та, 1991, 1994. - Ч. 1, 2.

12. Cotton F.A. Advanced Inorganic Chemistry / F.A. Cotton, G . Wilkinson. - Fifth Edition. - New York: J.Wiley and Sons Inc., 1988. - 1455 p.

13. Shriver D.F. Inorganic Chemistry / D.F. Shriver, P.W. Atkins, C.H. Langford. - Second Edition. - Oxford. Oxford University Press., 1994. - 884 p.

14. Суворов А.В. Общая химия / А.В. Суворов, А.Б. Никольский. - СПб.: Химия, 1997. - 623 с.

15. Угай, Я.А. Неорганическая химия / Я.А. Угай. - М. : Высшая школа, 1989. - 463 с.

16. Хьюи, Дж. Неорганическая химия / Дж. Хьюи. - М., 1987. - 696 с.

17. Хьюи, Дж. Неорганическая химия: строение вещества и реакционная способность / Дж. Хьюи. - М.: Химия, 1987. - 696 с.

18. Химия и периодическая таблица / под ред. К. Сайто. - М. : Мир, 1982. - 320 с.

Размещено на Allbest.ru

...

Подобные документы

  • Инертные газы – химические элементы восьмой группы периодической системы: гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe, радон Rn. История их названия. Эмиссионный спектр неона. Физиологическое действие ксенона. Концентрация радона в воздухе.

    презентация [507,5 K], добавлен 14.04.2015

  • Общая характеристика химических элементов IV группы таблицы Менделеева, их нахождение в природе и соединения с другими неметаллами. Получение германия, олова и свинца. Физико-химические свойства металлов подгруппы титана. Сферы применения циркония.

    презентация [1,8 M], добавлен 23.04.2014

  • Общая характеристика элементов І группы, их химические и физические свойства, история открытия и особенности способов получения. Литий и его соединения. Закономерности в строении атомов щелочных металлов. Правила хранения некоторых элементов этой группы.

    презентация [1,2 M], добавлен 30.11.2012

  • Медь - химический элемент I группы периодической системы Менделеева. Общая характеристика меди. Физические и химические свойства. Нахождение в природе. Получение, применение, биологическая роль. Использование соединений меди.

    реферат [13,4 K], добавлен 24.03.2007

  • История и происхождение названия меди, ее нахождение в природе. Физические и химические свойства элемента, его основные соединения. Применение в промышленности, биологические свойства. Нахождение серебра в природе и его свойства. Сведения о золоте.

    курсовая работа [45,1 K], добавлен 08.06.2011

  • История открытия водорода. Общая характеристика вещества. Расположение элемента в периодической системе, строение его атома, химические и физические свойства, нахождение в природе. Практическое применение газа для полезного и вредного использования.

    презентация [208,2 K], добавлен 19.05.2014

  • Характеристика металлов - веществ, обладающих в обычных условиях высокой электропроводностью и теплопроводностью, ковкостью, "металлическим" блеском. Химические и физические свойства магния. История открытия, нахождение в природе, биологическая роль.

    презентация [450,8 K], добавлен 14.01.2011

  • Общая характеристика, краткие сведения об истории открытия элементов и их распространённости в природе. Физико-химические свойства железа, кобальта и никеля. Свойства соединений железа в степенях окисления. Цис-, транс-изомерия соединений платины.

    реферат [36,7 K], добавлен 21.09.2019

  • Общая характеристика р-элементов III группы, их основные физические и химические свойства. Описание самых распространенных элементов: бора, алюминия, подгруппы галлия. Их биологическая роль, применение и распространенность. Причины парникового эффекта.

    дипломная работа [221,3 K], добавлен 08.08.2015

  • Общая характеристика кислорода. Физические и химические свойства. История открытия. Нахождение в природе. Получение за счет разделения воздуха при низких температурах. Использование в металлургии. Биологическая роль. Кислород в атмосфере Земли.

    реферат [14,3 K], добавлен 09.03.2007

  • Классификация альдегидов, строение, нахождение в природе, биологическое действие, применение. Номенклатура кетонов, история открытия, физические и химические свойства. Реакции нуклеофильного присоединения. Химические методы идентификации альдегидов.

    презентация [640,8 K], добавлен 13.05.2014

  • Кальций как один из самых распространенных элементов на Земле, его главные физические и химические свойства, история открытия и исследований. Нахождение элемента в природе, сферы его практического применения. Существующие соединения и биологическая роль.

    контрольная работа [818,8 K], добавлен 26.01.2014

  • История открытия железа. Положение химического элемента в периодической системе и строение атома. Нахождение железа в природе, его соединения, физические и химические свойства. Способы получения и применение железа, его воздействие на организм человека.

    презентация [8,5 M], добавлен 04.01.2015

  • Общая характеристика меди. История открытия малахита. Форма нахождения в природе, искусственные аналоги, кристаллическая структура малахита. Физические и химические свойства меди и её соединений. Основной карбонат меди и его химические свойства.

    курсовая работа [64,2 K], добавлен 24.05.2010

  • Характеристика брома как химического элемента. История открытия, нахождение в природе. Физические и химические свойства этого вещества, его взаимодействие с металлами. Получение брома и его применение в медицине. Биологическая роль его в организме.

    презентация [2,0 M], добавлен 16.02.2014

  • Физические свойства элементов главной подгруппы III группы. Общая характеристика алюминия, бора. Природные неорганические соединения углерода. Химические свойства кремния. Взаимодействие углерода с металлами, неметаллами и водой. Свойства оксидов.

    презентация [9,4 M], добавлен 09.04.2017

  • История открытия стронция. Нахождение в природе. Получение стронция алюминотермическим методом и его хранение. Физические свойства. Механические свойства. Атомные характеристики. Химические свойства. Технологические свойства. Области применения.

    реферат [19,2 K], добавлен 30.09.2008

  • Элемент главной подгруппы второй группы, четвертого периода периодической системы химических элементов Д. И. Менделеева. История и происхождение названия. Нахождение кальция в природе. Физические и химические свойства. Применение металлического кальция.

    реферат [21,9 K], добавлен 01.12.2012

  • Исследование природы радона, его соединений, влияние на человека: общие сведения, история открытия, физические и химические свойства; получение, нахождение в природе. Применение радонозащитных покрытий различных материалов; радоновая проблема в экологии.

    реферат [2,0 M], добавлен 10.05.2011

  • Магний как элемент главной подгруппы второй группы, третьего периода с атомным номером 12, его основные физические и химические свойства, строение атома. Распространенность магния, соединения и сферы их практического применения. Регенерация клеток.

    реферат [475,5 K], добавлен 18.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.