Сушильные установки и физические основы сушки

Виды сушки, применяемые в химической промышленности. Изменение влагосодержания и температуры материала в процессе сушки. Характеристики конструкции и применение камерных, туннельных, ленточных, барабанных сушилок. Расчет общего количества удаляемой влаги.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 03.04.2022
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Основы сушки

Сушка - один из самых распространенных технологических процессов, используемый в химической, фармацевтической и пищевой промышленности. Трудно найти такое химическое и фармацевтическое производство, на котором не было бы операции сушки того или иного вещества или препарата. Наиболее часто сушка является завершающим этапом технологического процесса с получением целевого продукта.

Целями являются:

Ш облегчение и удешевление транспортировки материалов, для повышения их прочности;

Ш сушка многих лекарственных препаратов обеспечивает их консервирование и хранение;

Ш сушка необходима для последующего измельчения некоторых материалов. сушка сублимация вакуум эвтектический

Сушка - это процесс удаления влаги из твердого или пастообразного материала путем испарения содержащейся в нем жидкости за счет подведенного к материалу тепла.

Сушка широко используется в различных отраслях: в химическом, сельском хозяйстве и в химико-фармацевтическом производстве. Она применяется на различных стадиях технологического процесса: для подготовки сырья и получения полуфабрикатов; часто сушка является завершающим этапом производства, определяющим качество готового лекарственного вещества.

В промышленной технологии лекарственных препаратов сушка, как завершающий этап производства, существенным образом сказывается на качестве выпускаемой продукции (сухие экстракты, ферменты, витамины, антибиотики и др.).

Высокое качество, стабильность продукта зависит от технического уровня сушки - степени автоматизации и механизации режимов процесса, совершенства сушильной аппаратуры, чистоты воздуха. Современные концепции фармацевтической науки в области теории сушки свидетельствуют, что тепловые и массообменные процессы нередко сопровождаются изменением структурно-механических свойств высушиваемого материала, образованием полиморфных форм и кристаллогидратов лекарственных веществ, реакциями окисления, гидролиза, приводящие к изменению растворимости, всасывания, снижению или потере терапевтической активности лекарственных веществ. Правильно организованный процесс сушки позволяет сохранить или улучшить свойства материалов. Так, сушка таблеточного гранулята в контактных сушилках приводит к его спеканию, изменению цвета, неравномерному остаточному влагосодержанию, ухудшению сыпучести, разложению действующих веществ. Высушивание в псевдоожиженном слое уменьшает большинство этих недостатков, а в распылительной сушилке устраняет все.

Если сушить препараты, содержащие ферменты при 30°С, то они теряют 33 % активности. При добавлении к ферментному осадку крахмала инактивирование исключается, а сублимационная сушка позволяет получить стабильный препарат. Такое наблюдается при производстве термолабильных препаратов: антибиотиков, гормонов, витаминов, вакцин, сывороток и препаратов крови. Для сушки порошкообразных и зернистых материалов применяют барабанные и ленточные сушилки, а для мелкоизмельченного - сушилку с кипящим (псевдоожиженным) слоем.

По способу подвода тепла к высушиваемому материалу различают следующие виды сушки:

1. Конвективная - путем непосредственного соприкосновения высушиваемого материала с сушильным агентом, в качестве которого чаще используют нагретый воздух или топочные газы (как правило, в смеси с воздухом).

2. Контактная - путем передачи тепла от теплоносителя к материалу через разделяющую их стенку.

3. Специальная.

К специальным видам сушки относятся: радиационная - путем передачи тепла инфракрасными лучами; диэлектрическая - путем нагревания в поле токов высокой частоты; сублимационная - сушка в замороженном состоянии при глубоком вакууме.

Из специальных видов сушки, применяемых относительно редко, в фармации получила распространение сублимационная - для высушивания термолабильных веществ (ферментов, гормонов, бактерийных препаратов, препаратов крови и др.)

Высушиваемый материал при любом методе сушки находится в контакте с влажным газом (в большинстве случаев воздухом). Поэтому изучение свойств влажного воздуха необходимо при рассмотрении процессов сушки и их расчетов.

Сушилки могут быть периодического и непрерывного действия. Сушилки периодического действия отличаются низкой производительностью, громоздки и в ряде случаев не удовлетворяют требованиям промышленности из-за больших затрат тяжелого физического труда, потерь готового продукта и загрязнения производственных помещений. Поэтому, как правило, вместо малопроизводительных сушилок периодического действия рациональнее использовать аппараты непрерывного действия, в которых достигается сокращение продолжительности сушки, улучшается качество продукта, кроме того, значительно облегчается их обслуживание. Машины периодического действия целесообразно использовать на производствах небольшого масштаба с разнообразным ассортиментом продукции.

Физические основы сушки

Если материал находится в контакте с влажным воздухом, то принципиально возможны два процесса:

а) сушка (десорбция влаги из материала) - если парциальное давление пара над поверхностью материала Рпм превышает его парциальное давление в окружающей среде Рпс (Рпм > Рпс);

б) увлажнение (сорбция влаги материалом) - если Рпм < Рпс.

В процессе сушки величина Рпм уменьшается и приближается к пределу Рпм = Рпс. При этом наступает состояние динамического равновесия, которому соответствует предельное влагосодержание материала Uр, называемое равновесным.

Равновесное влагосодержание зависит от свойств материала и параметров окружающей среды, а также от характера связи влаги с материалом. Влажному материалу присущи все формы связи с влагой, и очень трудно разграничить периоды сушки, соответствующие различным видам этой связи. Поэтому на основе данных экспериментов строят изотермы сорбции материалов, которые дают возможность установить связь между влагосодержанием материала и относительной влажностью воздуха, а также определить равновесное влагосодержание при сушке.

Скорость сушки характеризуется изменением влагосодержания высушиваемого материала в единицу времени:

,

где U - влагосодержание материала (кг влаги/кг сухого), t - продолжительность сушки. Средняя скорость сушки за весь ее период

,

где mв - масса испаренной влаги, mc - масса абсолютно сухого материала.

Различают два периода сушки:

1. Период постоянной скорости, когда влага испаряется со всей поверхности материала так же, как с зеркала испарения некоторого объема жидкости. В этом периоде скорость сушки определяется только интенсивностью массоотдачи (влагоотдачи) с поверхности материала в окружающую среду.

2. Период падающей скорости, когда она определяется интенсивностью перемещения влаги изнутри материала к его поверхности. С началом этого периода поверхность испарения влаги постепенно уменьшается (на поверхности подсохшего материала возникают сухие участки), что приводит к увеличению сопротивления внутренней диффузии. В конце второго периода испарение влаги с поверхности материала может прекратиться совсем и переместиться в его внутренние слои. В таких случаях второй период разделяют на две стадии: равномерно и неравномерно падающей скорости сушки.

В первом периоде сушки и на первой стадии второго из материала удаляется механически связанная влага, на второй стадии второго периода - адсорбционно и осмотически связанная. Двум основным периодам предшествует относительно короткий период прогрева материала до температуры сушки (АВ на рис. 1, 2).

Кинетика сушки обычно изучается экспериментально - путем взвешивания образца высушиваемого материала через определенные промежутки времени и расчета его влагосодержания. По результатам эксперимента строят т.н. кривую сушки (рис. 3.1), которая позволяет выделить периоды процесса и определить их продолжительности.

Первый период (ВК1)- это изменение влагосодержания материала от начального Uнач до критического Uкр. Температура материала q в течение всего первого периода соответствует температуре мокрого термометра tм сушильного агента. Во втором периоде (К1С) температура материала повышается до конечной температуры сушильного агента t2, а влагосодержание падает до равновесного Uр и далее не меняется (CD). Если второй период состоит из двух стадий, то выделяется участок равномерно падающей скорости сушки (К1К2) и отмечается второе критическое влагосодержание U'кр.

Рис. 1 Изменение влагосодержания и температуры материала в процессе сушки

Рис. 2 Кривая скорости сушки

Путем графического дифференцирования кривой сушки, т.е. проведения касательной к ней и определения тангенса угла ее наклона к оси t (угол a на рис 1), можно вычислить мгновенную скорость сушки и на основе результатов дифференцирования построить кривую скорости сушки (рис. 2). С помощью этой зависимости устанавливается целесообразное конечное влагосодержание высушиваемого материала.

Скорость сушки в первом периоде можно определить из уравнения массоотдачи

,

где b - коэффициент массоотдачи от влажной поверхности к потоку сушильного агента (кг/м2/с), F - поверхность испарения высушиваемого материала,

средняя движущая сила процесса сушки в пределах первого периода, х1, х2, хнас - влагосодержания сушильного агента на входе в аппарат, на выходе из него и в непосредственной близости от влажной поверхности (при температуре tм). Следовательно

,

где f - удельная поверхность абсолютно сухого материала (м2/кг).

Коэффициент массоотдачи b можно определить из критериального уравнения

.

В этом уравнении Nu' = bЧl/D - массообменный критерий Нуссельта, Re = wЧl/n - критерий Рейнольдса, Pr' = n/D - диффузионный критерий Прандтля, Gu = (T1 - Tм)/T1 - критерий Гухмана. Значения коэффициентов B и n зависят от значения критерия Рейнольдса, например при Re > 6000 B = 0.35, n = 0.65. В выражения для вычисления критериев входят следующие величины: l - определяющий размер (длина поверхности испарения в направлении движения сушильного агента), D - коэффициент диффузии паров воды в среде сушильного агента (м2/с), w - скорость движения сушильного агента, n - его кинематическая вязкость, Т1, Тм - абсолютные температуры сушильного агента на входе в сушилку и мокрого термометра.

По известному значению N может быть приблизительно найдена продолжительность сушки t = t1 + t2, где длительность первого периода

,

а длительность второго

.

Формула получена в результате решения дифференциального уравнения, характеризующего процесс изменения влагосодержания внутри частицы материала при следующих допущениях:

- частицы материала имеют форму шара;

- поры в частице и влага в них распределены равномерно;

- все сопротивление массопереносу сосредоточено внутри частицы, т.е. подводимая к ее поверхности влага отводится моментально.

Заметим, что значения критического Uкр и равновесного Uр влагосодержания материала определяются экспериментально, с помощью кривой сушки и изотерм сорбции, а его конечное влагосодержание Uк определяется требованиями стандартов или технических условий на продукт. Обычно Uкр < Uк < Uр, причем соответствующая Uк скорость сушки не должна быть слишком низкой (проверяется по кривой скорости сушки).

2. Виды сушки

Виды сушки, применяемые в химической промышленности, классифицируют по способу подвода тепла к высушиваемому материалу. Наиболее распространена конвективная сушка, когда тепло к поверхности материала передается непосредственно от сушильного агента (воздух, инертный газ, дымовые газы, реже - перегретый водяной пар). При кондуктивной сушке тепло материалу передается через контактную поверхность, обогреваемую теплоносителем (водяной пар, ВОТ, расплавы солей и металлов, электронагрев). Гораздо реже конвективной и контактной применяется радиационная сушка (инфракрасными лучами) и сушка в поле токов высокой частоты. Сушка сублимацией со сбросом давления практически не находит применения в химической промышленности.

Конвективные сушилки. В конвективных сушилках сушильный агент, предварительно нагретый в калорифере, движется в сушилке и соприкасается с высушиваемым материалом. При этом сушилка может работать по основной схеме, т.е. с однократным нагревом сушильного агента или с частичным подогревом воздуха в сушильной камере или другими вариантами, в которых температура сушки будет ниже, чем в сушилке по основной схеме, при одинаковом общем расходе тепла.

В зависимости от назначения используют камерные, туннельные, ленточные и барабанные сушилки.

Камерные сушилки являются аппаратами периодического действия, работающими при атмосферном давлении. Их используют в малотоннажных производствах при невысокой температуре сушки, например при сушке таблеточной массы. Материал в этих сушилках сушится на лотках (противнях), установленных на стеллажах или вагонетках, находящихся внутри сушильной камеры. На каркасе камеры, между вагонетками, установлены козырьки, которые делят пространство камеры на три, расположенные друг над другом зоны, вдоль которых последовательно движется горячий воздух. Свежий воздух, нагретый в калорифере, подается вентилятором вниз камеры сушилки. Здесь он движется (путь воздуха показан на рисунке стрелками), два раза меняя направление и дважды нагреваясь в промежуточных калориферах. Часть отработанного воздуха с помощью шибера направляется на смешивание со свежим. В результате сушилка работает с частичной рециркуляцией воздуха и промежуточным подогревом, т.е. по варианту, обеспечивающему низкую температуру и более мягкие условия сушки.

Однако вследствие сушки в неподвижном толстом слое сушилки указанного типа имеют низкую производительность, а длительность процесса в них большая. Кроме того, в этих сушилках имеют место большие потери тепла при выгрузке материала и большие затраты ручного труда.

В таких аппаратах сушка производится периодически при атмосферном давлении. Сушилки имеют одну или несколько прямоугольных камер, в которых материал, находящийся на вагонетках или полках, сушится в неподвижном состоянии. Камеры загружают и выгружают через дверь, причем вагонетки перемещают вручную или при помощи лебедок.

Камерные сушилки обладают существенными недостатками, к числу которых относятся:

1) большая продолжительность сушки, т.к. слой высушиваемого материала неподвижен;

2) неравномерность сушки;

3) потери тепла при загрузке и выгрузке камер;

4) трудные и негигиеничные условия обслуживания и контроля процесса;

5) сравнительно большой расход энергии из-за недостаточной полноты использования тепла сушильного агента (особенно в конечный период сушки).

Туннельные сушилки отличаются от камерных тем, что в них соединенные друг с другом вагонетки медленно перемещаются на рельсах вдоль очень длинной камеры прямоугольного сечения (коридора). На входе и выходе сушилки имеются герметичные двери, которые открываются для загрузки и выгрузки материала. Вагонетка с высушенным материалом удаляется из камеры, а с противоположного конца в нее поступает новая вагонетка с влажным материалом. Перемещение вагонеток механизировано. Сушильный агент может подаваться прямотоком или противотоком.

Ленточные сушилки. В сушилках этого типа сушка материалов производится непрерывно при атмосферном давлении. В камере сушилки слой высушиваемого материала движется на бесконечной ленте, натянутой между ведущими и ведомыми барабанами. Влажный материал из бункера подается питателем 6 на один конец ленты, с другого конца материал пересыпается на нижерасположенную ленту и так до последней ленты, с которой высушенный материал пересыпается в приемник высушенного материала. Сушка осуществляется горячим теплоносителем, который движется противотоком или перекрестным током к направлению движения материала. Такая многоленточная сушилка успешно работает в производстве холосаса на стадии сушки шрота из семян шиповника.

Барабанные сушилки широко применяются для непрерывной сушки при атмосферном давлении зернистых и сыпучих материалов с влажностью 5ч60 %. Барабанная сушилка имеет цилиндрический барабан, установленный под небольшим углом к горизонту (1/15-1/50) и опирающийся с помощью бандажей на опорные ролики. Барабан вращается с помощью электродвигателя через зубчатую передачу и редуктор. Число оборотов барабана обычно - 5ч8 мин1 . Положение барабана в осевом направлении фиксируется упорными роликами. Материал на сушку подают через бункер в питатель, где он предварительно подсушивается, перемешиваясь лопастями приемно-винтовой насадки, а затем поступает на внутреннюю насадку, расположенную вдоль почти всей длины барабана. Насадка обеспечивает хорошее перемешивание и распределение материала по всему сечению барабана, а также тесное соприкосновение при пересыпании с сушильным агентом - топочными газами или горячим воздухом. Сушильный агент и материал часто подают прямотоком, что помогает избежать перегрева материала, так как в данном случае наиболее горячий сушильный агент соприкасается с материалом, имеющим наибольшую влажность. Сушильный агент просасывается через барабан с вентилятором со средней скоростью, не превышающей 2ч3 м/с. При этом обеспечивается минимальный унос частичек материала. Перед выбросом в атмосферу отработанные газы очищаются от пыли в циклоне. На концах барабана устанавливают уплотнительные устройства (например, лабиринтные), затрудняющие утечку сушильного агента.

У разгрузочного конца барабана имеется подпорное устройство, которое позволяет поддерживать определенную степень заполнения барабана материалом; обычно степень заполнения не превышает 20 %. Время пребывания материала в сушилке регулируется скоростью вращения барабана и реже - изменением угла его наклона. Высушенный материал удаляется из камеры через разгрузочное устройство, с помощью которого герметизируется камера и предотвращается поступление в нее воздуха извне. Подсосы воздуха могли бы привести к бесполезному увеличению производительности и энергии, потребляемой вентилятором.

Устройство внутренней насадки барабана зависит от размеров и свойств высушиваемого материала. Так, для крупнокусковых и склонных к налипанию материалов устанавливают подъемно-лопастную насадку. Для крупнокусковых, малосыпучих материалов с большой плотностью применяют секторную насадку. Для мелкокусковых материалов, обладающих хорошей сыпучестью, используют распределительные насадки, выполненные в виде отдельных ячеек. Для материалов с очень маленькими частицами, дающих большое пыление, применяется перевалочная насадка с закрытыми ячейками. Для некоторых пастообразных материалов применяют комбинированную насадку: в передней части барабана подъемно-лопастную, а в остальной - распределительную или перевалочную.

Аэрофонтанные сушилки. Для сушки зернистых неслипающихся, влажных и достаточно крупных материалов во взвешенном состоянии применяются аэрофонтанные сушилки. Это сушилки с вихревым потоком, в котором происходит закрученная циркуляция самого высушиваемого материала. В загрузочную воронку подается влажный материал, который захватывается потоком воздуха или смесью воздуха с топочными газами, и поступает в сушильную камеру, имеющую форму расширяющегося конуса. При такой форме камеры скорость газа внизу камеры превышает скорость осаждения самых крупных частиц, а вверху - меньше скорости осаждения самых мелких частиц. В указанном случае достигается более организованная циркуляция твердых частиц, которые поднимаются в центре и опускаются у периферии аппарата. Благодаря снижению скорости газов по мере их подъема улучшается распределение частиц по крупности и уменьшается унос пыли. Это, в свою очередь, повышает равномерность нагрева (более мелкие частицы, поднимающиеся выше, находятся в области более низких температур) и позволяет уменьшить высоту камеры. В сушильной камере происходит интенсивное перемешивание материала, поскольку он находится во взвешенном состоянии. Из камеры высушиваемый материал потоком газа увлекается в циклон, где материал отделяется от газа.

Основной недостаток аэрофонтанных сушилок - неравномерность сушки. Более равномерная сушка достигается в сушилках с кипящим слоем.

Сушилки с кипящим (псевдоожиженным) слоем. В сушилке с кипящим слоем материал уложен на решетку, через которую продувается сушильный агент со скоростью, необходимой для создания кипящего слоя.

В этой сушилке для устранения неравномерности сушки применяется направленное движение материала вдоль удерживающей его решетки. Для этого подача сырого материала производится в верхнюю часть с одной стороны сушилки, а удаление сухого материала - из нижней с противоположной стороны установки. Наиболее распространены однокамерные сушилки непрерывного действия. Применяют также многокамерные сушилки. Они состоят из двух или более камер, через которые последовательно движется высушиваемый материал. Для материалов, малочувствительных к нагреву, применяются двух - и трехсекционные ступенчато-противоточные сушилки с кипящим слоем. Достоинства сушилок с кипящим слоем: интенсивность сушки; возможность высушивания при высоких температурах, высокая степень использования тепла сушильного агента, возможность автоматического регулирования параметров процесса. Недостатки: большие расходы электроэнергии для создания значительных давлений (300ч500 мм вод. ст.), необходимых для кипения слоя, а также измельчение частиц материала в сушилке.

Распылительные сушилки. За последнее десятилетие разработка новых методов введения лекарственных препаратов и приспособлений для ингаляции сухих порошкообразных веществ и их безыгольной внутрикожной инжекции или пролонгированное парентеральное введение препаратов привело к росту потребности в порошковой лекарственной форме, имеющей в своем составе активные фармацевтические ингредиенты (АФИ).

В этих сушилках достигается высокая интенсивность испарения влаги за счет тонкого распыления высушиваемого материала в сушильной камере, через которую движется сушильный агент. При сушке в распыленном состоянии удельная поверхность испарения достигает столь большой величины, что процесс высушивания завершается чрезвычайно быстро (примерно 15ч30 с). В условиях почти мгновенной сушки температура поверхности частиц материала, несмотря на высокую температуру сушильного агента (около 150°С), лишь немного превышает температуру адиабатического испарения чистой жидкости. В результате достигается быстрая сушка в мягких температурных условиях, позволяющая получить качественный порошкообразный продукт, хорошо растворимый и не требующий дальнейшего измельчения. Возможна сушка и холодным теплоносителем, когда распыливаемый материал предварительно нагрет. Распылительная сублимационная сушка обычно включает:

1) распыление жидкого раствора или суспензии с использованием одножидкостных, пневмо- или ультразвуковых распылителей для формирования капелек

2) быстрое замораживание этих капелек в криогенном газе или жидкости

3) сублимация замороженной воды с последующим получением конечных сухих частичек.

Распыление осуществляется механическими и пневматическими форсунками, а также с помощью центробежных дисков. Порция жидкого материала распыляется в пар над криогенной жидкостью, такой, как жидкий азот или жидкий пропан с использованием либо пневмо- либо ультразвуковых распылителей. Капельки начинают замерзать во время пролета через холодную паровую фазу и полностью замерзают при соприкосновении с самой криогенной жидкой фазой. Находящиеся во взвеси замерзшие капельки можно собрать с помощью сепараторного сита или дав возможность криогенной жидкости удалиться с кипением. В литературе описаны различные установки и разные геометрические формы контейнеров для сбора замороженных капелек во время этого процесса.

Распылительная сублимационная сушка является технологическим процессом выбора, если от продукта требуются следующие свойства:

пористая структура с большой удельной площадью поверхности;

свободно текущий порошок для употребления в качестве конечного или промежуточного продукта;

улучшение биодоступности чрезвычайно плохо растворимых в воде соединений.

Пригодность процесса для получения определенных конкретных частиц и порошковой формы и соответствующий выбор основывается на потребностях для конкретного применения. Критериями оценки являются частиц, распределение их по размеру, текучесть порошка, эффективность процесса и выход продукта, масштабируемость, долгосрочная физическая стабильность порошка и его долгосрочная биохимическая стабильность. Показано, что распылительная сублимационная сушка является приемлемым методом, если значимыми критериями являются хороший контроль размера частиц, сферическая форма частиц и большой размер выход продукта. Более того, это может оказаться технологией выбора при необходимости повышения биодоступности плохо растворимых в воде фармацевтических препаратов.

Контактные сушилки

Контактная сушка осуществляется путем передачи тепла от теплоносителя к материалу через разделяющую их стенку в контактных сушилках, которые делятся на периодически и непрерывно действующие. Из периодически действующих сушилок распространены вакуум-сушильные шкафы и гребковые вакуум-сушилки, в которых скорость сушки увеличивается за счет перемешивания материала медленно вращающейся горизонтальной мешалкой с гребками. Из непрерывно действующих применяют двухвальцовые атмосферные и вакуумные сушилки, а также одновальцовые формующие сушилки. Высушивание при пониженном давлении в замкнутом пространстве используется в тех случаях, когда материал чувствителен к высоким температурам.

Простейшими контактными сушилками периодического действия являются вакуум-сушильные шкафы, которые в настоящее время широко используются в производствах с малотоннажным выпуском и разнообразным ассортиментом. К таким относится фармацевтическое производство, где применение высокопроизводительных механизированных сушилок непрерывного действия экономически нецелесообразно.

Вакуум-сушильный шкаф представляет собой цилиндрическую камеру, в которой размещены полые плиты, обогреваемые изнутри паром или горячей водой. Высушиваемый материал в виде сгущенной сметанообразной массы намазывается на противни (толщиной 0,5ч4 см), которые устанавливают на плиты. Камеру герметически закрывают с помощью дверец и соединяют патрубком с вакуумной линией. Сушка происходит под вакуумом при температуре около 50°С, что зависит от глубины вакуума. При этом образуется высокий (до 15ч20 см) слой пористого легкого материала хорошо растворяющегося в воде. Выгрузка материала производится вручную. Такие сушилки пригодны для сушки легкоокисляющихся, взрывоопасных и выделяющих вредные или ценные пары веществ. Однако они малопроизводительны и малоэффективны, поскольку сушка в них происходит в неподвижном слое при наличии плохо проводящих тепло зазоров между противнями и греющими плитами. Напряжение рабочей поверхности плит со стороны материала обычно не превышает 0,5-2,5 кг/ (м3 -ч) влаги.

Гребковые вакуум-сушилки. В такой сушилке, имеющей цилиндрический корпус, паровую рубашку и мешалку, скорость сушки несколько увеличивается за счет перемешивания материала медленно вращающейся горизонтальной мешалкой с гребками. Гребки мешалки закреплены на валу взаимно перпендикулярно: на одной половине длины барабана гребки мешалки изогнуты в одну сторону, на другой - в противоположную. Кроме того, мешалка имеет реверсивный привод, автоматически меняющий каждые 5-8 мин направление вращения. Поэтому при работе мешалки материал, загруженный через люк, периодически перемещается от периферии к середине и в обратном направлении. Вал мешалки может быть полым и через него можно также осуществлять нагрев высушиваемого материала. Свободно перекатывающиеся трубы способствуют разрушению комков и дополнительно перемешивают материал. Разгрузка высушенного материала производится через люк. Корпус сушилки соединен с поверхностным или барометрическим конденсатором и вакуум-насосом. Производительность сушилки зависит от температуры греющего пара, величины разрежения и начальной влажности материала. Напряжение поверхности по влаге А колеблется в пределах 6-8 кг/ (м3"ч), т.е. выше, чем для вакуум-сушильных шкафов, но сушильный агрегат более сложен и требует больших эксплуатационных расходов.

Применение вакуумных сушилок, несмотря на их более высокую стоимость и сложность по сравнению с атмосферными сушилками, диктуется технологическими соображениями: они пригодны для сушки чувствительных к высоким температурам веществ, а также для получения высушенных продуктов повышенной чистоты. Их применяют также в случаях, когда необходимо улавливание (конденсация) паров неводных растворителей, удаляемых из материалов.

Вальцовые сушилки осуществляют непрерывную сушку жидкостей и текучих пастообразных материалов при разрежении или атмосферном давлении. Основной частью двухвальцовых сушилок, наиболее часто применяемых в фармацевтическом производстве, являются вальцы и медленно вращающиеся (п= 2ч10 об/мин) в кожухе навстречу друг другу. Сверху между вальцами непрерывно подается высушиваемый материал. Греющий пар поступает через полую цапфу внутрь каждого из вальцов, паровой конденсат отводится через сифонную трубку. Материал покрывает вращающуюся поверхность вальцов тонкой пленкой, толщина которой регулируется величиной зазора между вальцами. Обычно зазор - 0,5ч1,0 мм. Высушивание материала происходит интенсивно в тонком слое в течение одного неполного оборота вальцов.

Специальные сушилки. К специальным видам сушки, как указывалось ранее, относятся: радиационная, диэлектрическая и сублимационная. Соответственно этим видам сушки различают терморадиационные, высокочастотные и сублимационные сушилки.

Терморадиационные сушилки. Сушка в них осуществляется за счет тепла, сообщаемого инфракрасными лучами. Указанным способом к материалу можно подводить удельные потоки тепла, приходящиеся на 1 м2 его поверхности, в десятки раз превышающие соответствующие потоки при конвективной и контактной сушке. Поэтому при сушке инфракрасными лучами значительно увеличивается интенсивность испарения влаги из материала.

Однако при высушивании толстослойных материалов скорость сушки может определяться не скоростью подвода тепла, а скоростью внутренней диффузии влаги или требованиями, предъявляемыми к качеству высушиваемого материала: нарушение структуры, недопустимость коробления и т.п. В начальный период радиационной сушки под действием высокого температурного градиента влага может перемещаться вглубь материала до тех пор, пока под действием большей, противоположно направленной движущей силы (за счет градиента влажности) не начнется испарение влаги из материала. Поэтому терморадиационная сушка эффективна в основном для высушивания тонколистовых материалов или лакокрасочных покрытий.

Терморадиационные сушилки по способу обогрева генераторов инфракрасного излучения подразделяют на сушилки с электрическим и газовым обогревом. В качестве электрических излучателей применяют зеркальные лампы, элементы сопротивления (панелызые или трубчатые), керамические нагреватели - электрические спирали, запрессованные в керамической массе. Все эти нагреватели более сложны и инерционны, чем обычные ламповые, используемые в первый период применения терморадиационной сушки, однако они обеспечивают большую равномерность сушки.

Терморадиационные сушилки с газовым обогревом обычно проще и экономичнее сушилок с электрообогревом. При газовом обогреве излучателями являются металлические или керамические плиты, которые обогревают открытым пламенем или продуктами сгорания газов. В первом случае обогрев излучающей панели открытым пламенем газовых горелок производится со стороны, обращенной к материалу, который перемещается на транспортере.

Лучшие условия труда и больший КПД достигаются с использованием второй схемы - при нагреве продуктами сгорания газов, движущимися внутри излучателя. Газ и горячий воздух поступают в горелку. Продукты сгорания из камеры б направляются на обогрев излучающей поверхности. По пути они подсасывают с помощью эжектора часть отработанных (рециркулирующих) газов для увеличения скорости потока теплоносителя и повышения коэффициента теплоотдачи от газов к поверхности излучения. Поступающий в горелку воздух вентилятором прокачивается через воздухоподогреватель, в котором используется тепло отходящих газов.

В современных радиационных сушилках с газовым обогревом эффективно используют излучающие насадки с беспламенным горением. Такие горелки могут быть использованы при сжигании низкокалорийного генераторного газа. Принцип беспламенного горения с излучающей насадкой-слоем состоит в том, что смесь горючих газов и воздуха пропускают через пористую стенку, выполненную из монолитного куска огнеупора (шамота и динаса), со скоростью, превышающей скорость воспламенения газовоздушной смеси. Вначале горение протекает в обычных условиях, затем пламя постепенно уменьшается и при разогреве стенки до яркого накала горение концентрируется на ее внешней поверхности, которая испускает мощные потоки тепловой радиации.

Терморадиационные сушилки отличаются относительно высоким расходом энергии - 1,5-2,5 кВт*ч на 1 кг испаренной влаги, что ограничивает их применение.

Высокочастотные (диэлектрические) сушилки. Применение сушки в поле токов высокой частоты эффективно для высушивания толстослойных материалов, когда необходимо регулировать температуру и влажность не только на поверхности, но и в глубине материала. Таким способом можно сушить материалы, обладающие диэлектрическими свойствами (пластмассы, смолы, древесину и др.).

Высокочастотная сушилка состоит из лампового высокочастотного генератора 1 и сушильной камеры. Из сети переменный ток поступает в выпрямитель, затем - в генератор, где преобразуется в переменный ток высокой частоты. Этот ток подводится к пластинам конденсаторов, между которыми движется на ленте высушиваемый материал. В сушилке материал высушивается сначала на ленте, а затем поступает на ленту, где досушивается. Под действием электрического поля высокой частоты ионы и электроны в материале, содержащем обычно некоторое количество электролита, например, раствора соли, меняют направление движения синхронно с изменением знака заряда пластин конденсатора: дипольные молекулы приобретают вращательное движение, а неполярные молекулы поляризуются за счет смещения их зарядов. Эти процессы, сопровождаемые трением, приводят к выделению тепла и нагреванию высушиваемого материала.

Изменяя напряженность электрического поля, можно регулировать величину температурного градиента между внутренними слоями материала и его поверхностью, т. е. регулировать скорость сушки, а также избирательно нагревать лишь одну из составных частей неоднородного материала.

В поле токов высокой частоты возможна быстрая (за счет усиленной термодиффузии влаги) и равномерная сушка толстослойных материалов. Однако сушка в поле высокой частоты для большинства материалов оказывается дороже конвективной в 3-4 раза. Кроме того, оборудование сушилок в поле высокой частоты более сложное и дорогостоящее в эксплуатации. Поэтому применение высокочастотной сушки ограничено специальными случаями, например конвейерной сушкой мелких дорогостоящих изделий, и требует технико-экономического обоснования в каждом конкретном случае.

Сублимационные сушилки. Сублимационная сушка - это сушка материалов в замороженном состоянии. При этой сушке находящаяся в материале влага переходит в пар, минуя жидкое состояние, т. е. сублимирует. Такая сушка называется сублимационной, или молекулярной. Ее также называют лиофилъной сушкой. Термин «лиофильный» происходит от греческого lyo - растворяю и phileo - люблю и обозначает любящий растворение или легкорастворимый. Действительно, порошки, полученные указанным методом, очень гигроскопичны и легко растворимы.

Данный способ сушки позволяет сохранить основные биологические качества высушиваемых материалов и широко используется в фармацевтическом производстве при получении ферментов, антибиотиков, препаратов крови, иммуннобиологических препаратов и др.

Применительно к процессу сушки сублимация влажного материала - процесс сушки его в замороженном состоянии (сублимация льда, находящегося внутри материала). Как известно, состояние воды можно определить тремя фазами: твердой, жидкой и газообразной. Фазы могут существовать как самостоятельно, так и совместно, точка одновременного существования трех фаз называется тройной точкой. Для воды она характеризуется температурой 0,0098°С и парциальным давлением пара 4,58 мм рт. ст. Сублимация происходит при состоянии веществ ниже этой точки.

Эффективность применения вакуума при сушке сублимацией представлена в табл, по данным которой очевидно, что с увеличением разрежения падает и температура фазового перехода; при подводе тепла в условиях глубокого вакуума можно создать большие разности температур между материалом и источником тепла по сравнению с обычной вакуумной сушкой:

Таблица 1. Зависимость температуры сублимации льда от давления окружающей среды

Давление, мм рт. ст.

Температура сублимации, °С

4,6

0,0098

1,0

-17,50

0,001

-39,30

Однако не следует считать, что сушка сублимацией возможна только в условиях глубокого вакуума. Еще в XVI XVII вв. производилась сушка в замороженном состоянии в зимнее время на открытом воздухе кож и тканей. В данном случае разность температур tx - tM очень мала (близка к нулю), поэтому такая сушки была очень длительной и промышленного применения не получили.

3. Основные конструкции, чертежи

Конструкции сушильных аппаратов могут быть классифицированы по различным признакам:

- по виду высушиваемого материала (крупногабаритные, дисперсные, пастообразные или жидкие);

- по относительному направлению движения сушильного агента и материала (прямоточные, противоточныс, с перекрестным движением);

- по виду теплоносителя (воздушные, топочные газы, перегретый пар, инертный газ, жидкий теплоноситель);

- по способу подвода теплоты к материалу (конвективные, контактные, радиационные, диэлектрические).

Рассмотрим сушильные аппараты, классифицируемые по способу подвода теплоты к высушиваемому материалу.

Конвективные сушилки

Камерные (полочные) сушилки (рис. 3) представляют собой герметичную камеру, внутри которой высушиваемый материал располагается на полках 2, сетках, противнях или на подвижных вагонетках. В таких сушилках можно высушивать и крупногабаритные материалы, и сыпучие влажные продукты, а также пастообразные и жидкие материалы. Процесс сушки проводится в периодическом режиме.

Влажный материал загружается в камеру 1, высушивается горячим теплоносителем до необходимого влагосодержания и затем выгружается из сушилки [4,5,14].

Рис. 3 Камерная сушилка: I - корпус камеры; 2 - полки для влажного материала; 3 - калориферы промежуточного подогрева воздуха; 4 - заслонка, регулирующая долю рециркулирующего сушильного агента; / -атмосферный воздух; // - отработанный воздух

сушка влагосодержание камерный барабанный

Объем и размеры камеры определяются продолжительностью сушки и производительностью аппарата. Для ускорения загрузки и выгрузки материала противни или сетки для его укладки размещают часто на вагонетках.

Атмосферный воздух I с помощью вентилятора через калорифер 3 подают в пространство камеры, внутри которой находятся полки 2 с высушиваемым материалом. Заслонка 4 служит для регулирования расходов рециркулирующего и отработанного воздуха II.

Камерные сушилки просты по устройству, универсальны, но обладают существенными недостатками: периодичность работы и большой расход теплоты на разогрев всей конструкции после каждой загрузки новой порции материала, значительная затрата ручного труда при операциях загрузки и выгрузки, неравномерность высушивания материала на верхних и нижних полках. Камерные сушилки применяются для сушки относительно небольших количеств материалов, требующих длительного времени для достижения низкой остаточной влажности.

Туннельные сушилки - аппараты непрерывного действия, представляющие собой камеры длиной до нескольких десятков метров, в которых проводится сушка крупногабаритных материалов, например керамических изделий, располагаемых на последовательно перемещающихся вагонетках. Для туннельных сушилок обычно требуется промежуточный подогрев сушильного агента, и они обладают теми же преимуществами и недостатками, что и аппараты камерного типа.

Рис. 4. Ленточная сушилка: 1 - корпус; 2 - транспортирующие ленты; 3 - калорифер; 4 - загрузочный бункер; 5 - секторный питатель; / и // - атмосферный и отработанный воздух; III - материал

Ленточные сушилки (рис. 4) предназначены для сушки зернистых, гранулированных и волокнистых материалов. Они представляют собой камеру, в которой имеется одна или несколько расположенных друг над другом транспортирующих лент 2. В ленточных сушилках легко организуется прямоток, противоток, перекрестный ток и любой смешанный вид относительного движения сушильного агента и высушиваемого материала. Чаще всего в сушилках подобного типа достигается равномерное высушивание благодаря перемешивания дисперсного материала при его пересыпании с верхней ленты на нижнюю.

Основные недостатки ленточных сушилок - относительная громоздкость, сложность обслуживания и невысокая удельная производительность (на 1м3 объема камеры) по высушиваемому материалу.

Наряду с сушкой в сушилках этого типа можно проводить прокаливание и охлаждение материалов. Транспортеры выполняются в виде металлической плетеной сетки, перфорированной штампованной или пластинчатой ленты, отдельных прямоугольных лотков с укрепленной в них сеткой. Все сушилки этого типа работают с продувкой слоя движущегося материала потоком газообразного теплоносителя.

Зоны сушки могут различаться не только направлением газового потока, но и температурой, влажностью, скоростью прохождения газа через слой материала. В зоне влажного материала применяют большие скорости газового потока, чем в зоне сухого продукта.

В многоленточных сушилках газовый поток используют многократно, пропуская его последовательно через несколько транспортеров с материалом. Перед каждым слоем его подогревают в калориферах. С целью более равномерной сушки в некоторых конструкциях ленточных сушилок для перемешивания и выравнивания слоя материала над лентой помещают специальные ворошители.

Петлевые сушилки (рис. 31.13) непрерывного действия предназначены для сушки пастообразных материалов, которые запрессовываются в сетчатую транспортную ленту и удерживаются на вертикальных участках ленты за счет сил адгезии. Лента 2 с влажным материалом образует петли, таким образом увеличивается время пребывания (время сушки) влажного материала в рабочем объеме сушилки. Влажный материал в ячейках ленты с двух сторон обдувается горячим сушильным агентом, движущимся поперек ленты, т.е. вдоль слоя материала (на рис. 5 направление движения сушильного агента перпендикулярно плоскости рисунка).

Толщина слоев влажного материала, равная толщине сетчатой ленты (составляет не более 20 мм), что при двустороннем обдуве обеспечивает большую интенсивность теплопровода к высушиваемому материалу, чем в камерных сушилках (слой пасты располагается в плоских кюветах), в которых получать теплоту и отдавать влагу можно только с одной стороны.

Рис. 5. Петлевая сушилка: 1 - корпус аппарата; 2 - бесконечная сетчатая лента; 3 - вентиляторы поперечной подачи сушильного агента; 4 - обогреваемые изнутри полые валки для впрессовывания пасты в сетку; 5 - бункер влажного материала; 6 - ударное устройство для удаления сухого материала из ленты; 7 - цепной конвейер для передвижения сетчатой ленты; 8 - приемный бункер и шнек для выгрузки высушенного материала

Паста запрессовывается в ячейки сетчатой ленты с помощью обогреваемых изнутри валков 4, а высушиваемый материал извлекается из ленты специальным ударным устройством 6. Раскрошенный сухой материал падает в приемный бункер и отводится из него шнеком. Недостатки петлевых сушилок - громоздкость конструкции и значительные эксплуатационные расходы.

Барабанные сушилки (рис. 6) широко применяются для непрерывной сушки (как правило при атмосферном давлении) кусковых, зернистых и сыпучих материалов (минеральных солей, фосфоритов и т.п.).

Барабанная сушилка имеет цилиндрический сварной барабан 1 длиной до 24 м, диаметром до 3,5 м, установленный с небольшим наклоном к горизонту (2-7°). Барабан приводится во вращение электродвигателем 9 через зубчатую передачу. Частота вращения барабана не превышает 5-8 мин-1. Материал подается в бункер 5 и поступает на внутреннюю насадку 11, расположенную вдоль почти всей длины барабана. Насадка обеспечивает равномерное распределение и хорошее перемешивание материала по сечению барабана, а также его тесный контакт с сушильным агентом при пересыпании.

Чтобы материал не располагался только в нижней части барабана, на его внутренней поверхности имеются лопасти 10, которые при вращении барабана захватывают часть сыпучего материала, поднимают и ссыпают его вниз. Это приводит к заполнению всего рабочего объема барабана сплошной завесой падающего дисперсного материала. Через такую завесу вдоль оси барабана проходит поток сушильного агента, что обеспечивает обтекание тепловым потоком агента практически каждой частицы.

Барабанные сушилки 'надежны в работе, обеспечивают глубокую равномерную сушку дисперсных материалов при прямоточном движении по тока материала и сушильного агента, но обладают повышенной металлоемкостью и громоздкостью привода барабана.

Рис. 6. Барабанная сушилка: 1 - вращающийся барабан; 2 - топка; 3 - вентилятор; 4 - разгрузочная камера; 5 - загрузочный бункер; 6 - циклон; 7 - зубчатый венец; 8 - шестеренчатая передача; 9 - электропривод; 10 - лопасти; 11 - насадка (пояснения в тексте)

Применяют также вакуумные барабанные сушилки. Их используют для сушки термочувствительных материалов от воды и органических растворителей, а также для сушки токсичных материалов. В зависимости от свойств материала и требований к готовой продукции применяют сушилки среднего (остаточное давление 3...13 кПа) или глубокого (остаточное давление до 133 Па) вакуума. Вакуумные барабанные сушилки применяют в основном в производстве ядохимикатов, гербицидов, некоторых полимерных материалов, а также в медицинской, пищевой и фармацевтической промышленности.

Сушилки с псевдоожиженным слоем (рис. 7) применяются при сушке дисперсных материалов с диаметром частиц, не превышающим 10..Л5 мм (минеральные соли, измельченные угли, гранулированные катализаторы и т.п.). Преимущество этого способа сушки - компактность сушильного аппарата, связанная с высокой интенсивностью процессов тепло- и массообмена сушильного агента с развитой поверхностью мелкодисперсного материала, простота изготовления аппаратов (как круглого, так и прямоугольного сечения) возможность создания крупнотоннажных аппаратов (до 100 т/ч при сушке гранулированного хлорида калия).

Рис. 7. Схема установки для сушки дисперсного материала в псевдоожиженном слое: 1 - корпус сушилки; 2 - калорифер; 3 - вентилятор; 4 - псевдоожиженный слой; 5 - газо-распределительная решетка; 6 - циклон; 7 - шнек; 8 - бункер исходного материала

Еще одно преимущество такого способа сушки - принципиальная возможность сушки пастообразных и даже жидких (в исходном состоянии) веществ на псевдоожиженном слое.

Сушилки с псевдоожиженным слоем успешно применяют в химической технологии для сушки минеральных и органических солей, материалов, подверженных комкованию, например сульфата аммония, поливинилхлорида, полиэтилена, а также пастообразных материалов (пигментов, анилиновых красителей), растворов, расплавов и суспензий. Наиболее распространены однокамерные сушилки непрерывного действия (рис. 7).

Объемный коэффициент теплообмена в этих сушилках на м слоя составляет 5... 10 кВт/(м3*К). Для барабанных сушилок на весь объем этот коэффициент не более 0,5 кВт/(м3К), т.е. более чем на порядок ниже.

В установках с псевдоожиженным слоем можно одновременно проводить несколько процессов: сушку и обжиг, сушку и классификацию частиц по размерам, сушку и гранулирование и т.д. Однако эти сушилки имеют и недостатки: повышенный расход электроэнергии, невысокая интенсивность процесса при сушке тонкодисперсных материалов, значительное истирание частиц материала с образованием большого количества пыли и др.

Многокамерные сушилки с псевдоожиженным слоем состоят из двух и более камер, через которые последовательно движется высушиваемый материал. Камеры располагаются либо рядом, либо одна над другой. Сушилки этого типа более сложны по конструкции, требуют больших удельных расходов сушильного агента и электроэнергии.

Для материалов, мало чувствительных к нагреву, применяют двух- и трехсекционные ступенчато-противоточные сушилки с псевдоожиженным слоем (рис. 8). За счет противотока (материала / и сушильного агента II) достигается более высокая степень насыщения газа влагой, но высушиваемый материал соприкасается с наиболее горячим теплоносителем III. Для регулирования температуры нагрева в слой материала в секциях иногда помещают змеевики 5. В таких сушилках выгрузка высушенного материала (и переход с одной ступени на другую) производится над слоем материала через специальные переточные трубы 3.

Высота псевдоожиженного слоя в сушилках непрерывного действия поддерживается в пределах 400...700 мм (в зависимости от свойств высушиваемого материала).

Для сушки небольших количеств различных продуктов применяют периодически действующие сушилки с псевдоожиженным слоем. В этих аппаратах эффективно используют подачу сушильного агента импульсами, вызывающими кратковременное псевдоожижение материала. Таким способом удается достичь равномерной сушки материалов, имеющих тенденцию к слипанию, и кристаллических материалов без значительного истирания их частиц.

При сушке некоторых продуктов (например, солей) сушилки с псевдо-ожиженным слоем вытесняют барабанные и менее эффективные сушилки других типов.

Распылительные сушилки (рис. 8) используют для сушки жидких и пастообразных материалов [4,14]. В них материал диспергируют специальными устройствами и высушивают в потоке газообразного теплоносителя. Время пребывания материала в зоне сушки весьма мало. Высокая степень диспергирования приводит к большой интенсивности испарения влаги, обеспечивая быстрое высушивание. Поэтому в распылительных сушилках можно использовать теплоноситель с высокой температурой.

В распылительной сушилке материал подается в камеру 3 с помощью диска 4 (или через форсунку). Сушильный агент / движется параллельно с материалом II. Мелкие твердые частицы высушенного материала (размером до нескольких микрометров) осаждаются на дно камеры и отводятся шнеком 7. Отработанный сушильный агент после очистки от пыли в циклоне 5 и рукавном фильтре 6 выбрасывается в атмосферу.

...

Подобные документы

  • Види зв'язку вологи з матеріалом. Рушійна сила процесу сушіння. Види сушарок з псівдозрідженим шаром. Технологічна схема їх роботи. Розрахунок витрат тепла та сухого повітря. Гідравлічний опір сушильної установки. Підбір циклона, газодувки, дозатора.

    курсовая работа [157,7 K], добавлен 09.07.2015

  • Бутадиен-стирольные каучуки, получаемые полимеризацией в растворе и в эмульсии, их отличительные характеристики, описание основных физических и химических свойств, значение в современной индустрии. Механизм выделения и сушки эмульсионных каучуков.

    курсовая работа [1,5 M], добавлен 13.12.2010

  • Основные процессы, происходящие на стадии замачивания ячменя. Активация и синтез заново технологически значимых ферментов и растворение эндосперма под их действием с целью подготовки к переработке в процессе пивоварения. Процесс сушки солода, его стадии.

    контрольная работа [26,0 K], добавлен 03.06.2017

  • Исследование общих сведений о многоядерных комплексах, процесса приготовления компонентов реакционной смеси. Обзор фильтрования, очистки и сушки полученного вещества. Анализ получения биядерного аммиачного комплекса, реактивов, использованных в синтезе.

    практическая работа [162,3 K], добавлен 18.02.2012

  • Значение химической промышленности для технического прогресса и удовлетворения потребностей населения. Направления развития химической техники и технологии. Проблемы жизнеобеспечения и химическая промышленность. Качество и себестоимость продукции.

    лекция [53,8 K], добавлен 05.04.2009

  • Положение меди в периодической системе Д.И. Менделеева. Распространение в природе. Физические и химические свойства. Комплексные соединения меди. Применение меди в электротехнической, металлургической и химической промышленности, в теплообменных системах.

    реферат [62,6 K], добавлен 11.08.2014

  • Понятие и предмет изучения химической кинетики. Скорость химической реакции и факторы, влияющие на нее, методы измерения и значение для различных сфер промышленности. Катализаторы и ингибиторы, различие в их воздействии на химические реакции, применение.

    научная работа [93,4 K], добавлен 25.05.2009

  • Ознакомление с понятием и предметом химической кинетики. Рассмотрение условий химической реакции. Определение скорости реакции как изменения концентрации реагирующих веществ в единицу времени. Изучение общего влияния природы веществ и температуры.

    презентация [923,5 K], добавлен 25.10.2014

  • Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции. Влияние внешних условий на химическое равновесие. Влияние давления, концентрации и температуры на положение равновесия. Типы химических связей.

    реферат [127,3 K], добавлен 13.01.2011

  • Технології одержання кальцієвої селітри в Україні та в світі. Чинники які впливають на якість продукції. Шляхи її поліпшення та зниження витрат на виробництво. Шляхи утилізації шламів і відходів промисловості. Дослідження процесу кінетики сушки шламу.

    магистерская работа [176,7 K], добавлен 07.04.2014

  • Уникальные свойства хитина и хитозана. Метод монодисперсной технологии получения гранул хитозана. Осуществление сушки отделенных гранул методом сублимации. Способ получения модифицированной хитозановой эмульсии. Характеристика образцов хитозана.

    отчет по практике [25,5 K], добавлен 24.02.2009

  • Расчет количества вещества. Составление электронных формул атомов никеля и фтора. Расчет теплового эффекта реакции восстановления. Изменение скоростей реакций серы и её диоксида в зависимости от изменений их объема. Молярная и эквивалентная концентрации.

    контрольная работа [80,3 K], добавлен 12.12.2009

  • Назначение и области применения теплообменного оборудования. Технологическая схема установки. Выбор конструкционного материала. Расчет поверхности теплообмена и подбор теплообменника. Прочностной, конструктивный и гидравлический расчет теплообменника.

    курсовая работа [755,5 K], добавлен 26.07.2014

  • История и свойства олова. Происхождение названия титана, его аллотропические модификации, химические и физические свойства. Основные характеристики, позволяющие использовать данный металл. Применение титана и его сплавов в отраслях промышленности.

    реферат [32,0 K], добавлен 27.05.2014

  • Определение молекулярности и порядок химической реакции. Изменение свободной энергии, сопровождающее химическую реакцию, ее связь с константой равновесия. Расчет теплового эффекта. Метод диспергирования. Физические методы конденсации. формула мицеллы.

    контрольная работа [42,6 K], добавлен 25.07.2008

  • Классификация углей. Ускоренный метод определения внешней влаги, влаги воздушно-сухого топлива и аналитической пробы. Обработка результатов. Методы определения зольности и выхода летучих веществ. Основы техники безопасности в проборазделочной комнате.

    отчет по практике [163,4 K], добавлен 04.01.2013

  • Современный метод получения, основные достоинства и недостатки алюминия. Микроструктура, физические и химические свойства металла. Применение алюминия как особо прочного и легкого материала в промышленности, ракетной технике, стекловарении, пиротехнике.

    презентация [1,1 M], добавлен 20.10.2014

  • Скорость химической реакции. Понятие про энергию активации. Факторы, влияющие на скорость химической реакции. Законы Бойля-Мариотта, Гей-Люссака, Шарля. Влияние температуры, давления и объема, природы реагирующих веществ на скорость химической реакции.

    курсовая работа [55,6 K], добавлен 29.10.2014

  • Изменение скорости химической реакции при воздействии различных веществ. Изучение зависимости константы скорости автокаталитической реакции окисления щавелевой кислоты перманганатом калия от температуры. Определение энергии активации химической реакции.

    курсовая работа [270,9 K], добавлен 28.04.2015

  • Изучение свойств воды и вариантов использования ее в химической промышленности. Суть промышленной водоподготовки - комплекса операций, обеспечивающих очистку воды - удаление вредных примесей, находящихся в молекулярно-растворенном, коллоидном состоянии.

    реферат [344,9 K], добавлен 07.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.