Thermal stability and infrared spectrum of glass compositions
Examined of the physical-chemical properties and thermal decomposition, as well as infrared spectrum of glass. Acquaintance with the results of the derivatographic analysis. Study of the coincidence of crystallization temperatures of glass decomposition.
Рубрика | Химия |
Вид | статья |
Язык | английский |
Дата добавления | 26.02.2021 |
Размер файла | 182,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Institute of Chemical Problems Named after Academician M. F. Naghiyev, National Academy of Sciences of Azerbaijan
Thermal stability and infrared spectrum of glass compositions (GA2S3)0.60(LA2S3)0.20(SM2S3)0.20 and (GA2S3)0.55(LA2S3)0.15(SM2S3)0.30
Abdullayeva A.S.
Abstract
The physical-chemical properties and thermal decomposition, as well as the IR spectrum of glass compositions (Ga2S3)o.6o(La2S3)o.2o(Sm2S3)o.2o and (Ga2S3)o.55(La2S3)o.i5(Sm2S3)o.3o were examined. It was determined that the glass composition (Ga2S3)o.6o(La2S3)o.2o(Sm2S3)o.2o at 865 K is resistant to ambient oxygen. In the IR spectrum of the bands of glasses characterizing the Me-S bond, the intensity is increased and shifted to the high-frequency side of the spectrum in comparison with the initial crystal components, which is probably due to the increased covalence of the Me-S bonds.
Key words: physical-chemical properties, thermal decomposition, chalcogenides, lanthanides
Аннотация
Абдуллаева А. С.
Термическая стабильность и ИК-спектры стекол составов (GA2S3)0.60(LA2S3)0.20(SM2S3)0.20 и (GA2S3)0.55(LA2S3)0.15(SM2S3)0.30
Изучены физико-химические свойства и термическое разложение, а также ИК-спектры стекол составов (Ga2S3)o.6o(La2S3)o.2o(Sm2S3)o.2o и (Ga2S3)o.55(La2S3)o.i5(Sm2S3)o.3o. Установлено, что стекла состава (Ga2S3)o.6o(La2S3)o.2o(Sm2S3)o.2o при 865 К устойчивы к кислороду воздуха. В ИК-спектре у полос стекол характеризующих связь Me-S, по сравнению с исходными кристаллическими компонентами увеличена интенсивность и смещена в высокочастотную сторону спектра, что вероятно обусловлено усилением ковалентности связей Me-S.
Introduction
In recent years, there has been a great interest in the search for new materials, lanthanides, which could be used for optical devices. The glass-like base material is considered to have a minimum absorption coefficient within the range of wavelengths of interest. It's Compatibility with the waveguide fabrication process and for most applications with a low non-radiative increment of decrease of the excitation state solidness has a high rate of decay of the level density at radiation [1]. Among many alternatives, chalcogenide glass has become a serious rival for such ion-activated lanthanide of optical devices. Chalcogenide glasses provide a wide range of transparency ranging from 0.5 to 10 pm and a high refraction ratio (2.4) [2], low peak phonon energy r425 sm-1 [3] and high solubility allowing the introduction of high concentrations of lanthanides. They're thermally stable. In addition, compared with silicate, fluoride glass-like bases, chalcogenides achieved a significant improvement in quantum efficiency for lanthanide electronic transitions occurring from levels with a small energy gap to the adjacent underlying level. These properties make it possible to observe new lanthanide electronic transitions in the mid-infrared region of the spectrum, which cannot be observed in silicate and fluoride glasses, and open the possibility of creating effective amplifiers in the region of the second telecommunication window at a wavelength of 1.3 pm [4, 5].
Therefore, the aim of this work was to determine the probable boundary of the glass formation, as well as the study of some physical and chemical properties of the newly synthesized phases of the system under study.
EXPERIMENTAL PART
In our experiments, p-Ga2S3, a-La2S3 n a-Sm2S3 were used as initial components. p-Ga2S3 is synthesized from elements crystallizing in the monoclinic system, similar to the literature data [2]. a-La2S3 and a-Sm2S3 are commercial reagents crystallizing in the rhombic system corresponding to the lattice parameters in [7].
Synthesis of the specimen from the region of glass formation consisting of these components was carried out under the pressure of sulfur vapor at 1425 K in a glass-graphite calcinatory placed in a quartz reactor [8]. The synthesis lasted for 2.5 h; subsequent hardening was carried out at a temperature of 1425 K by immersion in water of room temperature.
DTA of the samples were made using the derivatograph Q-1500D at the heating rate equal to 15°/min. All the observed effects were endothermic, reversible. X-PhA were carried out using the diffractometer “Dron-2” in Cu-Ka emission with Ni- filter. The microhardness of the specimens was measured by PMT-3 hardness tester, and the optimal load of the specimen was 20 g. Microstructural analysis was carried out by MIM-7 microscope. The pycnometer method was used to determine the density of the specimen at a temperature of 300 K (filler - toluene).
IR absorption spectra of the initial components and glass samples were measured on the spectrometer "Spekord M80" in the area of 200-3000 sm-1 at 295 K. To record the spectra, the specimen was prepared in the form of paste on paraffinic oil; a window made of polymethylene and KBr was used.
Discussion of the outcomes
With the methods, physic-chemical analysis (DTA, DTG, XRA, MSA) were defined the boundary of the area of glass formation in the system La2S3- Ga2S3-Sm2S3 and specified its boundaries (Fig.1).
In the figure (mim2 n miW) the area of glass formation is limited in the system La2S3-Ga2S3-Sm2S3. Shaded area conforms to transparent stable glasses. The shaded strips in the figure correspond to opaque stable glasses and are explained by the presence of crystallization centers, which was confirmed by the XRA method (Fig. 2). thermal infrared glass crystallization
In triple glass in the area of rich La2S3, the stain of glass with an increased percentage of Sm2S3, darkens from yellow to ruby. The resulting glass is stable at room temperature in the air, in the water and in the organic solvents. Alkalis and acids partially break down them. With a slight heat completely dissolved in the sulfochromic mixture (bichrome).
In view of isoctructurality La2S3 and Sm2S3, their diffraction pattern is almost the same (Fig. 2). However, diffraction effects Sm2S3 slightly displaced to the angle (2) of increase. On the diffraction pattern of alloys in the area of transparent glass formation, the diffraction effects of the alloy composition (Ga2S3)o.6o(La2S3)o.2o(Sm2S3)o.2o are not observed. Glass composition (Ga2S3)o.55(La2S3)o.i5(Sm2S3)o.3o is not transparent, diffraction pattern which confirms the availability of crystallization centers.
Microhardness of glass composition (Ga2S3)o.6o(La2S3)o.2o(Sm2S3)o.2o equal to 6oo MPa was studied.
The derivatographic analysis shows that during the thermal decomposition of the glass composition Ga2S3)o.6o(La2S3)o.2o(Sm2S3)o.2o in the air at 865 K, its softening occurs, which is accompanied by endoeffects. Observed at 915-123o K, exoeffects and mass loss indicate a tendency of sequential oxidation of the glass.
Referring to the coincidence of the temperatures of crystallization and beginning of decomposition of the glass, exo-effects of crystallization was not determined. Thermolysis weight loss is 9.8%.
As Figure 4 shows, the IR spectra of Sm2S3, La2S3 n Ga2S3, identical in the area of 22o-36o sm-1, there are also intense bands related to the valence vibrations of the Me-S bonds, however, these bands appear in the Ga2S3 spectra at a higher frequency area of the spectrum (26o-48o sm-1). In addition, the spectra of these sulfides show a number of weak bands in the area of 54o-75o sm-1, which apparently also belong to the valence vibrations of Me-S. Note that these bands in the spectra of glasses obtained from the combinations of these sulfides become more intense, which, apparently, is due to the change in the covalence of the Me-S bonds. The spectra (Ga2S3)o.6o(La2S3)o.2o(Sm2S3)o.2o and (Ga2S3)o.6o(Sm2S3)o.4o also have wide intense bands of 26o-5oo sm-1 with several maxima of 28o w., 32o str., 38o str. and 28o w., 295 med., 32o str., 36o pl., 385 s. 42o pl., 46o med., respectively. As can be seen, these bands are shifted to the high-frequency side of the spectrum in comparison with the spectra of individual sulfides, which is also probably due to the increase in covalence of Me-S bonds.
Thus, the boundaries of the area of glass formation in the system La2S3-Ga2S3-Sm2S3 were determined and the thermal decomposition and IR spectra of the obtained glasses were studied. It was established that the glass composition (Ga2S3)o.6o(La2S3)o.2o(Sm2S3)o.2o at 865 K is resistant to ambient oxygen. IR spectra of the obtained double and triple glasses are almost identical. In the glass bands characterizing the Me-S bond in comparison with the initial crystal components, the intensity is increased and shifted to the high frequency side of the spectrum, which is probably due to the increase in the covalence of the Me-S bonds.
References
1. Oliveira A.S., De Aranjo M.T., Gouveia-Neto A.S. et al. // Frequency upconversion in Er3+/Yb3+ codoped chalcogenide glass, Applied Physics Letters. 1998. vol. 72. no7. pp.754
2. Kumta P.N., Risbud S.H. //J.Mater. Sci. 1994. vol.27. pp.1135.
3. Hewak D.W., Medeiros Neto J.A., Samson B.N. et al. / IEEE Photonics Technol. Lett. 1994. vol. 6. pp. 6o9.
4. Samson B.N., Medeiros Neto J.A., Laming R.J. et al. //Electron. Letta. 1994. vol.3o. pp. 1617.
5. Medeiros Neto J.A., Taylor E.R., Samson B.N. et al. // J.Non-Cryst, Solid. 1995. vol. 184. pp. 293.
6. Goodyear I., Steigmann G.A. // Acta Cryst, 1963. vol. 16. no 1o. pp. 946.
7. Kost ME, Shilov A.L., Mikheeva V.I. et al. Compounds of rare earth elements. Hydrides, borides, carbides, phosphides, pnictides, chalcogenides, pseudohalides. M.: Nauka, 1983. pp. 272.
8. (Кост М.Е., Шилов А.Л., Михеева В.И. и др. Соединения редкоземельных элементов. Гидриды, бориды, карбиды, фосфиды, пниктиды, халькогениды, псевдогалогениды. М.: Наука, 1983. 272 с.)
9. Bakhtiyarli i.B., Kerimov O.Sh. //J. Chemical Problems 2oo3. no3, pp. 27.
10. Kertman, A.V., Optical sulfide ceramics, Soros. Obrazov. Zh., 2ooo, vol. 6, no. 2, pp. 93-98.
11. Minaev, V.S., Stekloobraznye poluprovodnikovye splavy (Glassy Semiconductor Alloys), Moscow: Metallurgiya, 1991.
12. Gregor, R.E., Optical micro-resonators in chalcogenide glass. Southampton: University of South ampton Faculty of Science, Engineering and Mathematics, 2oo9. http://eprints.soton.ac.uk. Ivanova, T.Yu., Man'shina, A.A., Kurochkin, А.V. et al., Er3+ to glass matrix energy transfer in Ga- Ge-S:Er3+ system, J. Non-Cryst. Solids, 2oo2, vol. 298, pp. 7-14. doi.org/https://doi.org/ 1o.1o16/Soo22- 3o93(o1)o1o44-4
13. Bishop, S.G., Turnbull, D.A., and Aitken, G., Excitation of rare-earth emission in chalcogenide glasses by broadband Urbach edge absorption, J. Non-Cryst. Solids, 2000, vol. 266-269, pp. 876- 883. doi.org/. https://doi.org/10.1016/S0022-3093(99)00859-5.
Inspections to drawings
Article by A. S. Abdullayeva “Thermal stability and IR-spectrum of glass compositions
(Ga2S3)0.60(La2S3)0.20(Sm2S3)0.20 n
(Ga2S3)0.55(La2S3)0.15(Sm2S3)0.30”
Fig. 1. Dependence of the glass formation region on the composition in the system La2S3-Ga2S3-Sm2S3 Fig. 2. Diffractogram of alloys system La2S3- Ga2S3-Sm2S3
Fig.3. Derivatogram of thermal decomposition of glass composition La2S3 - Ga2S3 - Sm2S3 in air
Fig.4. IR-spectrum of alloys of the system La2S3 - Ga2S3 - Sm2S3
Fig. 1. Dependence of the glass formation region on the composition in the system La2S3-Ga2S3-Sm2S3
Fig. 2. Diffractogram of alloys system La2S3-Ga2S3-Sm2S3
Fig.3. Derivatogram of thermal decomposition of glass composition La2S3 - Ga2S3 - Sm2S3 in air
Fig.4. IR-spectrum of alloys of the system La2S3 - Ga2S3 - Sm2S3
Размещено на Allbest.ru
...Подобные документы
The thermal cracking method. The process by which hydrocarbons with relatively high molecular mass are chemically converted to hydrocarbons with lower molecular mass. Thermal and catalytic cracking, hydrocracking, steam cracking. Scheme of catalytic.
презентация [684,8 K], добавлен 02.03.2013La decomposition du percarbonate de 0. 0-t-butyle et 0-isopropenyle en solution: dans de nombreux composes (S-H) possedant des atomes d'hydrogene labiles permet de rtaliser acetonylation radicalaire de ces substrats. Cas de Н acetate de mithyle.
реферат [482,7 K], добавлен 16.03.2009History of application of aluminium. The characteristic, chemical and physical properties of aluminium, industrial production and clarification. Aluminium application in the industry, in household appliances. Prospects of development of manufacture.
реферат [21,6 K], добавлен 11.11.2009Ethyl acetate. The existing methods of obtaining the desired product. Technological scheme of EtOAc production. Chemical reactions. Production in industry. Chemical reactions. Methanol as intermediate product. The technology of receiving ethanol.
презентация [628,4 K], добавлен 15.02.2015Experimental details of the chemical transients kinetics and pulsed field desorption mass spectrometry methods. Kinetic measurements with the PFDMS method. Data on the CO hydrogenation over CoCu-based catalysts using CTK. CO hydrogenation reaction.
статья [334,2 K], добавлен 10.05.2011Description of the general laws of physical and colloid chemistry of disperse systems and surface phenomena. The doctrine of adsorption, surface forces, stability of disperse systems. Mathematical description. Methods of research. Double electric layer.
контрольная работа [688,2 K], добавлен 15.11.2014This is probably the reason of the failure to get to the "island of stability" and seditious idea comes to the mine we build atomic electric power stations without knowing the definite amount of neutrons and protons in the nucleuses of uranium, plutonium
статья [6,4 K], добавлен 20.03.2004The concept and scope of the practical application of the distillation process at the present stage: industry, medicine, food production. The main stages of distillation. The results of global warming and the assessment of its negative consequences.
презентация [1,3 M], добавлен 16.09.2014Theory, instrumentation, tips, results. Local surface modification. As it can be seen from this paper, STM can be extremely useful in electrochemical studies. It is capable of providing atomic resolution images of samples in water.
реферат [6,8 K], добавлен 24.10.2002Метод синтеза углеродных нанотрубок - catalytic chemical vapor deposition (CCVD). Способы приготовления катализатора для CCVD метода с помощью пропитки и золь-гель метода. Синтез пористого носителя MgO. Молекулярные нанокластеры в виде катализатора.
курсовая работа [1,4 M], добавлен 11.06.2012Oxygen carriers in CLC process. State of art. General oxygen carriers characteristics. Dry impregnation method. Fluidized Beds. Advantages and disadvantages of the Fluidized-Bed Reactor. Gamma alumina. Preparing of solution. Impregnation calculations.
курсовая работа [5,9 M], добавлен 02.12.2013Описание Google Glass и выявление всех достоинств и недостатков данного аппарата. Технические характеристики устройства и интерфейс пользователя. Интеграция очков расширенной реальности во всех сферах жизни. Синхронизация Google Glass и Mersedes-Bens.
реферат [349,5 K], добавлен 15.06.2017Nature of infrared analysis and nature of mass spectrometry. Summary of the uses in forensic analysis. Critical comparison of infrared analysis and spectrometry. Gathering of the information about positional isomers with the help of infrared analysis.
эссе [21,8 K], добавлен 08.12.2011Сritical comparison of Infrared analysis and Mass Spectrometry. Summary of the uses in forensic, the molecular structural mass spectral. The method provides better sensitivity in comparison. To conclude, both techniques are helpful in the forensic study.
реферат [20,1 K], добавлен 21.12.2011Niobium or columbium is the chemical element with the symbol Nb and the atomic number 4. Physical and chemical properties Niobium. Niobium is in many ways similar to its predecessors in group 5. Application of the given chemical element in the industry.
реферат [51,0 K], добавлен 09.01.2012Static model analysis. Proof mass, suspension beams, static deflection. Residual stress and Poisson’s ratio. Spring constants. Strain under acceleration. Sensitivity, thermal noise. Resolution due to the ADC. Maximum acceleration. Dynamic model analysis.
курсовая работа [1,2 M], добавлен 21.09.2010Общая характеристика технологии "дополненной" реальности. Google Glass как один из самых известных продуктов, использующих технологию "дополненой" реальности. Преимущества и области применения QR-коды. Особенности использования QR-технологии в музеях.
реферат [635,4 K], добавлен 16.01.2014Общее понятие об оперативной системе Windows Vista. Сравнительный анализ систем Windows XP и Windows Vista. Специфика процесса установки, трехмерный интерфейс Aero Glass, действие некоторых мини-приложений. Новости управления папками, работа в интернете.
реферат [2,4 M], добавлен 01.02.2010The Louvre in Paris as the most unique museum complex, one of the largest in the world. Creating a glass pyramid. Masterpieces of world art. Location in the museum's greatest collections of paintings and masterpieces, sculptures of different epochs.
презентация [3,8 M], добавлен 10.03.2015Обзор фильтров Adobe Photoshop. Работа со слоями, контурами и цветом. Создание элегантной, градиентной, художественной, деревянной рамок для фотографии. Изображение в рамке овальной формы. Обрамление снимков при помощи фильтров glass и crystallize.
курсовая работа [4,7 M], добавлен 06.11.2014