ADME properties prediction of 5-phenyl-5,6-dihydrotetrazolo[1,5-c] quinazolines

Application of the SwissADME web tool for the analysis of pharmacokinetics and properties of medicines. Study of antimicrobial activity and toxicity of phenylquinazoline derivatives, Assessment of metabolism, determination of solubility of compounds.

Рубрика Химия
Вид статья
Язык английский
Дата добавления 03.09.2024
Размер файла 272,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Zaporizhzhia State Medical University

ADME properties prediction of 5-phenyl-5,6-dihydrotetrazolo[1,5-c] quinazolines

Oleksii Antypenko PhD of Pharmacy, Assistant Professor

Department of Organic and Bioorganic Chemistry

Lyudmyla Antypenko PhD of Pharmacy, Associate Professor

Scientific freelancer

Dar'ya Kalnysh 5th Year Student

I Pharmaceutical faculty

Sergiy Kovalenko Professor, Dr. hab., Head

Department of Organic and Bioorganic Chemistry

Ukraine

Аннотация

Прогнозирование свойств ADME ADME-- это четырёхбуквенная аббревиатура, обозначающая всасывание, распределение, метаболизм и выведение фармацевтических соединений.

Термин ADME используется в таких областях, как фармакокинетика и фармакология. Он описывает распределение фармацевтического соединения в организме. Все четыре критерия влияют на уровни лекарственного средства и кинетику воздействия на ткани, а следовательно, на эффективность и фармакологическую активность соединения как лекарственного средства. 5-фенил-5,6-дигидротетразоло[1,5-c] хиназолинов

В связи с недавно предсказанным сродством 13 новых 5-фенил-5,6-дигидротетразоло[1,5-c]-хиназолинов к рибосомальному 50S-белку L2P (2QEX) путем молекулярного докинга, их свойства были рассчитаны на сайте SwissADME, чтобы предсказать их сходство с лекарственными средствами.

Таким образом, вещества 6, 10 и 12 (производные фенилхиназолина) оказались ведущими соединениями среди всех изученных и представляют определенный интерес для дальнейшего изучения антимикробной активности in vitro.

Молекула может быть лекарственным средством, если она может достигать своей цели в организме в достаточной концентрации и остается там в биологически активной форме достаточно долго, чтобы произошли ожидаемые биологические события, и обладает низкой токсичностью. Так называемое правило пяти Липински и др. [1] описывает взаимосвязь между фармакокинетическими и физико-химическими параметрами.

Разработка лекарственных средств все чаще включает в себя оценку всасывания, распределения, метаболизма и выведения (ADME) на ранних стадиях процесса разработки, на этапе, когда рассматриваемых соединений много, но доступ к физическим образцам ограничен. В этом отношении компьютерные модели являются реальной альтернативой экспериментам. Недавно с помощью молекулярного докинга было предсказано сродство 13 новых 5-фенил-5,6-дигидротетразоло[1,5-c]-хиназолинов с эталонным тедизолидом к рибосомальному 50S-белку L2P (2QEX) [2]. Поэтому, прежде чем тестировать эти вещества на антимикробную активность, рекомендуется проверить их биодоступность и профиль токсичности. Веб-инструмент SwissADME SwissADME -- это бесплатный веб-инструмент для оценки фармакокинетики, сходства с лекарственным средством и доступности малых молекул для медицинской химии. Он предоставляет бесплатный доступ к пулу быстрых, но надёжных прогностических моделей физико-химических свойств, фармакокинетики, сходства с лекарственными препаратами и удобства использования лекарственных химикатов. позволяет рассчитать ключевые физико-химические, фармакокинетические, лекарственные и родственные параметры для одной или нескольких молекул [3]. Этот сайт предоставляет бесплатный открытый доступ к быстрым прогностическим моделям, демонстрирующим статистическую значимость, прогностическую силу, интуитивную интерпретацию и простой перевод в молекулярный дизайн.

Цель: Было решено исследовать и сравнить свойства ADME Тедизолида и производных 5-фенил-5,6-дигидротетразоло[1,5-с]хиназолина .

Были рассчитаны физико-химические свойства, также была определена растворимость соединений в воде.

Следовательно, суммируя все вышеприведенные данные, вещества 2, 3, 8, 9, 11, и 13 имели те или иные нарушения. А 4-(5-метил-5,6-дигидротетразоло[1,5-с]-хиназолин-5-ил)фенол (10) был наиболее перспективной молекулой для синтеза и целенаправленного поиска лекарственных средств, наряду с 4-(5,6-дигидротетразоло[1,5-с]хиназолин-5-ил)-бензойной кислотой. кислота (6) и ее 5-метиловый аналог (12), хотя две последние проникают в ГЭБ.

Таким образом, антимикробная активность in vitro планируется в качестве следующего многообещающего этапа исследования.

Ключевые слова: свойства ADME, 5-фенил-5,6-дигидротетразоло[1,5-c]хиназолины, сходство с лекарственными средствами.

Summary

Due to the recent predicted affinity of 13 novel 5-phenyl-5,6-dihydrotetrazolo[1,5-c]- quinazolines to the ribosomal 50S protein L2P (2QEX) by molecular docking, their ADMEproperties were calculated at the site SwissADME to predict their drug-likeness. Hence, substances 6, 10, and 12 appeared to be the leading compounds among all studied ones and are of definite interest for further in vitro antimicrobial activity investigation.

Keywords: ADMEproperties, 5-phenyl-5,6-dihydrotetrazolo[1,5-c]quinazolines, drug-likeness.

Introduction

A molecule could be a drug if it can reach its target in the body in sufficient concentration and remains there in a biologically active form long enough for the expected biological events to occur and has low toxicity.

The so-called Rule- of-five of Lipinski et al. [1] is delineating the relationship between pharmacokinetic and physicochemical parameters.

Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous, but access to the physical samples is limited. In this regard, computer models are a real alternative to experimentation.

Recently, the affinity to the ribosomal 50S protein L2P (2QEX) of 13 novel 5-phenyl-5,6-dihydrotetrazolo[1,5-c]-quinazolines (Fig. 1).with reference Tedizolid was predicted by molecular docking [2].

Fig. 1. Structural formula of Tedizolid as antimicrobial and structural analogue and proposed 5-phenyl-5,6-dihydrotetrazolo[1,5-c]quinazolines

So, before testing these substances for antimicrobial activity, it's advised to check their bioavailability and toxicity profile. And the SwissADME Web tool enables the computation of key physicochemical, pharmacokinetic, drug-like and related parameters for one or multiple molecules [3].

This site gives free open-access and fast predictive models showing statistical significance, predictive power, intuitive interpretation, and straightforward translation to molecular design.

Aim: It was decided to investigate and compare ADME properties of Tedizolid and derivatives of 5-phenyl-5,6-dihydrotetrazolo[1,5-c]quinazoline

Materials and methods

The ergonomic and user-friendly graphical interface for the cost- and login-free Website SwissADME was used to calculate ADME [3]. All descriptors and molecular parameters (physico-chemical properties, lipophilicity, water solubility, pharmacokinetics, drug-likeness) were computed by the protocols explained by SwissADME paper [4].

Tables were formed based on data obtained from the site.

Results and discussion

As a result, firstly, the following physico-chemical properties were calculated, and substances are placed in Table 1 by decreasing of the sum of all their characteristics.

According to the ratio of sp3 hybridized carbons saturation should be at least 0.25 [5], only Tedizolid and substance 13 have the highest value: 0.24. Substances 36 have the lowest number of 0.07.

For size, the molecular weight (MW, calculated by OpenBabel) should be between 150 and 500 g/mol [6].

Table 1

The calculated physico-chemical properties

#

MW*, g/mol

HA

Csp3

RB

HBA

HBD

Ref.

TPSA, A2

Tedizolid

370.34

27

0.24

4

8

1

95.18

106.26

12

307.31

23

0.12

2

5

2

85.97

92.93

9

342.19

21

0.13

1

3

1

86.71

55.63

6

293.28

22

0.07

2

5

2

81.28

92.93

4

328.17

20

0.07

1

3

1

82.02

55.63

5

328.17

20

0.07

1

3

1

82.02

55.63

2

317.27

23

0.13

2

6

1

79.32

55.63

13

291.35

22

0.24

3

3

1

88.63

55.63

10

279.30

21

0.13

1

4

2

81.03

75.86

8

297.74

21

0.13

1

3

1

84.02

55.63

11

287.32

22

0.12

1

3

1

86.95

55.63

3

283.72

20

0.07

1

3

1

79.33

55.63

1

263.30

20

0.13

1

3

1

79.29

55.63

7

263.30

20

0.13

1

3

1

79.01

55.63

Number of aromatic heavy atoms is 17 for all.

MW - molecular weight, HA - number of heavy atoms, Csp3 - Fraction Csp3, RB - number of rotatable bonds, HBA - number of H-bond acceptors, HBD - number of H-bond donors, Ref - molar refractivity, TPSA - topological polar surface area.

For polarity, the TPSA should be between 20 and 130 A2, considering sulfur and phosphorus as polar atoms [7]. For flexibility, the molecule should not have more than 9 rotatable bonds [6]. For molar refractivity: 40 to 130 [8]. And the characteristics of all test substances are found in the required ranges.

SwissADME gives a Consensus lipophilicity (log Po/w) value, which is the arithmetic mean of the five predictive values (XLOGP3, atomistic method including corrective factors and knowledge-based library; WLOGP, atomistic method based on the fragmental system; MLOGP, Moriguchi octanol-water partition coefficient based on structural parameters; and Log P calculated by Silicos IT) [4]. And obtained values were placed in Table 2 according to decreasing of their Consensus score.

Table 2

The calculated li

pophilicity

#

iLOGP

XLOGP3

WLOGP

MLOGP

Silicos-IT

Consensus

2

2.42

3.60

3.59

4.21

2.20

3.20

9

2.79

3.59

2.57

4.21

2.34

3.10

13

2.90

3.78

2.59

3.66

2.40

3.06

8

2.46

3.53

2.46

4.09

2.30

2.97

11

2.82

3.15

1.87

3.99

2.36

2.84

4

2.63

3.40

2.18

3.97

1.88

2.81

5

2.53

3.40

2.18

3.97

1.88

2.79

3

2.43

3.34

2.07

3.84

1.84

2.70

1

2.46

3.08

1.72

3.57

1.70

2.51

7

2.46

2.90

1.81

3.57

1.68

2.48

10

2.08

2.55

1.51

3.03

1.18

2.07

12

1.99

2.43

1.50

3.22

1.07

2.04

6

1.78

2.24

1.11

2.97

0.60

1.74

Tedizolid

2.46

1.39

1.44

0.93

1.07

1.46

iLOGP relies on Gibbs free energy of solvation calculated by GB/SA in water and n-octanol [9, 10] and its optimal range is from -3.93 to 6.46. Considering MLOGP, it should be < 4.15, and XLOGP3 between - 0.7 and + 5.0 [11, 12]. So, only substances 2 and 9 had violations with MLOGP > 4.15, and XLOGP3 > 3.5, while 8 and 13 had violation only of XLOGP3. While 6, 10, and 12 results were closest to Tedizolid data.

Afterwards water solubility (log S) of compounds was also found (Table 3).

Table 3

The calculated water solubility with Silicos-IT og P decreasing

#

ESOL

mg/ml; mol/l

S*

Ali

mg/ml; mol/l

S*

Sili- cos-IT

mg/ml; mol/l

S*

Tedizolid

-3.21

2.26е-01;

6.11е-04

S

-3.23

2.21е-01;

0.000596

S

-4.33

1.71 е-02; 4.62е-05

M

6

-3.51

9.08е-02;

3.09е-04

S

-3.83

4.37е-02;

0.000149

S

-4.16

2.04е-02;

6.95е-05

M

10

-3.71

5.43е-02;

1.94е-04

S

-3.79

4.53е-02;

1.62е-05

S

-4.82

4.22е-03;

1.51е-05

M

12

-3.69

6.26е-02;

2.04е-04

S

-4.02

2.91е-02;

9.45е-05

M

-4.76

5.37е-03;

1.75е-05

M

7

-3.86

3.61е-02;

1.37е-04

S

-3.73

4.92е-02;

1.87е-05

S

-5.40

1.05е-03;

3.97е-06

M

1

-3.98

2.78е-02;

1.06е-04

S

-3.92

3.20е-02;

1.21е-05

S

-5.18

1.73е-03;

6.58е-06

M

11

-4.11

2.22е-02;

7.73е-05

M

-3.99

2.95е-02;

1.03е-05

S

-5.48

9.60е-04;

3.34е-06

M

3

-4.27

1.54е-02;

5.42е-05

M

-4.19

1.85е-02;

6.53е-05

M

-5.40

1.12е-03;

3.94е-06

M

4

-4.58

8.64е-03;

2.63е-05

M

-4.25

1.86е-02;

5.65е-05

M

-5.62

7.89е-04;

2.4е-06

M

5

-4.58

8.64е-03;

2.63е-05

M

-4.25

1.86е-02;

5.65е-05

M

-5.62

7.89е-04;

2.4е-06

M

2

-4.49

1.03е-02;

3.24е-05

M

-4.46

1.11е-02;

3.51е-05

M

-5.66

6.96е-04;

2.19е-06

M

8

-4.44

1.07е-02;

3.61е-05

M

-4.38

1.23е-02;

4.14е-05

M

-6.00

2.94е-04;

9.89е-07

P

13

-4.40

1.16е-02;

3.97е-05

M

-4.64

6.64е-03;

2.28е-05

M

-6.20

1.83е-04;

6.3е-07

P

9

-4.76

6.00е-03;

1.75е-05

M

-4.44

1.23е-02;

3.59е-05

M

-6.22

2.08е-04;

6.08е-07

P

S - soluble, M - moderately soluble, P - poorly soluble.

Its known, that a drug, meant for parenteral usage, has to be highly soluble in water to deliver a sufficient quantity of active ingredient in the small volume of the pharmaceutical dosage form. А qualitative estimation of the solubility class is given according to the following ESOL model log S scale (insoluble < - 10 < poorly < - 6 < moderately < - 4 < soluble < - 2 < very < 0 < highly soluble) [13]; and the second one is Ali scale (insoluble < -10 poorly < -6, moderately < -4 soluble < -2 very < 0 < highly). The third one of Swiss ADME was developed by Silicos-IT (insoluble < -10 poorly < -6, moderately < -4 soluble < -2 very < 0 < highly) [4]. And for optimal solubility, log S (ESOL) should not exceed 6. Thus, the majority of substances are moderately soluble in water according to this model. And Tedizolid, 6, 10, 12, 7, and 1 are soluble, but 8, 13 and 9 are the less soluble ones. Afterwards, the pharmacokinetic parameters were calculated (Table 4).

pharmacokinetics medicine antimicrobial phenylquinazoline solubility

Table 4

The calculated pharmacokinetics

#

Log Kp (skin perm.), cm/s

BBB* perm.

P-gp. 1 substr.

CYP1A2* inhibitor

CYP2C9 inhibitor

13

-5.39

+

No

+

+

8

-5.61

+

+

+

No

3

-5.66

+

+

+

No

2

-5.68

+

+

+

No

1

-5.72

+

+

+

No

11

-5.82

+

No

+

+

9

-5.84

+

No

+

No

7

-5.85

+

+

+

No

4

-5.89

+

No

+

No

5

-5.89

+

No

+

No

10

-6.19

No

+

No

No

12

-6.45

No

6

-6.50

Tedizolid

-7.57

No

+

+

No

P-gp - P-glycoprotein 1, BBB - blood-brain barrier,

CYP2D6 - all no, CYP3A4 - only Tedizolidyes, CYP2C19 - only Tedizolid no.

The more negative the log Kp (with Kp in cm/s), the less skin permeant is the molecule [15]. So, 13 has the highest skin permeation with Log Kp = -5.39 cm/s and 8 with -5.61 cm/s, so they could be used in ointments. But their low molecular weight and high degree of lipid solubility favor crossing BBB as the majority of the presented compounds. And, Tedizolid and substances 6, 10 and 12 appeared to be the least skin permeant with no BBB permeation.

The permeability glycoprotein 1 (multidrug resistance protein 1 (MDR1) or ATP- binding cassette sub-family B member 1 (ABCB1), cluster of differentiation 243 (CD243)) is an important protein of the cell membrane that pumps many foreign substances out of cells, for instance from the gastrointestinal wall to the lumen or from the brain [16], and protects the central nervous system (CNS) from xenobiotics [17]. And only half of the substances with Tedizolid are substrates of P-gp. 1 (Table 4).

Although there are different routes of drug administration, oral dosing is highly preferred for the patient's comfort and compliance [18]. And substances 10, 6, 12 are the closest to Tetrazolid by pharmacokinetic properties of passive gastrointestinal absorption. While only 10 is substrate for P-gp. 1. Other substances are predicted to have brain access, which is still can be good in case of treatment of the brain infections. Besides, it's known that a key player in drug elimination through metabolic biotransformation are five major isoforms of cytochrome P450 (CYP) (CYP1A2, CYP2C19, CYP2C9, etc.) [19], to which about 50 to 90% of therapeutic molecules are substrates of. Thus, all investigated substances are inhibitors of CYP2C19, except Tedizolid; all no - for CYP2D6; only Tedizolid for CYP3A4 (Table 4). Substances 6, 10 and 12 are inhibitors of only one cytochrome CYP2C19. For the reference Tedizolid only two cytochromes are also calculated: CYP1A2 and CYP3A4.

Table 5

Drug likeness

#

Lipinski; violation

Bioavailability Score

#

Lipinski; violation

Bioavailability

Score

6

Yes; 0

0.56

8

Yes; 0

0.55

12

10

1

0.55

11

3

13

4

Ted.

5

2

Yes, 1: MLOGP>4.15

7

9

Ghose, Veber, Egan, Muegge for all - Yes

The next presented data (Table 5) is drug likeness according to the filters originated from analyses by major pharmaceutical companies aiming to improve the quality of their proprietary chemical collections:

J Lipinski (Pfizer): MW < 500; LogP < 5; HBA < 10; HBD < 5 [1];

J Ghose (Amgen): 160 < MW < 480; -0.4 < WLOGP < 5.6; - 0.4 < MR < 130; 20 < atoms < 70 [20];

J Veber (GSK): Rotatable bonds <1 0; TPSA < 140 [21];

J Egan (Pharmacia): WLOGP < 5.88; TPSA < 131.6 [22];

J Muegge (Bayer): 200 < MW < 600; -2 < XLOGP < 5; TPSA < 150; rings < 7; carbon atoms > 4; heteroatoms > 1; rotatable bonds < 15; HBA<10; HBD<5 [23].

In the result only substances 2 and 9 had violations of the Lipinski rule of lipophilicity: MLOGP > 4.15 (4.21). All other substances comply with all the mentioned authors rules. Moreover, the Abbot Bioavailability Score seeks to predict the probability of a compound to have at least 10% oral bioavailability in rat or measurable Caco-2 permeability [24]. And, obtained results of 0.55-0.56 are considered as sufficiently absorbable via oral route, with substance 6 and 12 having the best values among all.

And SwissADME Bioavailability Radar displays for a rapid appraisal of druglikeness (Fig. 3). Six physicochemical properties are taken into account: lipophilicity, size, polarity, solubility, flexibility, and saturation [5, 25]. It is depicted as a pink area in which the radar plot of the molecule has to fall entirely to be considered drug-like with: lipophilicity: XLOGP3 between -0.7 and+5.0, size: molecular weight between 150 and 500 g/mol, polarity: TPSA between 20 and 130A2, solubility: log S not higher than 6, saturation: fraction of carbons in the sp3 hybridization not less than 0.25, and flexibility: no more than 9 rotatable bonds. And it's interesting, that only Tedizolid's and substance's 13 graphs were entirely in the pink area (Fig. 3).

Fig. 3. SwissADME Bioavailability Radar: lipophilicity, size, polarity, solubility, flexibility and saturation

Considering Medical Chemistry parameters calculations (Table 6), according to the SwissADME Synthetic Accessibility Score (SA), that is based primarily on the assumption that the frequency of molecular fragments in 'really' obtainable molecules correlates with the ease of synthesis: 1 (very easy) to 10 (very difficult) (Table 6).

Table 6

Medicinal chemistry data

#

Synthetic accessibility

Brenk, alert

Lead likeness; violation

3

3.15

0

Yes; 0

5

3.16

6

3.19

7

3.20

#

Synthetic accessibility

Brenk, alert

Lead likeness; violation

10

3.20

4

3.22

1

3.24

12

3.25

11

3.36

1: triple bond

9

3.23

0

No; 1: XLOGP3>3.5

8

3.25

2

3.31

13

3.38

Tedizolid

3.55

No; 1: MW>350

PAINS, alert for all - 0.

So, Tedizolid has the most difficult SA among all compounds, still of the moderate level (3.55). All proposed compounds were practically of the same level of SA (3.15-3.38).

Searching for PAINS (pan assay interference compounds, a.k.a. frequent hitters or promiscuous compounds), that are molecules containing substructures showing potent response in assays irrespective of the protein target, there were no alerts for all studied compounds [26].

When analyzing the structural Brenk Alert, consisting of a list of 105 fragments [27] to be putatively toxic, chemically reactive, metabolically unstable, or to bear properties responsible for poor pharmacokinetics, there was only one triple bond detected in the cyano group of substance 11 (Table 6).

Considering lead-likeness, only 2, 9, 13, and 8 had violations of lipophilicity XLOGP3 > 3.5 (3.60, 3.59, 3.78, and 3.53 respectively). Moreover, Tedizolid could be excluded from potential studies, too, if to consider its MW > 350. But it still was found to be a potent antimicrobial agent.

Conclusions

Hence, summing up all above-mentioned data, substances 2, 3, 8, 9, 11, and 13 had violations of some kind. And 4-(5-methyl-5,6- dihydrotetrazolo[1,5-c]-quinazolin-5-yl)phenol (10) was the most promising molecule for synthesis and drug purposeful search, along with 4-(5,6-dihydrotetrazolo[1,5- c]quinazolin-5-yl)-benzoic acid (6) and its 5-methyl analogue 12, although the two latter permeate the BBB. Therefore, the in vitro antimicrobial activity is planned to do as the promising next study stage.

Acknowledgements. The authors are grateful to the Armed Forces of Ukraine for preparing this paper in the safe conditions of Zaporizhzhia.

References

[1] Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev., 46, 3-26

[2] Antypenko, O., Antypenko, L., Kalnysh, D., & Kovalenko, S. (2022) Molecular docking of 5- phenyl-5,6-dihydrotetrazolo[1,5-c]quinazolines to ribosomal 50S protein L2P (2QEX). Grail of Science, 12/13 (April 29th), in print.

[3] SwissADME. (2022). Retrieved from: http://www.swissadme.ch/index.php#

[4] Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 7(1). doi: 10.1038/srep42717.

[5] Lovering, F., Bikker, J., & Humblet, C. (2009). Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success.J. Med. Chem., 52, 6752-6756.

[6] O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch T., & Hutchison G. R. (2011). OpenBabel: An open chemical toolbox.J. Cheminform., 3, 33.

[7] Ertl, P., Rohde, B., & Selzer, P. (2000). Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties.J. Med. Chem., 43, 3714-3717.

[8] Predicting drug activity. The Royal Society of Chemistry. (2022). Retrieved from: https://edu.rsc.org/download7acM 2819.

[9] Lee, M. S., Feig, M., Salsbury, F. R., & Brooks, C. L. (2003). New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations.J. Comput. Chem., 24, 1348-1356.

[10] Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach.J. Chem. Inf. Model., 54(12), 3284-3301.

[11] Moriguchi, I., Shuichi, H., Liu, Q., Nakagome, I., & Matsushita, Y. (1992). Simple Method of Calculating Octanol/Water Partition Coefficient. Chem. Pharm. Bull., 40, 127-130.

[12] Cheng, T., Zhao, Y., Li, X., Lin, F., Xu, Y., Zhang, X., Li, Y., Wang, R., & Lai L. (2007). Computation of Octanol- Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model, 47, 2140-2148.

[13] Delaney, J. S. (2004). ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Model. 44, 1000-1005

[14] Ali, J., Camilleri, P., Brown, M. B., Hutt, A. J. & Kirton, S. B. (2012). Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model. 52, 420-428.

[15] Potts, R. O., & Guy, R. H. (1992). Predicting Skin Permeability. Pharm. Res., 09, 663-669.

[16] Montanari, F., & Ecker, G. F. (2015). Prediction of drug-ABC-transporter interactionRecent advances and future challenges. Adv. Drug Deliv. Rev., 86, 17-26.

[17] Szakacs, G., Varadi, A., Ozvegy-Laczka, C., & Sarkadi, B. (2008). The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME- Tox). Drug Discov. Today, 13, 379-393.

[18] Newby, D., Freitas, A. A., & Ghafourian, T. (2015). Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. Eur. J. Med. Chem., 90, 751-765.

[19] Di, L. The role of drug metabolizing enzymes in clearance. (2014). Expert Opin. Drug Metab. Toxicol., 10, 379-393.

[20] Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1,55-68.

[21] Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 45, 2615-2623.

[22] Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem., 43, 3867-3877.

[23] Muegge, I., Heald, S. L. & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. J. Med. Chem., 44, 1841-1846.

[24] Martin, Y. C. A Biavailability Score. (2005).J. Med. Chem, 48, 3164-3170.

[25] Ritchie, T. J., Ertl, P., & Lewis, R. The graphical representation of ADME-related molecule properties for medicinal chemists. (2011). Drug Discov. Today, 16, 65-72.

[26] Baell, J. B. & Holloway, G. A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 53, 2719-2740.

[27] Brenk, R., Schipani, A., James, D., Krasowski, A., Gilbert, I. H., Frearson, J., & Wyatt, P. G. (2008). Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. Chem. Med. Chem., 3(3), 435-444.

Размещено на Allbest.ru

...

Подобные документы

  • History of application of aluminium. The characteristic, chemical and physical properties of aluminium, industrial production and clarification. Aluminium application in the industry, in household appliances. Prospects of development of manufacture.

    реферат [21,6 K], добавлен 11.11.2009

  • The concept and scope of the practical application of the distillation process at the present stage: industry, medicine, food production. The main stages of distillation. The results of global warming and the assessment of its negative consequences.

    презентация [1,3 M], добавлен 16.09.2014

  • Chemistry and thermodynamics of process. Reforming catalysts. Raw materials. Process parameters. Reforming industrial devices. Criteria of an assessment of catalysts. Catalyst promoters. Temperature influence The volumetric feed rate. Rigidity of process.

    презентация [193,6 K], добавлен 29.04.2016

  • Правила создания и особенности работы с приложением Windows Application. Рассмотрение структуры панели Properties и ее функционального назначения. Возможности пункта меню "View". Практическая разработка приложения - калькулятора для сложения двух чисел.

    лабораторная работа [99,1 K], добавлен 01.12.2011

  • Study of synthetic properties of magnetic nanoparticles. Investigation of X-ray diffraction and transmission electron microscopy of geometrical parameters and super conducting quantum interference device magnetometry of magnetic characterization.

    реферат [857,0 K], добавлен 25.06.2010

  • The Rational Dynamics. The Classification of Shannon Isomorphisms. Problems in Parabolic Dynamics. Fundamental Properties of Hulls. An Application to the Invertibility of Ultra-Continuously Meager Random Variables. Fundamental Properties of Invariant.

    диссертация [1,6 M], добавлен 24.10.2012

  • The profit function possesses several important properties that follow directly from its definition. These properties are very useful for analyzing profit-maximizing behavior. Outlining the properties of the profit function important to recognize.

    анализ книги [15,2 K], добавлен 19.01.2009

  • Specific features of English, Uzbek and German compounds. The criteria of compounds. Inseparability of compound words. Motivation in compound words. Classification of compound words based on correlation. Distributional formulas of subordinative compounds.

    дипломная работа [59,2 K], добавлен 21.07.2009

  • Development of the calculation procedures. Initial values of liquid density and dynamic viscosity of crude oil-gas mixes components at 200C and 0.1 MPa. Chart of experimental conditions and properties of crude oil saturated with natural gas samples.

    статья [78,1 K], добавлен 21.03.2012

  • Defining the role of the microscope in studies of the structure of nanomaterials. Familiarization with the technology of micromechanical modeling. The use of titanium for studying the properties of electrons. Consideration of the benefits of TEAM project.

    реферат [659,8 K], добавлен 25.06.2010

  • The use of digital technology in analyzing the properties of cells and their substructures. Modeling of synthetic images, allowing to determine the properties of objects and the measuring system. Creation of luminescent images of microbiological objects.

    реферат [684,6 K], добавлен 19.04.2017

  • The properties of the proton clusters in inelastic interactions SS. Relativistic nuclear interaction. Studying the properties of baryon clusters in a wide range of energies. Seeing the high kinetic energy of the protons in the rest of the cluster.

    курсовая работа [108,6 K], добавлен 22.06.2015

  • Self-assembly of polymeric supramolecules is a powerful tool for producing functional materials that combine several properties and may respond to external conditions. Possibilities for preparing functional polymeric materials using the "bottom-up" route.

    курсовая работа [226,4 K], добавлен 23.12.2010

  • Influence psychology of cognitive activity and cognitive development on student’s learning abilities during study. Cognitive development theory in psychology. Analysis of Jean Piaget's theory. Her place among the other concept of personal development.

    презентация [1,3 M], добавлен 13.04.2016

  • Niobium or columbium is the chemical element with the symbol Nb and the atomic number 4. Physical and chemical properties Niobium. Niobium is in many ways similar to its predecessors in group 5. Application of the given chemical element in the industry.

    реферат [51,0 K], добавлен 09.01.2012

  • Definition and general characteristics of the word-group. Study of classification and semantic properties of the data units of speech. Characteristics of motivated and unmotivated word-groups; as well as the characteristics of idiomatic phrases.

    реферат [49,3 K], добавлен 30.11.2015

  • Directions of activity of enterprise. The organizational structure of the management. Valuation of fixed and current assets. Analysis of the structure of costs and business income. Proposals to improve the financial and economic situation of the company.

    курсовая работа [1,3 M], добавлен 29.10.2014

  • Defining cognitive linguistics. The main descriptive devices of frame analysis are the notions of frame and perspective. Frame is an assemblage of the knowledge we have about a certain situation, e.g., buying and selling. Application of frame analysis.

    реферат [324,4 K], добавлен 07.04.2012

  • The process of scientific investigation. Contrastive Analysis. Statistical Methods of Analysis. Immediate Constituents Analysis. Distributional Analysis and Co-occurrence. Transformational Analysis. Method of Semantic Differential. Contextual Analysis.

    реферат [26,5 K], добавлен 31.07.2008

  • Business situations. Company's Activities. Increase in use of the Internet. The analysis of requirements of buyers. Kinds of activity of campaign. Manufacturers of the goods, suppliers of the goods and services. Commercial services also are direct.

    лекция [11,4 K], добавлен 31.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.