Применение титриметрических методов анализа в мониторинге объектов окружающей среды

Общие положения титриметрического метода. Химический эквивалент и молярная концентрация эквивалента. Количественный анализ вод. Определение химического потребления кислорода в пробах природных и очищенных, и сточных вод титриметрическим методом.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 05.08.2020
Размер файла 116,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

Применение титриметрических методов анализа в мониторинге объектов окружающей среды

Содержание

Введение

Глава 1. Сущность титриметрического метода анализа

1.1 Общие положения титриметрического метода

1.2 Техника выполнения титрования "Индикаторы

1.3 Химический эквивалент и молярная концентрация эквивалента

Глава 2. Количественный анализ вод

2.1 Экологическое нормирование

2.2 Определение массовой концентрации кальция в пробах природных и очищенных сточных вод титриметрическим методом с трилоном Б

2.3 Определение химического потребления кислорода в пробах природных и очищенных и сточных вод титриметрическим методом

2.4 Определение жесткости в пробах природных и очищенных сточных вод титриметрическим методом

2.5 Определение массовой концентрации растворенного кислорода в пробах природных и очищенных сточных вод йодометрическим методом

Заключение

Список использованных источников

Введение

Экологический мониторинг - это система контроля антропогенных загрязнений окружающей среды. Природные экологические системы тесно взаимосвязаны друг с другом. Это предопределяет сложность и необходимость учёта различных природных и химических факторов при контроле качества окружающей среды методами классической и современной аналитической химии.

Экология, загрязнения окружающей среды, экологический мониторинг, экологическая химия - часто встречающиеся в наше время слова и сочетания, выражающие всеобщую озабоченность состоянием природной среды. Первопричина возникновения проблемы - обнаружение в экологических системах, прежде всего в биосфере, интенсивных и тревожных изменений, вызванных деятельностью человека, антропогенных изменений. Из большого числа вредных факторов отметим выброс в биосферу химически чуждых природе веществ, физически активных веществ, пыли, аэрозолей, повышение температуры биосферы, энергетическое загрязнение, биологическое и физическое воздействие на неё. Для оценки степени негативных изменений осуществляют экологический мониторинг - систему наблюдений и контроля за изменениями в составе и функциях различных экологических систем. Экологический мониторинг - это серьёзная и сложная проблема. Уровни её организации различны. Он может осуществляться в глобальном, национальном, региональном и локальном масштабах. Изучение и контроль состояния окружающей среды включают исследования таких природных ресурсов, как разнообразие воды, атмосферный воздух, почвы, совокупность этих систем с точки зрения определения в них загрязняющих химических веществ, нарушающих сложившееся экологическое равновесие в природе. Здесь чётко просматривается химическая сущность обсуждаемой проблемы: с этой точки зрения можно говорить и о химическом мониторинге. Без химического анализа здесь не обойтись. Поэтому в экологический мониторинг включают различные химические, физико-химические и биологические методы анализа. К химическим методам экологического мониторинга относят гравиметрию и титриметрию. Суть гравиметрического анализа состоит в определении массы и процентного содержания какого-либо элемента, иона или химического соединения, находящегося в испытуемой пробе (в экологии определяют сухой остаток, взвешенные вещества, сульфаты в воде и нефтепродукты в воде и почве и др.). Гравиметрический анализ является наиболее точным их химических методов анализа. Область применения его весьма широка, так как каждый элемент (за единичными исключениями) образуют те или иные малорастворимые соединения, в виде которых он может быть количественно определен гравиметрическим методом. Однако этот метод имеет и весьма крупный недостаток, заключающийся в длительности определений. Результаты анализа получаются в лучшем случае через несколько часов, чаще же анализ заканчивается лишь на следующий день. Титриметрический анализ в отношении скорости выполнения дает огромное преимущество по сравнению с гравиметрическим анализом. Ускорение определений достигается благодаря тому, что вместо взвешивания продукта реакции при титриметрическом анализе измеряют объем затрачиваемого на ее проведение раствора реагента, концентрация (или, как говорят, титр) которого всегда точно известна. Таким образом, в титриметрическом (объемном) анализе количественное определение химических веществ осуществляется чаще всего путем точного измерения объемов растворов двух веществ, вступающих между собой в реакцию. Данный метод является наиболее надежным и точным. Соответственно, актуальностью данной темы будет являться: применение титриметрического метода анализа как достаточно надежного и точного, и как показал анализ литературы, широко применяемого при определении содержания анализируемых веществ в мониторинге объектов окружающей среды. Объектом данной работы будут служить: теоретические аспекты титриметрического анализа. Предметом будет являться: применение титриметрических методов в анализе вод. Целью данной работы является: изучение особенностей применения титриметрических методов анализа в мониторинге объектов окружающей среды. Реализация данной цели подразумевает выполнение ряда задач: - Раскрыть общие положения титриметрического метода; - Рассмотреть технику выполнения титрования; - Ознакомиться с понятиями "химический эквивалент" и "молярная концентрация эквивалента"; - Раскрыть понятие "экологическое нормирование"; - Рассмотреть и проанализировать количественный анализ на определение: кальция в природных и сточных водах; химического потребления кислорода в природных и сточных водах; жесткости в природных и сточных водах; растворенного кислорода в природных и очищенных сточных водах.

Глава 1. Сущность титриметрического метода анализа

1.1 Общие положения титриметрического метода

В производственной, природоохранной, научной деятельности постоянно приходится выяснять состав того или иного продукта, сырья, природного или искусственного материала. Эти задачи решаются методами аналитической химии. При этом может осуществляться качественный анализ, когда достаточно установить наличие или отсутствие в анализируемой пробе определенных веществ, или количественный анализ, когда выясняют, какие вещества и в каком количестве входят в состав (в виде основного компонента или как примеси) анализируемой пробы. "Одним из наиболее распространенных и точных методов количественного химического анализа является титриметрический метод анализа. Такое название указывает, что при осуществлении метода производят процесс титрования, заключающийся в постепенном прибавлении одного раствора к определённому объему другого раствора. При этом используется то очевидное обстоятельство, что реакция между двумя веществами протекает до тех пор, пока одно из них не будет израсходовано. По уравнению реакции можно рассчитать количество одного из реагентов, если известно, сколько вступило в реакцию другого реагента".Химия: лабораторный практикум: в двух частях: учебно-практическое пособие / сост. В.Т. Фомичев, О.А. Кузнечиков, В.А. Андронова и др. ; Волгогр. гос. архит.-строит. ун-т. Волгоград: ВолгГАСУ, 2010. - Ч. 2. - 56 с. Титриметрический метод количественного анализа основан на точном измерении объемов растворов реагирующих веществ, концентрация одного из которых точно известна (растворы с известной концентрацией называются стандартными*). Определённый объем одного раствора титруют другим раствором. Титрование прекращают, когда вещество в титруемом растворе расходуется полностью в результате происходящей реакции. Этот момент называется точкой эквивалентности и соответствует тому, что количество вещества (число моль) в добавленном растворе (титранте) становится эквивалентным количеству вещества, содержавшемуся в титруемом растворе (момент достижения точки эквивалентности определяют по изменению окраски индикатора. химический проба кислород

"Титриметрический анализ может быть основан на различных типах химических реакций: а) методы кислотно-основного титрования (в экологии, например, определяют карбонатную жесткость). В основу этих методов положены реакции нейтрализации. Точка эквивалентности фиксируется при помощи индикаторов, которые меняют свою окраску в зависимости от реакции среды (величины pH). Этими методами определяют концентрации кислот, щелочей и солей, гидролизующихся в водных растворах. В качестве рабочих растворов используют титрованные растворы кислот и сильных оснований. б) методы окислительно-восстановительного титрования (в экологии данным методом определяют содержание органических примесей в природной и питьевой воде (перманганатометрия) и в воде, загрязненной сточными водами (хроматометрия)). Эти методы основаны на окислительно-восстановительных реакциях, которые протекают между искомым веществом и веществом рабочего раствора (пермангана-тометрия, йодометрия, хроматометрия и др.). Их используют для обнаружения различных восстановителей (Ре 2+, С 20*~, N02 и ДР-) или окислителей (Сг, 02л, МпО ", СЮ), Рел и т. д.). Точка эквивалентности определяется по изменению окраски либо самого раствора, либо редокс-индикатора. в) комплексометрия (в экологии могутопределять жесткость воды). Эти методы дают возможность определять целый ряд катионов (Mg2+, Са 2+, Ъп 2+, Р^2+, АР+ и др.) и анионов (СЫ", Р", СГ), которые обладают способностью образовывать малодиссоциированные комплексные ионы. Особый интерес представляет комплексен III (трилон Б), широко используемый в количественном анализе. Точку эквивалентности чаще всего устанавливают по исчезновению анализируемого катиона в растворе с помощью так называемых металл-индикаторов. В качестве индикаторов для определения суммарного содержания кальция и магния могут быть взяты эриохром черный Т и хромовый темно-синий, для обнаружения кальция - мурексид, железа - роданид аммония в сульфаниловой кислоте и т. д.. г) осадительное титрование (определяют содержание хлоридов в воде и почве). Методом осадительного титрования определяют элемент, который, взаимодействуя с титрованным раствором, может осаждаться в виде малорастворимого соединения; при этом изменяются свойства среды, что позволяет установить точку эквивалентности." Собгайда, Н.А. Методы контроля качества окружающей среды: учебное пособие / Н.А. Собгайда. - М. : Форум, 2016 - 10 с. Различают прямое, обратное титрование и титрование заместителя. При прямом титровании к раствору определяемого вещества (аликвоте или навеске, титруемому веществу) добавляют небольшими порциями раствор титранта (рабочий раствор). При обратном титровании к раствору определяемого вещества добавляют сначала заведомый избыток специального реагента и затем титруют его остаток, не вступивший в реакцию. При заместительном титровании к раствору определяемого вещества добавляют сначала заведомый избыток специального реагента и затем титруют один из продуктов реакции между анализируемым веществом и добавленным реагентом. Область применения: измерение показателей качества воды питьевой, природных и сточных вод, почвы, воздуха. Титриметрическим методом проводят определение:

- жесткости в питьевой воде в соответствии ГОСТ 4151-72;

- хлоридов в питьевой воде в соответствии ГОСТ 4245-72;

- кальция в природных и сточных водах в соответствии рд 52.24.403-2007.

- ХПК в природных и сточных водах в соответствии ПНД Ф 14.1:2.100-97

- жесткости в природных и сточных водах в соответствии ПНД Ф 14.1.2.98-97;

- растворенного кислорода в сточных водах в соответствии ПНД Ф 14.1:2.101-97

1.2 Техника выполнения титрования "Индикаторы

Для прибавления титранта к титруемому раствору используют бюретку - стеклянную узкую и длинную трубку, на которой нанесена градуировка десятых долей миллилитра (см рис. на первой странице обложки). Выпускное устройство снизу бюретки позволяет точно регулировать скорость добавления титранта (от струи до отдельных капель) и точно измерять объем добавленного титранта. В лабораторной практике пользуются обычно бюретками на 25 мл. Определенное количество титруемого раствора (в большинстве случаев это исследуемый раствор) отмеряют и переносят в коническую колбу. Туда же вливают несколько капель раствора индикатора. К раствору в колбе постепенно добавляют из бюретки титрант (в большинстве случаев, (но не всегда!) титруемый раствор является исследуемым раствором, а титрант - стандартным). При достижении точки эквивалентности окраска индикатора меняется, титрование прекращают и измеряют по шкале бюретки объем добавленного титранта, значение которого затем используют для расчетов". Химия: лабораторный практикум: в двух частях: учебно-практическое пособие / сост. В.Т. Фомичев, О.А. Кузнечиков, В.А. Андронова и др. ; Волгогр. гос. архит.-строит. ун-т. Волгоград: ВолгГАСУ, 2010. - Ч. 2. - 46 с. Окраска индикатора зависит от концентрации веществ, находящихся в растворе. Например, окраска индикаторов, применяемых в кислотно-основном титровании (методе нейтрализации), зависит от концентрации ионов водорода в растворе:

Индикатор

Цвет раствора

в кислой среде

переходная окраска

в щелочной среде

Метиловый оранжевый

розовый

оранжевый

желтый

Фенолфталеин

бесцветный

красно-фиолетовый

красно-фиолетовый

"Если титровать щелочной раствор кислотой в присутствии метилового оранжевого, то окраска титруемого будет оставаться желтой вплоть до полной нейтрализации щелочного компонента, что и означает достижение точки эквивалентности; при этом индикатор меняет окраску с желтой на оранжевую. Если добавить хотя бы одну каплю избыточной кислоты, окраска становится красно-розовой. В таком случае говорят, что "раствор перетитрован". При этом измеренный по бюретке объем титранта больше, чем объем, в действительности необходимый для нейтрализации; это вносит ошибку в последующие расчеты." Там же, с. 58. В титриметрии, кроме метода нейтрализации, существуют и другие методы, в которых используются свои индикаторы, меняющие окраску в зависимости от присутствия каких-либо веществ в растворе.

1.3 Химический эквивалент и молярная концентрация эквивалента

Какие количества веществ являются эквивалентными друг другу, определяется уравнением реакции. Например, в реакции нейтрализации:

NaOH + HCl = NaCl + H2O

реагируют без остатка 1 моль щелочи и 1 моль кислоты. Но при взаимодействии гидроксида натрия с серной кислотой:

NaOH + ЅH2SO4= ЅNa2SO4 + H2O

на нейтрализацию 1 моля щелочи достаточно Ѕ моля серной кислоты. Принято считать, что один моль HCl (как и один моль NaOH) представляет собой один химический эквивалент. В то же время Ѕ моля серной кислоты также представляет один химический эквивалент. Отсюда следует, что соотношение, при котором вещества прореагируют друг с другом без остатка, надо вычислять не по числу молей этих веществ, а по числу их молей эквивалентов. Таким образом, для выражения содержания веществ в растворах, используемых в титриметрии, удобно использовать концентрацию (см. раздел общей химии "Способы выражения концентраций растворов"), показывающую, сколько молей эквивалента вещества находится в единице объема (одном литре) раствора. Это так называемая молярная концентрация эквивалента (Сн, моль экв/л). Ранее для этой концентрации использовалось название "нормальная концентрация" (единица измерения мг-экв/л), которое в настоящее время исключено из нормативных документов: ГОСТов, методик и т.п. Однако это старое название продолжает широко употребляться в практической работе. Соответственно, характеризуя значение Сн, по-прежнему говорят, что раствор имеет определенную нормальность; например, раствор с концентрацией 2 моль экв/л называют двунормальным, 1 моль экв/л - нормальным, 0,1 моль экв/л - децинормальным и обозначают соответственно 2 н., 1 н., 0,1 н. и т.д. В данном учебном пособии такие термины и обозначения также используются. "Понятие химического эквивалента позволяет учесть, что одна молекула вещества может быть в реакции равноценна двум, трем и даже большему числу молекул другого вещества. Химическим эквивалентом вещества называется такое количество (число моль) или масса этого вещества, которая в химических реакциях эквивалентна (т.е. присоединяет, замещает, выделяет) 1 моль (или 1 г) ионов водорода Н+ или атомарного водорода Н. Для кислот и оснований величина молярной массы химического эквивалента Mэкв, рассчитывается из молярной массы M с учетом числа ионов водорода, отщепляемых молекулой кислоты или числа гидроксид-ионов, отщепляемых молекулой основания при диссоциации:

; ". Там же, с. 60.

"Таким образом, показывают, какая масса из общей массы моля вещества эквивалентна в реакции одному молю однозарядных ионов. Аналогично, при нахождении молярной массы химического эквивалента отдельного иона, молярную (или атомную) массу иона делят на его заряд z, вычисляя, какая масса приходится на единичный заряд:

." Там же, с. 61.

"Расчет концентрации анализируемого раствора. Очевидно, что чем больший объем стандартного раствора титранта Vстанд потрачен на достижение точки эквивалентности и чем больше концентрация этого титранта Cстанд (здесь и далее речь идет только о нормальной концентрации, поэтому индекс "н" в обозначении Cн можно опустить), тем больше концентрация Cx анализируемого титруемого раствора, т.е. при расчете оказывается, что Cx ~ Cстанд·Vстанд. В то же время, титранта надо затратить тем больше, чем больше взято исходного титруемого раствора; чтобы это учесть, при расчете Cx произведение объема и концентрации затраченного титранта следует отнести к объему титруемого раствора Vx:

." Там же, с. 62.

Глава 2. Количественный анализ вод

2.1 Экологическое нормирование

Регулирование качества природной среды основано на определении экологически допустимого воздействия на неё, когда самоочищение природы ещё способно работать. Определёнными нормами такого щадящего воздействия, являются установленные медиками-токсикологами предельно допустимые концентрации (ПДК) загрязняющих веществ, не вызывающие нежелательных последствий. ПДК достаточно малы. Они должны быть меньше тех концентраций, которые начинают вредить здоровью, так как, во-первых, установить слишком низкое значение ПДК нельзя, потому что окажется невозможным соблюдение этих ПДК и контроль за ними. К тому же растения и животные могут быть чувствительнее человека к загрязнениям. Во-вторых, почти все загрязнения могут увеличивать свою концентрацию, проходя по пищевым цепям, так как не выводятся из организма. "ПДК устанавливается для различных объектов - воды, воздуха, почв. Перечень и количество выбрасываемых в окружающую среду загрязняющих веществ чрезвычайно велик. Прежде всего, наблюдению должны подлежать вещества, выброс которых носит массовый характер. Это, например, диоксид серы, монооксид углерода, пыль, нефтепродукты, ПАВ, пестициды. Обязательно следует контролировать и самые токсичные вещества, отличающиеся наиболее низкими ПДК. Это позволяет сформировать список приоритетных загрязнений, которые следует определять в первую очередь. Например, большинство загрязнений воздуха имеют ПДК 0,005 - 0,1 мг/м 3. В них попадают V2 O5, неорганические соединения мышьяка As, хрома Cr (6), ацетоферон, стирол и другие. Для небольшого перечня веществ ПДК ещё ниже: Hg (ртуть) 0,0003 мг/м 3, Рb (свинец) 0,0007 мг/м 3, карбонилникель 0,0005 мг/м 3, бензапирен 0,000001 мг/м 3.

Основное количество нормируемых загрязняющих веществ для воды водоемов имеют ПДК 0,1-1,0 мг/л. Для многих токсичных веществ ПДК 0,001- 0, 003 мг/л. Это неорганические соединения селена Se, ртути Hg. Для особенно опасных токсичных веществ, такие как растворимые соли сероводородной кислоты, активный хлор, бензапирен, N - нитрозоамины, диоксины в качестве норматива установлено их полное отсутствие в воде." Кузнецов В.В. Химические основы экологического мониторинга / В.В. Кузнецов // Соросовский образовательный журнал, 1999 - Вып. 1 - С. 10.

2.2 Определение массовой концентрации кальция в пробах природных и очищенных сточных вод титриметрическим методом с трилоном Б

Кальций является одним из самых распространенным элементом земной коры. В связи с высокой химической активностью в природе кальций встречается только в виде соединений. Карбонат кальция СаСО 3 - одно из самых распространенных на земле соединений. Он встречается в виде многих минералов - кальцита, мела, мрамора, известняка, доломита и др.

Основными источниками поступления кальция в природные воды являются процессы химического выветривания и растворения содержащих кальций минералов, прежде всего известняков, доломитов, гипса и других осадочных и метаморфических пород. Растворению способствуют микробиальные процессы разложения органических веществ, сопровождающиеся понижением рН. Большие количества кальция выносятся со сточными водами силикатной, металлургической, стекольной, химической промышленности и стоками с сельскохозяйственных угодий, особенно при использовании кальцийсодержащих минеральных удобрений. В естественных условиях изменение концентрации растворенного кальция обусловлено главным образом равновесием углекислых солей и двуокиси углерода. В минерализованных водах, содержащих значительное количество сульфатов, концентрация растворенного кальция понижается за счет образования малорастворимого СаSO4. В водных объектах кальций в заметных количествах может выпадать в осадок в виде СаСО 3 при испарении воды, а также в условиях активизации фотосинтеза, сопровождающегося повышением рН воды. Характерной особенностью кальция является его склонность образовывать в поверхностных водах довольно устойчивые пересыщенные растворы СаСО 3. Ионная форма кальция характерна только для маломинерализованных вод. При увеличении минерализации ионы кальция образуют нейтральные (СаSO4 и СаСО 3) или заряженные (СаНСО 3+) ионные пары. Довольно устойчивые комплексные соединения кальций образует с содержащимися в воде органическими веществами. В речных и озерных водах содержание кальция в большинстве случаев находится в пределах от 10 до 100 мг/дм 3. При контакте вод с минералами, содержащими кальций, его содержание может повышаться до нескольких сотен миллиграммов в кубическом дециметре. Предельно допустимая концентрация (ПДК) кальция в воде водных объектов рыбохозяйственного назначения составляет 180 мг/дм 3, для водных объектов хозяйственно-питьевого назначения ПДК не установлена. "Выполнение измерений основано на способности ионов кальция образовывать с трилоном Б малодиссоциированное, устойчивое в щелочной среде соединение. Конечная точка титрования определяется по изменению окраски индикатора (мурексида) из розовой в красно-фиолетовую. Для увеличения четкости перехода окраски предпочтительнее использовать смешанный индикатор (мурексид + нафтоловый зелёный Б). При этом в конечной точке титрования окраска изменяется от грязно-зеленой до синей. Магний в условиях анализа осаждается в виде гидроксида и не мешает определению." Руководящий документ рд 52.24.403-2007. Массовая концентрация кальция в водах. Методика выполенения измерений титриметрическим методом с трилоном Б. Ростов-на-Дону 2007. Раствор трилона Б с молярной концентрацией 0,02 моль/дм 3 количества вещества эквивалента (далее - КВЭ). Растворяют 3,72 г трилона Б в 1 дм 3 дистиллированной воды. Точную концентрацию раствора устанавливают по раствору хлорида цинка не реже 1 раза в месяц. Раствор хранят в плотно закрытой посуде. Раствор хлорида цинка с молярной концентрацией 0,02 моль/дм 3 КВЭ Отвешивают около 0,35 г металлического цинка, смачивают его небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при температуре 105 °С в течение 1 ч, затем охлаждают и взвешивают на лабораторных весах с точностью до четвертого знака после запятой. Навеску цинка количественно переносят в мерную колбу вместимостью 500 см 3, в которую предварительно вносят 10 - 15 см 3 бидистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют. После растворения объем раствора доводят до метки на колбе дистиллированной водой и перемешивают. Рассчитывают молярную концентрацию хлорида цинка Сzn, моль/дм 3 КВЭ, в полученном растворе по формуле

где q - навеска металлического цинка, г;

32,69 - молярная масса эквивалента цинка (1/2 Zn2+), г/моль;

V - вместимость мерной колбы, дм 3.

При расчете значение Сzn округляют таким образом, чтобы оно содержало 4 значащих цифры.

Аммонийно-аммиачный буферный раствор

В мерной колбе вместимостью 500 см 3 растворяют в 100 см 3 дистиллированной воды 7,0 г хлорида аммония и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки на колбе дистиллированной водой и тщательно перемешивают. Буферный раствор хранят в полиэтиленовой посуде не более 2 мес.

Индикатор эриохром черный Т

В ступке с 50 г хлорида натрия тщательно растирают 0,5 г эриохрома черного Т. Хранят в склянке из темного стекла не более 6 мес.

Индикатор мурексид

В ступке со 100 г хлорида натрия тщательно растирают 0,2 г мурексида. Хранят в склянке из темного стекла не более 6 мес.

Смешанный индикатор

В ступке со 100 г хлорида натрия тщательно растирают 0,2 г мурексида и 0,4 г нафтолового зеленого Б. Хранят в склянке из темного стекла не более 6 мес.

Раствор нафтолового зеленого Б, 0,8 %-ный

В 50 см 3 дистиллированной воды растворяют 0,4 г нафтолового зеленого Б. Раствор хранят в темной склянке в течение 3 мес.

Раствор нафтолового зеленого Б, 0,08 %-ный

К 5 см 3 0,8 %-ного раствора нафтолового зеленого Б добавляют 45 см 3 дистиллированной воды и перемешивают. Раствор хранят не более 3 дней.

Раствор гидроксида натрия, 20 %-ный

Растворяют 20 г гидроксида натрия в 80 см 3 дистиллированной воды.

Раствор гидроксида натрия, 8 %-ный Растворяют 40 г гидроксида натрия в 460 см 3 дистиллированной воды.

Раствор гидроксида натрия, 0,4 %-ный

Растворяют 2 г гидроксида натрия в 500 см 3 дистиллированной воды.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде.

Раствор сульфида натрия

В 50 см 3 дистиллированной воды растворяют 2 г сульфида натрия. Хранят в плотно закрытой полиэтиленовой посуде в холодильнике не более недели.

Раствор диэтилдитиокарбамата натрия

В 50 см 3 дистиллированной воды растворяют 5 г диэтилдитиокарбамата натрия. Хранят не более 2 недель в холодильнике.

Раствор гидрохлорида гидроксиламина

В 100 см 3 дистиллированной воды растворяют 5 г гидрохлорида гидроксиламина. Хранят в плотно закрытой темной склянке в холодильнике в течение месяца.

Раствор соляной кислоты, 1:3

Смешивают 200 см 3 концентрированной соляной кислоты с 600 см 3 дистиллированной воды.

Установление точной молярной концентрации раствора трилона Б

В коническую колбу вместимостью 250 см 3 с помощью пипетки с одной отметкой вносят 10,0 см 3 раствора хлорида цинка Там же, п. 10.1.2., добавляют 90 см 3 дистиллированной воды, 5 см 3 аммонийно-аммиачного буферного раствора и 70 - 100 мг индикатора эриохрома черного Т. Содержимое колбы тщательно перемешивают и титруют из бюретки вместимостью 25 см 3 раствором трилона Б до перехода окраски из фиолетово-красной в голубую (синюю).

Молярную концентрацию раствора трилона Б СТр, моль/дм 3 КВЭ, рассчитывают по формуле:

где СZn - молярная концентрация раствора хлорида цинка, моль/дм 3 КВЭ;

VZn - объем раствора хлорида цинка, см 3.

VZn - объем раствора трилона Б, пошедший на титрование, см 3.

Выбор условий титрования

Объём аликвоты пробы воды для выполнения измерений массовой концентрации кальция выбирают исходя из известной величины жёсткости воды или по результатам оценочного титрования.

Для оценочного титрования отбирают 10 см 3 воды, добавляют 0,2 см 3 8 % - ного раствора гидроксида натрия, 20 - 30 мг индикатора мурексида и титруют раствором трилона Б до перехода окраски из розовой в красно-фиолетовую. По величине израсходованного на титрование объёма раствора трилона Б выбирают из таблицы 2 соответствующий объем аликвоты пробы воды для выполнения измерений массовой концентрации кальция.

Таблица 2 Объём пробы воды, рекомендуемый для выполнения измерений массовой концентрации кальция

Величина жесткости воды, ммоль/дм 3 КВЭ

Менее 5

От 5 до 10 включ.

От 10 до 20 включ.

Более 20

Объем раствора трилона Б, израсходованный при оценочном титровании, см 3

Менее 2

От 2 до 4 включ.

От 4 до 8 включ.

Более 8

Рекомендуемый объем аликвоты пробы воды, см 3

100

50

25

10

В зависимости от концентрации кальция титрование следует проводить из бюретки подходящей вместимости. Если по результатам оценочного титрования объем трилона Б менее 0,4 см 3 или величина жесткости менее 1 ммоль/дм 3 КВЭ, используют бюретку вместимостью 5 см 3; при объеме трилона менее 0,8 см 3 или величине жесткости от 1 до 2 ммоль/дм 3 КВЭ - бюретку вместимостью 10 см 3; при более высокой концентрации кальция или величины жесткости - бюретку вместимостью 25 см 3. При отсутствии бюретки вместимостью 10 см 3 можно использовать бюретку вместимостью 25 см 3; допускается замена бюретки вместимостью 5 см 3 бюреткой вместимостью 10 см 3, однако замена микробюретки вместимостью 5 см 3 бюреткой вместимостью 25 см 3недопустима.

Титрование

В коническую колбу вместимостью 250 см 3 отмеривают пипеткой требуемый объем аликвоты пробы, доводят, если необходимо, до 100 см 3 дистиллированной водой, добавляют 2 см 3 8 %-ного раствора гидроксида натрия, 0,2 - 0,3 г индикатора мурексида Там же, п. 10.1.5. или смешанного индикатора Там же, п. 10.1.6. и титруют раствором трилона Б до перехода окраски из розовой в красно-фиолетовую при использовании мурексида или из грязно-зелёной в синюю при титровании со смешанным индикатором. Повторяют титрование и, если расхождение объемов трилона Б между параллельными титрованиями не превышает приведенных в таблице 3, за результат принимают среднее значение объёма трилона Б. В противном случае повторяют титрование до получения допустимого расхождения результатов.

Если в период хранения в пробе выпал осадок карбоната кальция, непосредственно перед выполнением измерений прозрачную часть пробы декантируют (или сливают посредством сифона) в чистую сухую колбу. Оставшийся в склянке осадок растворяют, добавив 0,5 - 1 см 3 концентрированной соляной кислоты. Затем прозрачную часть пробы и жидкость с растворенным осадком соединяют вместе и нейтрализуют 20 %-ным раствором гидроксида натрия, добавляя его по каплям и контролируя рН по индикаторной бумаге. Далее отбирают аликвоту полученного раствора и проводят титрование.

Таблица 3 Допустимые расхождения между параллельными титрованиями в зависимости от объема раствора трилона Б

Объем раствора трилона Б, израсходованного на титрование, см 3

До 3 включ.

Св. 3 до 8 включ.

Св. 8 до 12 включ.

Св. 12

Допустимое расхождение объемов трилона Б, см 3

0,05

0,10

0,15

0,20

"Для получения достаточно четкого перехода окраски при титровании со смешанным индикатором важно соотношение мурексида и нафтолового зеленого в смеси. Для разных партий индикаторов это соотношение может быть разным. Если при использовании сухого смешанного индикатора не удается получить четкий переход окраски в конечной точке титрования, следует использовать нафтоловый зеленый в виде 0,08 %-ного раствора." Там же, п.10.1.8. Титрование проводят следующим образом. Отбирают аликвоту воды в коническую колбу, добавляют 2 см 3 8 %-ного раствора гидроксида натрия, 0,2 - 0,3 г индикатора мурексида Там же, п.10.1.5., перемешивают и приливают раствор нафтолового зеленого Б до тех пор, пока раствор приобретет грязно-зеленую окраску (всего идет примерно 0,9 - 1,2 см 3 раствора). После этого титруют пробу. Там же, п.11.2.1.

Устранение мешающих влияний

Выполнению измерений массовой концентрации кальция мешают ионы железа (больше 10 мг/дм 3), кобальта, никеля (больше 0,1 мг/дм 3), алюминия (больше 10 мг/дм 3), меди (> 0,05 мг/дм 3), вызывая нечеткое изменение окраски в точке эквивалентности, либо полностью исключая возможность индикации конечной точки титрования.

Другие катионы, например, свинец, кадмий, марганец (II), цинк, стронций, барий при высоких концентрациях (как правило не встречающихся в природных водах) могут частично титроваться вместе с кальцием и магнием и повышать расход трилона Б. Для устранения или уменьшения мешающего влияния катионов металлов к пробе перед титрованием прибавляют 0,5 см 3 раствора сульфида или диэтилдитиокарбамата натрия и 0,5 см 3 раствора гидрохлорида гидроксиламина.

Результаты титрования могут быть искажены в присутствии значительных количеств анионов (НСО 3-, СО 3-, РО 4-, SiО 32-). Для уменьшения их влияния пробу следует титровать сразу после добавления гидроксида натрия и индикатора.

Мешающее влияние взвешенных веществ устраняется фильтрованием пробы.

Если проба воды заметно окрашена за счёт присутствия веществ природного или антропогенного происхождения, затрудняется фиксация конечной точки титрования. В этом случае пробу перед выполнением измерений следует пропустить со скоростью 3 - 5 см 3/мин через хроматографическую колонку, заполненную активным углем (высота слоя 15 - 20 см). Первые 25 - 30 см 3 пробы, прошедшей через колонку, отбрасывают.

Как правило, окрашенные соединения антропогенного происхождения сорбируются активным углем практически полностью, в то время как природного (гумусовые вещества) - лишь частично. При неустраняемой активным углем цветности пробы, обусловленной гумусовыми веществами, определение конечной точки титрования значительно облегчается использованием для сравнения слегка перетитрованной пробы этой же воды (пробы-свидетеля).

Если высокая цветность не позволяет установить конечную точку титрования, для устранения цветности можно использовать суспензию гидроксида алюминия. Для этого в стакан вместимостью 400 - 600 см 3 с помощью пипетки вместимостью 100 см 3 помещают 200 см 3 пробы, приливают к ней градуированной пробиркой 6 см 3 суспензии гидроксида алюминия, перемешивают до обесцвечивания пробы и дают отстояться. Фильтруют пробу через бумажный фильтр "белая лента", промытый дистиллированной водой в мерную колбу вместимостью 250 см 3.

Осадок в стакане и фильтр промывают 2 - 3 раза небольшими порциями дистиллированной воды, собирая промывные воды в ту же колбу. После этого доводят раствор в колбе до метки, перемешивают, отбирают из колбы необходимую аликвоту и титруют ее. Там же, п. 11.2.

При достаточно высокой концентрации кальция устранить мешающие влияния можно разбавлением пробы дистиллированной водой.

Вычисление и оформление результатов измерений

Массовую X, мг/дм 3, и молярную Хм, ммоль/дм 3 КВЭ, концентрацию кальция в анализируемой пробе воды находят по формулам

где 20,04 - масса моля КВЭ кальция (1/2 Са 2+), г/моль;

Сmр - молярная концентрация раствора трилона Б, моль/дм 3 КВЭ;

Vmр - объем раствора трилона Б, пошедшего на титрование пробы, см 3;

V - объем пробы воды, взятый для титрования, см 3.

Если устранение цветности пробы осуществлялось с помощью суспензии гидроксида алюминия Там же, п. 11.3.5., полученный результат умножают на 1,25.

2.3 Определение химического потребления кислорода в пробах природных и очищенных и сточных вод титриметрическим методом

Титриметрический метод определения ХПК основан на окислении органических веществ избытком бихромата калия в растворе серной кислоты при нагревании в присутствии катализатора - сульфата серебра. Остаток бихромата калия находят титрованием раствором соли Мора и по разности определяют количество K2Cr2O7, израсходованное на окисление органических веществ.

Приготовление растворов и реактивов

Раствор бихромата калия с концентрацией 0,25 моль/дм 3 эквивалента.

6,129 г бихромата калия, предварительно высушенного в течение 2 ч при 105 °С, количественно переносят его в мерную колбу вместимостью 500 см 3, растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой темной склянке в течение 6 мес.

Раствор бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента.

50 см 3 раствора бихромата калия с концентрацией 0,25 моль/дм 3 эквивалента помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой. Хранят в склянке с притертой пробкой в темном месте не более 6 мес.

Раствор соли Мора с концентрацией 0,25 моль/дм 3 эквивалента.

49,0 г соли Мора переносят в мерную колбу вместимостью 500 см 3, растворяют в дистиллированной воде, осторожно добавляют 10 см 3 концентрированной серной кислоты и после охлаждения доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 6 мес.

Раствор соли Мора с концентрацией 0,025 моль/дм 3 эквивалента.

50 см 3 раствора соли Мора с концентрацией 0,25 моль/дм 3 эквивалента помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 3 мес.

Точную концентрацию раствора устанавливают ежедневно или перед серией определений. ПНД Ф 14.1:2.100-97. п. 10.2. "Методика выполнения измерений химического потребления кислорода в пробах природных и очищенных сточных вод титриметрическим методом". Москва 1997 г.

Раствор индикатора.

В качестве индикатора используют раствор N-фенилантраниловой кислоты или ферроина (комплекс сульфата железа(II) с 1,10-фенантролином).

Для приготовления раствора N-фенилантраниловой кислоты 0,25 г реактива растворяют в 12 см 3 раствора гидрооксида натрия (для ускорения процесса раствор можно слегка подогреть) и разбавляют дистиллированной водой до 250 см 3.

Для приготовления раствора ферроина 2,43 г индикатора растворяют в 100 см 3 дистиллированной воды.

При приготовлении раствора ферроина на основе 1,10-фенантролина растворяют 0,980 г соли Мора (NH4)2Fe(SO4)2· 6H2O в 100 см 3 дистиллированной воды, добавляют 2,085 г 1,10-фенантролина моногидрата или 2,93 г сульфата и перемешивают до растворения последнего.

Раствор индикатора хранят в плотно закрытой склянке из темного стекла не более 3 мес.

Раствор гидроксида натрия, 0,4 %.

0,4 г NaOH растворяют в 100 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой полиэтиленовой посуде не более 2 мес.

Раствор сульфата серебра.

5,0 г Ag2SO4 растворяют в 1 дм 3 концентрированной серной кислоты. Раствор устойчив в склянке из темного стекла в течение 6 мес.

Установление точной концентрации раствора соли Мора

Пипеткой вместимостью 10 см 3 отбирают 10 см 3 раствора бихромата калия с концентрацией 0,025 моль/дм 3эквивалента Там же, п. 9.1.2., переносят в коническую колбу, добавляют 180 см 3 дистиллированной воды и 20 см 3концентрированной серной кислоты. После охлаждения добавляют в пробу 3 - 4 капли индикатора ферроина или 10 капель раствора N-фенилантраниловой кислоты и титруют раствором соли Мора с концентрацией 0,025 моль/дм 3 эквивалента Там же, п. 9.1.4. до перехода окраски из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Титрование повторяют и при отсутствии расхождения в объемах титранта более 0,05 см 3 за результат принимают среднее значение. В противном случае повторяют титрование до получения результатов, отличающихся не более, чем на 0,05 см 3.

Точную концентрацию раствора соли Мора находят по формуле:

где См - концентрация раствора соли Мора, моль/дм 3 эквивалента;

Сб - концентрация раствора бихромата калия, моль/дм 3 эквивалента;

Vб - объем раствора бихромата калия, взятый для титрования, см 3;

Vм - объем раствора соли Мора, пошедший на титрование см 3.

Мешающее влияние хлоридов при концентрациях менее 300 мг/дм 3 устраняется за счет присутствия в пробе катализатора (сульфата серебра). При больших содержаниях хлоридов к пробе добавляют сульфат ртути (II) из расчета 100 мг на 10 мг хлоридов.

Мешающее влияние сульфидов и соединений железа (II) устраняют предварительной продувкой пробы воды воздухом, если она не содержит летучих органических соединений, или учитывают при расчете ХПК. В последнем случае определяют их концентрации и пересчитывают на величины ХПК, исходя из того, что 1 мг H2S и 1 мг Fe2+ эквивалентны соответственно 0,47 и 0,14 мг O2. Таким же образом учитывают влияние нитритов (1 мг NО 2 эквивалентен 0,35 мг O2).

Выполнение измерений в водах с низкой концентрацией хлоридов

Если концентрация хлоридов в пробе анализируемой воды составляет менее 300 мг/дм 3, в колбу со шлифом установки для определения ХПК вносят с помощью пипетки 20 см 3 воды (или аликвоту, доведенную дистиллированной водой до 20 см 3), добавляют 10,0 см 3 раствора бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента Там же, п. 9.1.2. и 30 см 3 раствора сульфата серебра в концентрированной серной кислоте. Для равномерного кипения в колбу бросают 2 - 3 капилляра, присоединяют к ней обратный холодильник и кипятят содержимое на песчаной бане в течение 2 ч.

После охлаждения установки промывают холодильник дистиллированной водой (около 50 см 3), отсоединяют его, добавляют в колбу, обмывая ее стенки, еще 50 см 3 дистиллированной воды, вновь охлаждают, переносят пробу в коническую колбу, дважды споласкивая колбу, где кипятилась проба, дистиллированной водой (по 20 - 30 см 3). Добавляют 3 - 4 капли раствора ферроина (или 10 капель раствора фенилантраниловой кислоты) и титруют избыток непрореагировавшего бихромата калия раствором соли Мора Там же, п. 9.1.4. до перехода окраски индикатора из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Аналогичным образом проводят холостой опыт с 20 см 3 дистиллированной воды.

Выполнение измерений в водах с высокой концентрацией хлоридов

Если концентрация хлоридов в воде превышает 300 мг/дм 3, к отобранной для анализа пробе (20 см 3 или меньшей аликвоте, доведенной до 20 см 3 дистиллированной водой) добавляют сульфат ртути из расчета 100 мг на каждые 10 мг содержащихся в пробе хлоридов и тщательно перемешивают. Далее выполняют определение. Там же, п. 11.1. Наличие небольшого количества осадка, образовавшегося после добавления сульфата ртути, не мешает определению.

Величину ХПК (бихроматной окисляемости) анализируемой пробы воды X находят по формуле:

где Vмх - объем раствора соли Мора, израсходованный на титрование в холостом опыте, см 3;

Vм - объем раствора соли Мора, израсходованный на титрование в пробы воды, см 3;

См - концентрация раствора соли Мора, моль/дм 3 эквивалента;

V - объем пробы воды, взятый для определения, см 3;

8,0 - масса миллиграмм-эквивалента кислорода, мг.

Если величина ХПК в анализируемой пробе превышает верхнюю границу диапазона (80 мг/дм 3), разбавляют пробу с таким расчетом, чтобы величина ХПК входила в регламентированный диапазон, и выполняют определение. Там же, п. 11.2.

В этом случае величину ХПК в анализируемой пробе воды X находят по формуле:

где ХV - величина ХПК в разбавленной пробе воды, мг/дм 3;

VV - объем пробы воды после разбавления, см 3;

v - объем аликвоты пробы воды, взятой для разбавления, см 3.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 2.

Таблица 2

Значения предела воспроизводимости при вероятности Р = 0,95

Диапазон измерений величины ХПК, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения

между двумя результатами измерений, полученными в разных лабораториях), R, %

от 4,0 до 10,0 вкл.

42

св. 10,0 до 80,0 вкл.

34

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа. Там же, раздел 5, ГОСТ Р ИСО 5725-6.

2.4 Определение жесткости в пробах природных и очищенных сточных вод титриметрическим методом

Метод определения общей жесткости основан на титровании пробы воды раствором динатриевой соли этилендиаминтетрауксусной кислоты (трилон Б) в присутствии индикатора эриохрома черного Т (хромогена черного), в результате чего при рН около 10 образуются комплексные соединения трилона Б с ионами кальция и магния. Поскольку комплекс кальция более прочен, чем магния, при титровании пробы трилон Б взаимодействует с ионами кальция, а затем с ионами магния, вытесняя индикатор, комплекс которого с ионами магния окрашен в вишнево-красный цвет, а в свободной форме имеет голубую окраску.

Приготовление растворов и реактивов

Раствор трилона Б с концентрацией 0,02 моль/дм 3 эквивалента.

3,72 г трилона Б растворяют в 1 дм 3 дистиллированной воды. Точную концентрацию раствора устанавливают по стандартному раствору хлорида цинка.

Раствор хранят в полиэтиленовой посуде, проверяют его концентрацию не реже 1 раза в месяц.

Раствор хлорида цинка с концентрацией 0,02 моль/дм 3 эквивалента.

0,35 г металлического цинка смачивают небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при 105 °С в течение 1 ч, затем охлаждают и взвешивают на лабораторных весах с точностью до 0,1 мг.

Навеску цинка помещают в мерную колбу вместимостью 500 см 3, в которую предварительно вносят 10 - 15 см 3 дистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют, после чего объем раствора доводят до метки на колбе дистиллированной водой.

Рассчитывают молярную концентрацию эквивалента раствора хлорида цинка CZn(1/2 ZnCl2), моль /дм 3, по формуле:

где а - навеска металлического цинка, г;

32,69 - молярная масса эквивалента Zn2+, г/моль;

V - объём мерной колбы, см 3.

Раствор хлорида цинка хранят в плотно закрытой стеклянной или полиэтиленовой посуде не более 3 мес.

Буферный раствор NH4Cl + NH4OH. 7,0 г хлорида аммония растворяют в мерной колбе вместимостью 500 см 3 в 100 см 3 дистиллированной воды и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки на колбе дистиллированной водой и тщательно перемешивают.

Буферный раствор хранят в плотно закрытой стеклянной или полиэтиленовой посуде не более 2 мес.

Индикатор эриохром черный Т.

При выполнении анализа индикатор может применяться как в виде раствора, так и сухого препарата.

Раствор индикатора. 0,5 г эриохрома черного Т растворяют в 10 см 3 буферного раствора, затем добавляют 90 см 3 этилового спирта и тщательно перемешивают. Раствор устойчив при хранении в холодильнике в плотно закрытой склянке в течение 2 мес.

Порошок индикатора. 0,5 г эриохрома черного Т тщательно растирают в ступке с 50 г хлорида натрия. Использование при определении точной концентрации раствора трилона Б. Устойчив при хранении в посуде из темного стекла в течение 1 года.

Раствор гидроксида натрия, 20 %.

20 г NaOH растворяют в 80 см 3 дистиллированной воды.

Раствор гидроксида натрия, 8 %.

40 г NaOH растворяют в 460 см дистиллированной воды.

Раствор гидроксида натрия, 0,4 %.

2 г NaOH растворяют в 500 см 3 дистиллированной воды. Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 мес.

Раствор сульфида натрия.

2 г сульфида натрия растворяют в 50 см 3 дистиллированной воды. Хранят в плотно закрытой полиэтиленовой посуде не более недели.

Раствор диэтилдитокарбамата натрия.

5 г диэтилдитиокарбамата натрия растворяют в 50 см 3 дистиллированной воды. Хранят не более 2 недель.

Раствор гидрохлорида гидроксиламина.

5 г гидрохлорида гидроксиламина растворяют в 100 см 3 дистиллированной воды. Хранят не более 2 мес.

Раствор соляной кислоты, 1:3.

200 см 3 концентрированной соляной кислоты смешивают с 600 см 3 дистиллированной воды. Хранят в плотно закрытой посуде не более 1 года.

Установление точной концентрации раствора трилона Б

В коническую колбу вместимостью 250 см 3 вносят 10 см 3 раствора хлорида цинка ПНД Ф 14.1:2.98-97. п. 9.1.2. "Методика выполнения измерений жесткости в пробах природных и очищенных сточных вод титриметрическим методом". Москва 1997 г., добавляют дистиллированной воды приблизительно до 100 см 3, 5 см 3 буферного раствора и 10 - 15 мг индикатора эриохрома черного Т. Содержимое конической колбы тщательно перемешивают и титруют из бюретки раствором трилона Б до перехода окраски из красной в голубую.

Титрование повторяют 2 - 3 раза и при отсутствии расхождения в объемах раствора трилона Б более 0,05 см 3за результат принимают среднюю величину.

Концентрацию раствора трилона Б рассчитывают по формуле:

где Стр - концентрация раствора трилона Б, моль/дм эквивалента;

CZn - концентрация раствора хлорида цинка, моль/дм 3 эквивалента;

Vтp - объем раствора трилона Б, пошедшего на титрование, см 3;

VZn- объем раствора хлорида цинка, CMJ.

Для устранения мешающего влияния катионов металлов к пробе перед титрованием прибавляют маскирующие реагенты: 0,5 см 3 раствора сульфида или диэтилдитиокарбамата натрия и 0,5 см 3 раствора гидрохлорида гидроксиламина.

Мешающее влияние взвешенных и коллоидных веществ устраняют фильтрованием пробы.

Если проба воды заметно окрашена за счёт присутствия веществ природного или антропогенного происхождения, затрудняется фиксация конечной точки титрования. В этом случае пробу перед выполнением анализа следует пропустить со скоростью 4 - 6 см 3/мин через хроматографическую колонку, заполненную активированным углем (высота слоя 12 - 15 см). Первые 25 - 30 см 3 пробы, прошедшей через колонку, отбрасывают.

Как правило, окрашенные соединения антропогенного происхождения сорбируются активированным углем практически полностью, в то время как природного (гумусовые вещества) - лишь частично. При высокой и не устраняемой цветности пробы, обусловленной гумусовыми веществами, определение конечной точки титрования значительно облегчается использованием для сравнения перетитрованной пробы этой же воды (пробы-свидетеля).

Выбор объема пробы для анализа

Перед выполнением анализа пробы воды с неизвестной величиной жёсткости проводят оценочное титрование.

Для оценочного титрования берут 10 см 3 воды, добавляют 0,5 см 3 буферного раствора, индикатор и титруют раствором трилона Б до перехода окраски в голубую. По величине израсходованного на титрование объема раствора трилона Б выбирают из таблицы 3 соответствующий объем пробы воды.

...

Подобные документы

  • Классификация методов титриметрического анализа. Посуда в титриметрическом анализе и техника работы с ней. Способы выражения концентрации растворов. Взаимосвязь различных способов выражения концентрации растворов. Молярная концентрация эквивалента.

    реферат [40,8 K], добавлен 23.02.2011

  • Понятие химического анализа. Теоретические основы количественного химического анализа. Требования к химическим реакциям. Понятие и суть эквивалента вещества. Понятие химического равновесия и законы действующих масс. Константы равновесия реакций и их суть.

    реферат [36,0 K], добавлен 23.01.2009

  • Изучение методики комплексонометрического, фотометрического исследования железа. Правила изготовления и хранения рабочих растворов. Выполнение измерений перманганатной окисляемости в пробах питьевых, природных и сточных вод титриметрическим методом.

    курсовая работа [126,9 K], добавлен 06.07.2015

  • Теоретические сведения по качественному анализу. Методы анализа неизвестного образца. Основы титриметрического анализа. Комплексонометрическое титрование, расчет кривой титрования методом комплексонометрии. Определение анионного состава сточных вод.

    курсовая работа [86,0 K], добавлен 22.01.2011

  • Гомогенная и гетерогенная реакции. Факторы, влияющие на химическое равновесие. Применение принципа Ле-Шателье на примере обратимой химической реакции. Молярная концентрация эквивалента, ее определение. Математическое выражение второго закона Рауля.

    контрольная работа [420,4 K], добавлен 26.07.2012

  • Тест-системы определения металлов в объектах окружающей среды. Перечень и характеристика химических реактивов, применяемых в исследованиях. Определение содержания ионов никеля колориметрическим методом в растворах заданной концентрации.

    курсовая работа [296,6 K], добавлен 14.05.2007

  • Знакомство с особенностями разработки озонохемилюминесцентного метода контроля органических соединений. Химическое потребление кислорода как общая концентрация кислорода, соответствующая количеству бихромата. Анализ критериев оценки качества воды.

    дипломная работа [723,1 K], добавлен 04.01.2015

  • Классификация физических и физико-химических методов количественного анализа, схема полярографической установки, прямая полярография и количественный анализ. Определение цинка в растворе методом стандарта и исследование реакций комплексообразования.

    реферат [174,2 K], добавлен 30.04.2012

  • Группа методов количественного химического анализа, основанных на использовании электролиза (электрохимические методы анализа). Особенности электрогравиметрического метода, его сущность и применение. Основная аппаратура, метод внутреннего электролиза.

    реферат [234,5 K], добавлен 15.11.2014

  • Определение эквивалентной массы металла методом вытеснения водорода. Основные физические и химические свойства магния. Расчет абсолютной и относительной погрешности опыта. Анализ и оценка влияния характера реакции и значения эквивалента сложных веществ.

    лабораторная работа [431,2 K], добавлен 01.06.2013

  • Распространение кислорода в природе, его характеристика как химического элемента и простого вещества. Физические свойства кислорода, история его открытия, способы собирания и получения в лабораторных условиях. Применение и роль в организме человека.

    презентация [1,2 M], добавлен 17.04.2011

  • Смещение химического равновесия как процесс, возникающий в равновесной системе в результате воздействия. Межмолекулярные взаимодействия между растворителем и веществом с образованием сольватов. Молярная концентрация вещества в насыщенном растворе.

    презентация [1,5 M], добавлен 19.03.2014

  • Общие правила выполнения лабораторных работ. Методы экспериментального определения молярной массы эквивалента химического элемента. Определение изменения энтальпии процессов растворения безводной соли и нейтрализации кислоты калориметрическим методом.

    лабораторная работа [180,0 K], добавлен 07.11.2011

  • Определение константы равновесия реакции. Вычисление энергии активации реакции. Осмотическое давление раствора. Схема гальванического элемента. Вычисление молярной концентрации эквивалента вещества. Определение энергии активации химической реакции.

    контрольная работа [21,8 K], добавлен 25.02.2014

  • Характеристика, классификация и химические основы тест-систем. Средства и приёмы анализа различных объектов окружающей среды с использованием тест-систем. Определение ионов кобальта колориметрическим методом из растворов, концентрации ионов меди.

    дипломная работа [304,6 K], добавлен 30.05.2007

  • Описание процесса определения концентрации растворенного кислорода химическим методом Винклера. Точность метода Винклера, возможные ошибки, нижняя граница определения. Мешающее действие редокс-активных примесей: железо, нитриты, органические вещества.

    отчет по практике [16,8 K], добавлен 15.01.2009

  • Особенности измерения состава веществ и материалов. Детальная характеристика приёмов определения неизвестной концентрации в инструментальных методах анализа. Обобщенная трактовка физико-химического анализа как самостоятельной научной дисциплины.

    реферат [58,6 K], добавлен 30.03.2015

  • Методы аналитической химии, количественный и качественный анализ. Окислительно-восстановительные системы. Способы выражения концентрации растворов и их взаимосвязь. Классификация методов титриметрического анализа. Молекулярный спектральный анализ.

    методичка [329,3 K], добавлен 08.06.2011

  • Аналитическая химия - наука об определении химического состава веществ и их химической структуры. Понятие и сущность титриметрического метода анализа. Способы приготовления титрованного раствора. Методы кислотно-основного титрования (нейтрализации).

    реферат [1,3 M], добавлен 22.02.2012

  • Энтропия как мера хаотичности системы. Поверхностное натяжение жидкости. Реакция серебряного зеркала как качественная реакция на альдегидную группу. Окисление гидроксидом меди. Реакции полимеризации и поликонденсации. Молярная концентрация эквивалента.

    контрольная работа [32,1 K], добавлен 24.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.