Медь и ее соединения
Медь: история открытия, месторождение и нахождение в природе. Способы получения. Электронное строение и степени окисления. Свойства меди и её соединений, химические и физические свойства. Биологическая роль. Медь как компонент фермента цитохромоксидазы.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 04.04.2021 |
Размер файла | 47,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Областное государственное бюджетное профессиональное образовательное учреждение
«Томский политехнический техникум»
(ОГБПОУ «ТПТ»)
РЕФЕРАТ
Медь и ее соединения
Работу выполнил(а):
студент 1 курса группы 217Р1
очного отделения
Ефремов Антон Геннадьевич
Работу проверил(а):
Харина Лариса Викторовна
Томск, 2017
Содержание
Введение
1. История открытия
2. Месторождение меди и нахождение в природе
3. Способы получения
4. Электронное строение и степени окисления
5. Свойства меди и её соединений
6. Биологическая роль
7. Области применения
Заключение
Использованная литература
Введение
Медь (лат. Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным - медь была хорошо известна египтянам еще за 4000 лет до н. э.
Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состоянии на поверхности земли, а с другой сравнительной легкостью получения ее из соединений. Особенно важна медь для электротехники. По электропроводности медь занимает второе место среди всех металлов, после серебра.
Медь - необходимый для растений и животных микроэлемент. Основная биохимическая функция меди - это участие в ферментативных реакциях в качестве активатора или в составе медьсодержащих ферментов.
Это один из самых известных и распространенных предметов в нашей жизни.
Почти ни один электроприбор не может работать без меди, даже наш организм не может полноценно работать без этого ценного металла.
1. История открытия
Считают, что медь начали использовать около 5000 до н.э. В природе медь изредка встречается в виде металла. Из медных самородков, возможно, с помощью каменных топоров, были изготовлены первые металлические орудия труда. У индейцев, живших на его берегах оз. Верхнее (Сев. Америка), где есть очень чистая самородная медь, способы ее холодной обработки были известны до времен Колумба. Около 3500 до н.э. на Ближнем Востоке медь научились извлекать из руд, ее получали восстановлением углем. Медные рудники были и в Древнем Египте. Известно, что глыбы для знаменитой пирамиды Хеопса обрабатывали медным инструментом.
К 3000 до н.э. в Индии, Месопотамии и Греции для выплавки более твердой бронзы в медь стали добавлять олово. Открытие бронзы могло произойти случайно, однако ее преимущества по сравнению с чистой медью быстро вывели этот сплав на первое место. Так начался «бронзовый век».
Изделия из бронзы были у ассирийцев, египтян, индусов и других народов древности. Однако цельные бронзовые статуи древние мастера научились отливать не раньше 5 в. до н.э. Около 290 до н.э. Харесом в честь бога солнца Гелиоса был создан Колосс Родосский. Он имел высоту 32 м и стоял над входом во внутреннюю гавань древнего порта острова Родоса в восточной части Эгейского моря. Гигантская бронзовая статуя была разрушена землетрясением в 223 н.э. [2]
Предки древних славян, жившие в бассейне Дона и в Приднепровье, применяли медь для изготовления оружия, украшений и предметов домашнего обихода. Русское слово «медь», по мнению некоторых исследователей, произошло от слова «мида», которое у древних племен, населявших Восточную Европу, обозначало металл вообще.
Символ Cu происходит от латинского aes cyproum (позднее, Cuprum), так как на Кипре (Cyprus) находились медные рудники древних римлян. Относительное содержание меди в земной коре составляет 6,8·10-3%. Самородная медь встречается очень редко. Обычно элемент находится в виде сульфида, оксида или карбоната. Важнейшими рудами меди являются халькопирит CuFeS2, который, по оценкам, составляет около 50% всех месторождений этого элемента, медный блеск (халькоцит) Cu2S, куприт Cu2O и малахит Cu2CO3(OH)2. Большие месторождения медных руд найдены в различных частях Северной и Южной Америк, в Африке и на территории нашей страны. В 18-19 вв. близ Онежского озера добывали самородную медь, которую отправляли на монетный двор в Петербург. Открытие промышленных месторождений меди на Урале и в Сибири связано с именем Никиты Демидова. Именно он по указу Петра I в 1704 начал чеканить медные деньги.
2. Месторождение меди и нахождение в природе
В земной коре содержание меди составляет около 5·10-3% по массе. Очень редко медь встречается в самородном виде (самый крупный самородок в 420 тонн найден в Северной Америке). Из руд наиболее широко распространены сульфидные руды: халькопирит, или медный колчедан, CuFeS2 (30% меди), ковеллин CuS (64,4% меди), халькозин, или медный блеск, Cu2S (79,8% меди), борнит Cu5FeS4 (52-65% меди). Существует также много и оксидных руд меди, например, куприт Cu2O, (81,8% меди), малахит CuCO3·Cu(OH)2 (57,4% меди) и другие. Известно 170 медьсодержащих минералов, из которых 17 используются в промышленных масштабах.
Большие месторождения медных руд найдены в различных частях Северной и Южной Америк, в Африке и на территории нашей страны. В 18-19 вв. близ Онежского озера добывали самородную медь, которую отправляли на монетный двор в Петербург. Открытие промышленных месторождений меди на Урале и в Сибири связано с именем Никиты Демидова. Именно он по указу Петра I в 1704 начал чеканить медные деньги.
Богатые месторождения меди давно выработаны. Сегодня почти весь металл добывается из низкосортных руд, содержащих не более 1% меди. Некоторые оксидные руды меди могут быть восстановлены непосредственно до металла нагреванием с коксом. Однако большая часть меди производится из железосодержащих сульфидных руд, что требует более сложной переработки. Эти руды сравнительно бедные, и экономический эффект при их эксплуатации может обеспечиваться лишь ростом масштабов добычи.
Часто источником меди служат полиметаллические руды, в которых, кроме меди, присутствуют железо, цинк, свинец, и другие металлы. Как примеси медные руды обычно содержат рассеянные элементы (кадмий, селен, теллур, галий, германий и другие), а также серебро, а иногда и золото.
3. Способы получения
Гидрометаллургический способ - получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Метод используют при переработке бедных руд, он не позволяет извлекать попутно с медью драгоценные металлы.
Получение меди пирометаллургическим способом состоит из обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.
Обогащение медных руд производится методом флотации и окислительного обжига.
Метод флотации основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы. Сущность флотации состоит в избирательном прилипании некоторых минеральных частиц, взвешенных в водной среде, к поверхности пузырьков воздуха, с помощью которых эти минеральные частицы поднимаются на поверхность. Метод позволяет получать медный порошкообразный концентрат, содержащий 10…35 % меди.
Медные руды и концентраты, содержащие большие количества серы, подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700…800 0C в присутствии кислорода воздуха сульфиды окисляются и содержание серы снижается почти вдвое против исходного. Обжигают только бедные (с содержанием меди 8…25 %) концентраты, а богатые (25…35 % меди) плавят без обжига.
После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа (Cu2S, FeS). Штейн содержит 20…50 % меди, 20…40 % железа, 22…25 % серы, около 8 % кислорода и примеси никеля, цинка, свинца, золота, серебра. В зависимости от химического состава руды и ее физического состояния штейн получают либо в шахтных печах, если сырьем служит кусковая медная руда, содержащая много серы, либо в отражательных печах, если исходным продуктом является порошкообразный флотационный концентрат. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки -- 1450 0C.
Полученный медный штейн, в целях окисления сульфидов и железа подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак, а серу - в SO2. Тепло в конвертере выделяется за счёт протекания химических реакций без подачи топлива. Температура в конвертере составляет 1200…1300 єC. Таким образом, в конвертере получают черновую медь, содержащую 98,4…99,4 % меди, 0,01…0,04 % железа, 0,02…0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.
Черновую медь рафинируют для удаления вредных примесей, проводят огневое, а затем электролитическое рафинирование.
Сущность огневого рафинирования черновой меди заключается в окислении примесей, имеющих большее сродство к кислороду, чем медь, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99…99,5 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.
Электролитическое рафинирование проводят для получения чистой от примесей меди (99,95 %).
Электролиз осуществляют в ваннах, где анод изготавливают из меди огневого рафинирования, а катод - из тонких листов чистой меди. Электролитом служит водный раствор CuSO4 (10…16 %) и H2SO4(10…16%).
При пропускании постоянного тока анод растворяется, медь переходит в раствор, а на катодах разряжаются ионы меди, осаждаясь на них слоем чистой меди.
Примеси осаждаются на дно ванны в виде шлама, который идёт на переработку в целях извлечения металлов: серебра, сурьмы, селена, теллура, золота и др...
Катоды выгружают через 5…12 дней, когда их масса достигнет 60…90 кг. Их тщательно промывают, а затем переплавляют в электропечах.
4. Электронное строение и степени окисления
Медь -- элемент четвертого периода I группы побочной (B) подгруппы Периодической таблицы.
Относится к элементам d -- семейства. Металл. Обозначение - Cu. Порядковый номер - 29. Относительная атомная масса - 63,546 а.е.м. Атом меди состоит из положительно заряженного ядра (+29), внутри которого есть 29 протонов и 35 нейтронов, а вокруг, по четырем орбитам движутся 29 электронов.
Распределение электронов по орбиталям выглядит следующим образом:
+29 Сu)2)8)18)1;
1s22s22p63s23p63d104s1.
Состояние считается более энергетически выгодным, если на d-подуровне находится 5 или 10 электронов, поэтому в случае меди мы наблюдаем проскок: один электрон s-подуровня переходит на d-подуровень для того, чтобы положение было устойчивым. Энергетическая диаграмма основного состояния принимает следующий вид:
Медь может существовать в виде простого вещества - металла, а степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.
В своих соединениях медь может проявлять степени окисления:
(+1) (Cu+12O, Cu+1OH, K[Cu+1(CN)2], Cu+1Clи т.д.)
(+2) (Cu+2O, Cu+2Cl2, Cu+2(OH)2) и (+3) (KCu+3O2).
5. Свойства меди и её соединений
1. ФИЗИЧЕСКИЕ СВОЙСТВА.
На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.
Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.
Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.
Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.
2. ХИМИЧЕСКИЕ СВОЙСТВА.
Химические свойства меди определяются тем, какое положение она занимает в таблице Менделеева, где она имеет порядковый номер 29 и располагается в четвертом периоде. Что примечательно, она находится в одной группе с благородными металлами. Это лишний раз подтверждает уникальность ее химических свойств, о которых следует рассказать более подробно.
В условиях невысокой влажности медь практически не проявляет химическую активность. Все меняется, если изделие поместить в условия, характеризующиеся высокой влажностью и повышенным содержанием углекислого газа. В таких условиях начинается активное окисление меди: на ее поверхности формируется зеленоватая пленка, состоящая из CuCO3, Cu(OH)2 и различных сернистых соединений. Такая пленка, которая называется патиной, выполняет важную функцию защиты металла от дальнейшего разрушения.
Окисление начинает активно происходить и тогда, когда изделие подвергается нагреву. Если металл нагреть до температуры 375 градусов, то на его поверхности формируется оксид меди, если выше (375-1100 градусов) -- то двухслойная окалина.
Медь достаточно легко реагирует с элементами, которые входят в группу галогенов. Если металл поместить в пары серы, то он воспламенится. Высокую степень родства он проявляет и к селену. Медь не вступает в реакцию с азотом, углеродом и водородом даже в условиях высоких температур.
Внимание заслуживает взаимодействие оксида меди с различными веществами. Так, при его взаимодействии с серной кислотой образуется сульфат и чистая медь, с бромоводородной и иодоводородной кислотой -- бромид и иодид меди.
Иначе выглядят реакции оксида меди с щелочами, в результате которых образуется купрат. Получение меди, при котором металл восстанавливается до свободного состояния, осуществляют при помощи оксида углерода, аммиака, метана и других материалов.
Медь при взаимодействии с раствором солей железа переходит в раствор, при этом железо восстанавливается. Такая реакция используется для того, чтобы снять напыленный медный слой с различных изделий.
Одно- и двухвалентная медь способна создавать комплексные соединения, отличающиеся высокой устойчивостью. Такими соединениями являются двойные соли меди и аммиачные смеси. И те, и другие нашли широкое применение в различных отраслях промышленности.
СОЕДИНЕНИЯ МЕДИ
Оксид меди (I) Cu2O3 и закись меди (I) Cu2O, как и другие соединения меди (I) менее устойчивы, чем соединения меди (II). Оксид меди (I), или закись меди Cu2O в природе встречается в виде минерала куприта. Кроме того, она может быть получена в виде осадка красного оксида меди (I) в результате нагревания раствора соли меди (II) и щелочи в присутствии сильного восстановителя.
Оксид меди (II), или окись меди, CuO - черное вещество, встречающееся в природе (например, в виде минерала тенорита). Его получают прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO2)2. Оксид меди (II) хороший окислитель. Гидроксид меди (II) Cu(OH)2 осаждается из растворов солей меди (II) при действии щелочей в виде голубой студенистой массы. Уже при слабом нагревании даже под водой он разлагается, превращаясь в черный оксид меди (II). Гидроксид меди (II) - очень слабое основание. Поэтому растворы солей меди (II) в большинстве случаев имеют кислую реакцию, а со слабыми кислотами медь образует основные соли.
Сульфат меди (II) CuSO4 в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях. Водный раствор сульфата меди имеет характерный сине-голубой цвет. Эта окраска свойственна гидратированным ионам [Cu(H2O)4]2+, поэтому такую же окраску имеют все разбавленные растворы солей меди (II), если только они не содердат каких-либо окрашенных анионов. Из водных растворов сульфат меди кристаллизуется с пятью молекулами воды, образуя прозрачные синие кристаллы медного купороса. Медный купорос применяется для электролитического покрытия металлов медью, для приготовления минеральных красок, а также в качестве исходного вещества при получении других соединений меди. В сельском хозяйстве разбавленный раствор медного купороса применяется для опрыскивания растений и протравливания зерна перед посевом, чтобы уничтожить споры вредных грибков.
Хлорид меди (II) CuCl2. 2H2O. Образует темно-зеленые кристаллы, легко растворимые в воде. Очень концентрированные растворы хлорида меди (II) имеют зеленый цвет, разбавленные - сине-голубой.
Нитрат меди (II) Cu(NO3)2.3H2O. Получается при растворении меди в азотной кислоте. При нагревании синие кристаллы нитрата меди сначала теряют воду, а затем легко разлагаются с выделением кислорода и бурого диоксида азота, переходя в оксид меди (II).
Гидроксокарбонат меди (II) (CuOH)2CO3. Встречается в природе в виде минерала малахита, имеющего красивый изумрудно-зеленый цвет. Искусственно приготовляется действием Na2CO3 на растворы солей меди (II).
медь природа соединение окисление
2CuSO4 + 2Na2CO3 + H2O = (CuOH)2CO3v + 2Na2SO4 + CO2^
Применяется для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике.
Ацетат меди (II) Cu (CH3COO)2H2O. Получается обработкой металлической меди или оксида меди (II) уксусной кислотой. Обычно представляет собой смесь основных солей различного состава и цвета (зеленого и сине-зеленого). Под названием ярь-медянка применяется для приготовления масляной краски.
Комплексные соединения меди образуются в результате соединения двухзарядных ионов меди с молекулами аммиака. Из солей меди получают разноообразные минеральные краски. Все соли меди ядовиты. Поэтому, чтобы избежать образования медных солей, медную посуду покрывают изнутри слоем олова (лудят).
6. Биологическая роль
Биологическая роль меди многообразна. В первую очередь минерал входит в состав жизненно важных ферментов, выполняющих в организме сложные функции.
Медь - основной компонент фермента цитохромоксидазы, осуществляющего клеточное дыхание во всех органах и тканях. Минерал является составным компонентом витаминов и гормонов, пигментных веществ. Медь оказывает влияние на синтез половых гормонов, нормализует работу эндокринной системы, активизирует инсулин.
Биогенная роль меди заключается в участии в процессах кроветворения. Микроэлемент участвует в синтезе гемоглобина, осуществляющего перенос кислорода в организме, повышает скорость кровообращения.
Медь участвует в синтезе коллагена и эластина, поддерживает тургор кожи. Без нее соединительная ткань теряет упругость, а кости и хрящи - эластичность.
Важна медь и для нервной ткани, она входит в состав специальных оболочек нервных клеток (миелиновых), изолирующих нервные волокна.
Медь активно участвует в метаболизме углеводов: активизирует окисление глюкозы, замедляет разрушение гликогена в печени.
Для иммунной системы медь тоже играет важное значение. Металл нейтрализует токсины микроорганизмов, пролонгирует действие антибактериальных препаратов, уменьшает воспалительные реакции.
Медь участвует в синтезе меланина, обеспечивая пигментацию волос и кожи. Дефицит меди приводит к нарушению пигментации, раннему поседению.
7. Области применения
Как применяют медь в промышленности
При производстве различных изделий использую медь в чистом виде и в виде сплавов с различными металлами. В чистом виде металл используют для изготовления сетевых кабелей и проводов электропередач. Медь отличается способностью быстро и без потерь проводить электроток. По этому показателю она уступает лишь серебру, но поскольку оно относится к драгоценным металлам и имеет высокую стоимость, то в электропроводках отдают предпочтение применению меди. Для производства сердцевины кабелей - медной жилы применяют только чистый металл, наличие любых примесей значительно снижает проводниковый эффект.
Медное напыление используют при хромировании стали. Изделия из стали часто в декоративных целях покрывают хромом или никелем, но это покрытие недолговечно и в процессе эксплуатации может отпадать, во избежание этого между сталью и хромированным слоем наносят медное напыление, оно обеспечивает лучшее сцепление.
Применение меди в промышленности можно наблюдать и при осуществлении пайки, она значительно облегчает этот процесс, а деталь получается однородной и прочной. Этот металл является достаточно пластичным, его можно применять для изготовления водопроводных труб различной конфигурации, в России использование таких труб нешироко распространено, но в Европе такие изделия можно найти довольно часто.
Использование меди в медицине
Традиционная медицина считает медь очень важным элементом жизнедеятельности человека. В организме это вещество содержится в количестве 2*10-4 % от общей массы. Ежедневно человек с пищей потребляет до 60 мг меди, из которых усваивается примерно 2 мг, что является необходимой нормой для здорового организма. Медь играет важную роль в биосинтезе гемоглобина, в поддержании уровня сахара, холестерина и мочевой кислоты. Для нормальной работы сердечно-сосудистой системы, головного мозга, пищеварительного тракта необходима медь.
Заключение
Медь является одним из металлов, известных с древнейших времён, и в настоящее время занимает второе место (после алюминия) по объёму промышленного производства.
Медь широко используется в промышленности из-за:
высокой теплопpоводимости,
высокой электpопpоводимости,
ковкости,
хороших литейных качеств,
большого сопротивления на разрыв,
химической стойкости.
Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь совершенно необходима всему живому.
Использованная литература
1. Медь, нахождение в природе [электронный ресурс], - http://msk-port.ru/cup_places/
2. Нахождение в природе, получение, свойства, применение меди, серебра, золота [электронный ресурс], - http://www.konspektov.net/question/5075678701551616
3. Производство меди [электронный ресурс], - http://xn--80aagiccszezsw.xn-p1ai/uchebniki/osnovy-metallurgicheskogo-proizvodstva/6-proizvodstvo-cvetnyx-metallov/6-1-proizvodstvo-medi
4. Степень окисления меди [электронный ресурс], - http://ru.solverbook.com/spravochnik/ximiya/stepen-okisleniya/stepen-okisleniya-medi/
5. Строение атома меди [электронный ресурс], - http://ru.solverbook.com/spravochnik/ximiya/11-klass/stroenie-atoma/med/
6. Основные свойства меди [электронный ресурс], - http://cu-prum.ru/med.html
7. Роль меди в организме человека [электронный ресурс], - https://www.vit-amin.ru/st-med
8. Как применяют медь в промышленности [электронный ресурс], - http://ecology-of.ru/med/oblast-primeneniya-medi
Размещено на Allbest.ru
...Подобные документы
Медь - химический элемент I группы периодической системы Менделеева. Общая характеристика меди. Физические и химические свойства. Нахождение в природе. Получение, применение, биологическая роль. Использование соединений меди.
реферат [13,4 K], добавлен 24.03.2007История и происхождение названия меди, ее нахождение в природе. Физические и химические свойства элемента, его основные соединения. Применение в промышленности, биологические свойства. Нахождение серебра в природе и его свойства. Сведения о золоте.
курсовая работа [45,1 K], добавлен 08.06.2011Физические и химические свойства меди: тепло- и электропроводность, атомный радиус, степени окисления. Содержание металла в земной коре и его применение в промышленности. Изотопы и химическая активность меди. Биологическое значение меди в организме.
презентация [3,9 M], добавлен 12.11.2014Медь металл мягкий и пластичный. По электро- и теплопроводности медь уступает только серебру. Металлическая медь, как и серебро, обладает антибактериальными свойствами. Малахит является соединением меди, состав природного малахита - основной карбонат меди
курсовая работа [182,8 K], добавлен 24.05.2005Общая характеристика меди. История открытия малахита. Форма нахождения в природе, искусственные аналоги, кристаллическая структура малахита. Физические и химические свойства меди и её соединений. Основной карбонат меди и его химические свойства.
курсовая работа [64,2 K], добавлен 24.05.2010Медь, электронное строение и свойства. Электрохимический синтез и его применение для получения координационных соединений. Определение концентрации соляной кислоты и раствора гидроксида калия. Спектрофотометрическое и ИК-спектроскопическое исследования.
дипломная работа [2,9 M], добавлен 09.10.2013Медь, серебро и золото - ровесники цивилизации. Медь: первый металл, заменивший древнему человеку камень в первобытных орудиях труда. Распространение в природе меди, основные сферы ее применения. Сплав меди с оловом – бронза и ее основные свойства.
презентация [3,9 M], добавлен 04.03.2010Физические и химические свойства меди - первого металла, который впервые стал использовать человек в древности за несколько тысячелетий до нашей эры. Значение меди для организма человека. Область ее применения, использование в народной медицине.
презентация [5,0 M], добавлен 19.05.2014Атомные, физические и химические свойства элементов подгруппы меди и их соединений. Содержание элементов подгруппы меди в земной коре. Использование пиро- и гидрометаллургическиех процессов для получения меди. Свойства соединений меди, серебра и золота.
реферат [111,9 K], добавлен 26.06.2014Положение меди в периодической системе Д.И. Менделеева. Распространение в природе. Физические и химические свойства. Комплексные соединения меди. Применение меди в электротехнической, металлургической и химической промышленности, в теплообменных системах.
реферат [62,6 K], добавлен 11.08.2014Электронное строение железа, характерные степени окисления. Нахождение железа в природе, способы получения, применение. Парамагнитные сине-зеленые моноклинные кристаллы. Соединения железа, их физические и химические свойства, биологическое значение.
реферат [256,2 K], добавлен 08.06.2014Электронное строение и степени окисления олова. Нахождение элемента в природе и способ получения. Химические и физические свойства металла и его соединений. Оловянные кислоты. Влияние олова на здоровье человека. Область применения металла и его сплавов.
курсовая работа [60,6 K], добавлен 24.05.2015Физиологическая роль и индикаторы элементного статуса меди. Применение ее в промышленности и медицине. Физические свойства химического элемента, нахождение его в природе. Оценка содержания меди в организме человека, индикаторы ее элементного статуса.
презентация [3,5 M], добавлен 23.02.2015Распространение меди в природе. Физические и химические свойства меди. Характеристики основных физико-механических свойств. Отношение меди к галогенам и другим неметаллам. Качественные реакции на ионы меди. Двойные и многокомпонентные медные сплавы.
реферат [68,0 K], добавлен 16.12.2010Общая характеристика и свойства меди. Рассмотрение основных методов получения меди из руд и минералов. Определение понятия сплавов. Изучение внешних характеристик, а также основных особенностей латуни, бронзы, медно-никелевых сплавов, мельхиора.
презентация [577,5 K], добавлен 14.04.2015Кальций как один из самых распространенных элементов на Земле, его главные физические и химические свойства, история открытия и исследований. Нахождение элемента в природе, сферы его практического применения. Существующие соединения и биологическая роль.
контрольная работа [818,8 K], добавлен 26.01.2014История открытия меди и серебра. Применение меди в промышленности: электротехнике, машиностроении, строительстве, химическом аппаратуростроении, денежном обращении и ювелирном деле. Основные химические свойства и физическая характеристика металлов.
презентация [1,1 M], добавлен 25.03.2013Характеристика цинка и меди как химических элементов и их место в периодической таблице Менделеева. Получение цинка из полиметаллических руд пирометаллургическим и электролитическим методами. Способы применения меди в электротехнике и производстве.
презентация [487,5 K], добавлен 08.02.2012Химические свойства. Минералы. Медные сплавы. Марки медных сплавов. Медно-цинковые сплавы. Латуни. Оловянные бронзы. Алюминиевые бронзы. Кремнистые бронзы. Бериллиевые бронзы. Медь в промышленности. Медь в жизни растений и животных.
реферат [16,6 K], добавлен 22.12.2003Йод: свойства обычные и необычные, биологические функции иода, человек. Медь. Бронза. Металлургия. В живом организме. Медные деньги. Цинк. Цинк и сталь. Сплавы и немного истории. Биологическая роль цинка. Серебро. Зеркальное отражение. Палладий. Никель.
реферат [599,5 K], добавлен 30.12.2003