Аномальная вязкость растворов ВМС
Зависимость вязкости растворов низкомолекулярных веществ ньютоновских жидкостей и растворов ВМС от напряжения сдвига. Основные причины изучения аномалии вязкости. Анализ применения уравнения Штаудингера в условиях ламинарного (послойного) течения.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 26.06.2020 |
Размер файла | 184,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
федеральное государственное бюджетное образовательное учреждение высшего образования
«Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ» (КНИТУ-КАИ)
Зеленодолький институт машиностроения и информационных технологий (филиал)
Кафедра естественных, гуманитарных, экономических дисциплин
Реферат
По дисциплине «Химия»
На тему: Аномальная вязкость растворов ВМС. Уравнение Штаудингера
Выполнил:
Тихонова А.В.
Проверила:
Федотова. Н.Р
Зеленодольск 2020 год
Содержание
Введение
1. Аномальная вязкость растворов ВМС
2. Аномалии вязкости вызываются рядом причин
3. Уравнение Штаудингера
Заключение
Список используемой литературы
Введение
Растворы ВМС только при очень больших разбавлениях (~0,01%) подчиняются законам Ньютона и Пуазейля. Характерной особенностью растворов ВМС является их высокая вязкость по сравнению с чистым растворителем даже при малых концентрациях.
Вязкостью (внутренним трением) называют свойство жидкостей оказывать сопротивление действию внешних сил, вызывающих их течение. Помимо этого растворы ВМС не являются ньютоновскими жидкостями, так как величина их вязкости (з) зависит от напряжения сдвига (р) - отношения тангенциально приложенной к образцу силы к единице поверхности
Причины аномалии вязкости заключаются в наличии структурной вязкости у подобных систем. Структурная вязкость - это дополнительная вязкость, обусловленная добавочным сопротивлением течению со стороны внутренних надмолекулярных пространственных структур - сеток, нитей, крупных капель эмульсий. Вязкость таких систем не остается постоянной при увеличении напряжения сдвига, а резко падает, пока не достигает постоянной величины, но на более низком уровне вследствие разрушения структуры.
1. Аномальная вязкость растворов ВМС
Растворы ВМС только при очень больших разбавлениях (~0,01%)
Рис. 1 Зависимость вязкости растворов низкомолекулярных веществ ньютоновских жидкостей (1) и растворов ВМС (2) от напряжения сдвига.
Особенно сильно это свойство проявляется у полимеров с длинными линейными молекулами, например у каучука. Растворы полимеров с той же молекулярной массой, но со сферической формой молекул имеют меньшую вязкость.
Отсюда следует, что вязкость растворов полимеров возрастает пропорционально асимметрии их молекул. При одинаковой химической структуре вязкость возрастает с увеличением молекулярной массы. Она зависит также от концентрации полимера и межмолекулярных сил взаимодействия.
Рис. 2. Изменение структуры растворов ВМС при увеличении напряжения сдвига.
Область постоянства вязкости аномально вязких жидкостей называют псевдопластической областью. Дальнейшее повышение напряжения сдвига вызывает увеличение коэффициента вязкости, что связано с турбулентностью.
Экспериментальные данные показывают, что коллоидные аномально вязкие системы могут течь и при очень малых давлениях и при этом вязкость остается постоянной, но очень высокой. Такое течение называют ползучестью.
Увеличение давления резко снижает вязкость ползучих систем, пока не наступает вторая область постоянства вязкости - псевдопластическая.
2. Аномалии вязкости вызываются рядом причин
1. Структурообразование - процесс агрегации частиц коллоидных растворов, суспензий, растворов ВМС и образования пространственных легкоразрушимых структур.
2. Изменение ориентации в потоке частиц удлиненной формы и макромолекул при увеличении градиента скорости.
3. Деформация клубков макромолекул полимера или капель эмульсий в потоке.
С повышением температуры вязкость структурированных систем резко уменьшается за счет разрушения структуры. При понижении температуры доля структурной вязкости значительно увеличивается.
Для характеристики вязкости растворов пользуются величинами относительной и удельной вязкости. Относительную вязкость зотн рассчитывают по уравнению:
где з - вязкость раствора; зо - вязкость растворителя. Для расчета удельной вязкости используют соотношение:
Вязкость растворов ВМС увеличивается с возрастанием их средней молярной массы, поэтому вязкость растворов полимеров часто характеризуют приведенной вязкостью зпр:
где Сосн - концентрация в основных молях:
Приведенная вязкость увеличивается при увеличении концентрации (рис.3).
Приведенную вязкость бесконечно разбавленного раствора называют характеристической вязкостью [з].
Рис. 3. График зависимости приведенной вязкости от концентрации
Растворы ВМС представляют собой истинные растворы, т.е. гомогенные, термодинамически устойчивые, не нуждающиеся в стабилизаторе, и образующиеся самопроизвольно системы. Однако растворы ВМС рассматривают в коллоидной химии, так как размеры их молекул приближаются, а в некоторых случаях даже превосходят размер коллоидных частиц. Кроме того, растворы ВМС в «плохих» растворителях содержат молекулы или агрегаты молекул с явно выраженной межфазной поверхностью.
В концентрированных растворах ВМС обычно возникают достаточно большие ассоциаты молекул, которые можно рассматривать как вторую фазу. Наконец, растворы ВМС благодаря большим размерам их молекул обладают рядом свойств лиозолей: схожестью оптических свойств, малой скоростью диффузии, низким осмотическим давлением. Все это позволяет рассматривать многие проблемы одновременно и для коллоидных растворов, и для растворов ВМС.
В противоположность золям осмотическое давление растворов ВМС существенно и может быть измерено с достаточной точностью, что используется для определения их молекулярной массы.
С повышением концентрации ВМС их осмотическое давление перестает подчиняться закону Вант-Гоффа (р = cRT) и растет быстрее, причем экспериментально полученная кривая лежит выше теоретической прямой. низкомолекулярный жидкость раствор вязкость
Рис. 4. Зависимость осмотического давления от концентрации раствора: 1 - раствор ВМС; 2 - раствор низкомолекулярного неэлектролита
Причиной отклонения от законов Вант-Гоффа является гибкость цепей ВМС, которые ведут себя, как несколько коротких молекул. Для расчета осмотического давления растворов ВМС предложено уравнение Галлера:
где c - концентрация раствора ВМС, г/л; М - молярная масса, г/моль; b - коээфициент, учитывающий гибкость и форму молекулы ВМС в растворе.
В сложных биологических системах суммарное осмотическое давление создается как низкомолекулярными электролитами и неэлектролитами, так и биополимерами. Составляющая суммарного осмотического давления, которая обусловлена наличием белков и других частиц коллоидного размера, называется онкотическим давлением. Доля онкотического давления относительно невелика: она составляет примерно 0,5% от суммарного осмотического давления (?3,1кПа), однако отклонение этой величины от нормы приводит к серьезным нарушениям в функционировании организма.
Вязкость крови в норме - 4-5, а плазмы - 1,6 мПаЧс. Для сравнения вязкость воды при температуре 20°С составляет 1мПаЧc.
При различных патологических состояниях значения вязкости крови могут изменяться от 1,7 до 22,9 мПаЧс.
Движение крови в организме, в основном, ламинарно. Турбулентности могут возникать в полостях сердца, крупных артериях вблизи него, при интенсивной физической нагрузке, при некоторых патологических процессах, приводящих к аномальному снижению вязкости крови. Появление локальных сужений в просвете сосудов при образовании атеросклеротических бляшек также могут привести к возникновению турбулентности в течении крови сразу же ниже препятствия.
В норме вязкость крови практически не зависит от возраста, пола, режима питания.
На вязкость крови в живом организме влияют температура (зависимость сложная), гематокрит - величина, равная отношению объема эритроцитов к объему плазмы. В норме Vэр/Vпл = 0,4. При увеличении этого показателя вязкость увеличивается.
К возрастанию вязкости приводит повышение концентрации белков в плазме. На вязкость крови также оказывает влияние состояние мембран эритроцитов. Как известно, нормальные эритроциты отличаются исключительно высокой эластичностью, позволяющей им проникать в мельчайшие капилляры. Отвердение эритроцитов приводит к возрастанию вязкости их суспензий.
Вязкость плазмы крови повышается при атеросклерозе, инфаркте миокарда, венозных тромбозах. Понижение вязкости наблюдается при циррозе печени.
Вязкость крови имеет диагностическое значение для гемодинамики. Чем больше вязкость крови, тем быстрее ослабевает пульсовая волна.
В настоящее время изучаются реологические свойства желудочного сока, мокроты и других биологических жидкостей.
3. Уравнение штаудингера
В условиях ламинарного (послойного) течения и при минимальном взаимодей-ствии макромолекул, вязкость разбавленных растворов полимеров с жесткими и палочкообразными молекулами пропорциональна их весовой концентрации. Эта зависимость выражается уравнением Штаудингера:
где К - полимергомологическая константа.
Удельная вязкость показывает относительный прирост вязкости чистого растворителя при добавлении к нему полимера.
Уравнение Штаудингера справедливо для сравнительно коротких цепей или более длинных, но жестких, которые сохраняют форму вытянутых или слегка изогнутых палочек. Чем длиннее молекулярная цепь, тем больший объем вращения она имеет и тем больше вязкость раствора.
Заключение
Растворы ВМС представляют собой истинные растворы, т.е. гомогенные, термодинамически устойчивые, не нуждающиеся в стабилизаторе, и образующиеся самопроизвольно системы. Однако растворы ВМС рассматривают в коллоидной химии, так как размеры их молекул приближаются, а в некоторых случаях даже превосходят размер коллоидных частиц. Кроме того, растворы ВМС в «плохих» растворителях содержат молекулы или агрегаты молекул с явно выраженной межфазной поверхностью.
В концентрированных растворах ВМС обычно возникают достаточно большие ассоциаты молекул, которые можно рассматривать как вторую фазу. Наконец, растворы ВМС благодаря большим размерам их молекул обладают рядом свойств лиозолей: схожестью оптических свойств, малой скоростью диффузии, низким осмотическим давлением.
Все это позволяет рассматривать многие проблемы одновременно и для коллоидных растворов, и для растворов ВМС.
Список используемой литературы
1. Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. - М.: Химия. - 1988. - 464 с.
2. Воюцкий С.С. Курс коллоидной химии. - М.: Химия. - 1964. - 574 с.
3. Щукин Е.Д., Перцов А.В., Амелина Е.А. Коллоидная химия. - М.: Высш. шк. - 1992. - 414 с.
4. Кузнецов В.В., Усть-Качкинцев В.Ф. Физическая и коллоидная химия. - М.: Высш. шк. - 1976. - 277 с.
Размещено на Allbest.ru
...Подобные документы
Понятие растворов высокомолекулярных соединений (ВМС). Процесс набухания ВМС: его стадии, причины, давление и степень. Вязкость дисперсных систем и растворов ВМС, методы ее измерения. Структурная и относительная вязкость. Коагуляционные структуры.
реферат [52,4 K], добавлен 22.01.2009Методы транспортирования по трубопроводам высоковязких нефтей. Теплоносители для обеспечения путевого подогрева. Зависимость вязкости структурированной системы от напряжения сдвига. Измерение вязкости представленных для испытаний образцов нефти.
реферат [1,4 M], добавлен 24.09.2014Константы и параметры, определяющие качественное (фазовое) состояние, количественные характеристики растворов. Виды растворов и их специфические свойства. Способы получения твердых растворов. Особенности растворов с эвтектикой. Растворы газов в жидкостях.
реферат [2,5 M], добавлен 06.09.2013Природа растворяемого вещества и растворителя. Способы выражения концентрации растворов. Влияние температуры на растворимость газов, жидкостей и твердых веществ. Факторы, влияющие на расторимость. Связь нормальности и молярности. Законы для растворов.
лекция [163,9 K], добавлен 22.04.2013Конструкция ячейки, позволяющей одновременно быстро приготавливать растворы и проводить их экспресс-характеризацию по параметрам: электропроводности, светопропусканию и вязкости. Результаты исследования систем с участием ОП-10, воды и фурфурилового спирта
курсовая работа [1,7 M], добавлен 25.08.2010Механические свойства изделий из полимеров. Воздействие механического поля на жидкокристаллические растворы ЦЭЦ. Анализ результатов рентгеновских исследований растворов ЦЭЦ. Последствия сдвиговой деформации жидкокристаллических растворов ЦЭЦ в ДМФА.
статья [825,5 K], добавлен 22.02.2010Характеристика растворов, содержащих буферные системы и обладающих способностью поддерживать рН на постоянном уровне. Применение буферных растворов и их классификация. Сущность буферного действия. Буферные свойства растворов сильных кислот и оснований.
контрольная работа [43,9 K], добавлен 28.10.2015Растворимость газов и твердых тел в жидкостях. Коллигативные свойства разбавленных растворов неэлектролитов и в случае диссоциации. Понятие осмотического давления. Совершенные и реальные растворы: характеристика и уравнения. Закон распределения.
лекция [365,9 K], добавлен 28.02.2009Основные направления в развитии теории растворов. Термодинамические условия образования растворов. Методы определения парциальных молярных величин. Закон Рауля, предельно разбавленные и неидеальные растворы. Азеотропные смеси и законы Гиббса-Коновалова.
курсовая работа [67,5 K], добавлен 24.12.2014Приготовление растворов полимеров: процесс растворения полимеров; фильтрование и обезвоздушивание растворов. Стадии производства пленок раствора полимера. Общие требования к пластификаторам. Подготовка раствора к формованию. Образование жидкой пленки.
курсовая работа [383,2 K], добавлен 04.01.2010Роль осмоса в биологических процессах. Процесс диффузии для двух растворов. Формулировка закона Рауля и следствия из него. Применение методов криоскопии и эбуллиоскопии. Изотонический коэффициент Вант-Гоффа. Коллигативные свойства растворов электролитов.
реферат [582,1 K], добавлен 23.03.2013Зависимость температуры кипения водных растворов азотной кислоты от содержания HNO. Влияние состава жидкой фазы бинарной системы на температуру кипения при давлении. Влияние температуры на поверхностное натяжение водных растворов азотной кислоты.
реферат [3,9 M], добавлен 31.01.2011Описание принципа действия гальванического элемента как устройства превращения энергии химической реакции в электрическую энергию. Электродный потенциал растворов и электрохимический ряд напряжения металлов. Электролиз растворов, аккумуляторы и батареи.
презентация [1,1 M], добавлен 16.01.2015Виды и единицы измерения плотности. Разновидности плотности для сыпучих и пористых тел. Основные достоинства пикнометрического метода определения плотности. Области использования бура Качинского. Виды вязкости и приборы, используемые для ее определения.
реферат [313,2 K], добавлен 06.06.2014Физические свойства воды, дипольный момент молекулы. Механизм образования растворов. Влияние давления, температуры и электролитов на растворимость веществ. Тепловая теорема Нернста. Главные способы выражения состава растворов. Понятие о мольной доле.
реферат [741,2 K], добавлен 23.03.2013Выделение серебра из отработанных фотографических растворов путем электролиза. Метод, сорбирующий ионы серебра из растворов. Химические методы регенерации серебра. Осаждение труднорастворимой соли сульфида серебра. Восстановление серебра металлами.
контрольная работа [102,5 K], добавлен 11.10.2010Физические методы анализа аминокислот. Экспериментальное получение спектров пропускания растворов, выделение спектров поглощения с учётом пропускания кюветы и потерь на отражение. Зависимость максимума полосы поглощения от концентрации раствора.
контрольная работа [371,9 K], добавлен 19.02.2016Фазовые равновесия, режимы синтеза и свойства стронция, барийсодержащих твёрдых растворов состава (Sr1-xBax) 4М2O9 (М-Nb, Ta) со структурой перовскита. Характеристика исходных веществ и их подготовка. Методы расчета электронной структуры твёрдых тел.
курсовая работа [3,7 M], добавлен 26.04.2011Общий анализ взаимодействия поверхностно-активных веществ (ПАВ) с полимерами. Особенности дифильности белков. Относительная вязкость растворов желатина в зависимости от концентрации добавленного додецилсульфата натрия. Роль взаимодействий белков с ПАВ.
реферат [709,8 K], добавлен 17.09.2009Обзор растворов, твердых, жидких или газообразных однородных систем, состоящих из двух или более компонентов. Описания оборудования для эбуллиоскопического и криоскопического определения молекулярных весов. Анализ давления насыщенного пара растворителя.
реферат [251,8 K], добавлен 19.12.2011