Проблема безопасности продуктов питания
Анализ качества продовольственных товаров и обеспечения его контроля. Основные пути загрязнения продуктов питания и сырья. Главные меры токсичности веществ. Засорение микроорганизмами и их метаболитами. Характеристика метаболизма чужеродных соединений.
Рубрика | Кулинария и продукты питания |
Вид | курс лекций |
Язык | русский |
Дата добавления | 25.03.2015 |
Размер файла | 122,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Группа диоксинов объединяет сотни веществ, каждое из которых содержит специфическую гетероциклическую структуру с атомами хлора (брома) в качестве заместителей. Структура 2, 3, 7, 8 - тетрахлордибензопара - диоксина (ТХДД) включает два ароматических кольца, связанных между собой двумя кислородными мостиками.
ТХДД - так называемый классический диоксин, действие которого сильнее цианидов, стрихнина, зомана, зарина.
ТХДД выбран за эталон онкотоксичности, отличается высокой стабильностью, не поддается гидролизу и окислению, устойчив к высокой температуре (разлагается лишь при 750С), устойчив к действию кислот и щелочей, не воспламеняем, хорошо растворим в органических растворителях.
Под диоксинами следует понимать не какое-либо конкретное вещество, а несколько десятков семейств, включающих трициклические кислородсодержащие ксенобиотики, а также семейство бифенилов, не содержащих атомы кислорода. Это 75 полихлорированных дибензодиоксинов, 135 полихлорированных дибензофуранов, 210 веществ из броморганических семейств, несколько тысяч смешанных бром- и хлорсодержащих соединений.
Нельзя забывать и об изомерии: наряду с ТХДД существует 22 изомера, для ТХДФ - 38 изомеров.
При попадании в окружающую среду диоксины интенсивно накапливаются в почве, водоемах, активно мигрируют по пищевым цепям. В организм человека диоксины попадают в основном с пищей. Среди основных продуктов опасные концентрации диоксинов обнаруживают в животных жирах, в мясе, молочных продуктах, рыбе (содержание диоксина будет определятся жирностью этих продуктов, так как диоксины - жирорастворимые соединения).
В коровьем молоке содержание диоксинов в 40-200 раз превышает их наличие в тканях животного. Источниками диоксинов могут быть и картофель и корнеплоды.
Для диоксинов не существует таких норм как ПДК - эти вещества токсичны при любых концентрациях, меняются лишь формы ее проявления. Диоксины обладают широким спектром биологического действия на человека и животного. В малых дозах вызывают мутагенный эффект, отличаются кумулятивными свойствами, ингибирующим действием на различные ферментные системы организма. Их опасность очень велика и не случайно диоксины и диоксиноподобные соединения относят к группе супертоксикантов.
В целом, установление санитарных норм по диоксину в различных странах базируется на разных критериях. В Европе как основной принят показатель онкогенности (т.е. за основу берут возможность возникновения раковых опухолей), в США - показатель иммунотоксичности (т.е. угнетение иммунной системы).
Расчет ДСД (допустимой суточной дозы) ведется таким образом, чтобы за 70 лет жизни в организм человека поступило не больше 10-11 г/кг в день.
В борьбе с диоксинами уже достигнуты определенные успехи. Это произошло благодаря тому, что не только ученые, но и правительства многих стран осознали опасность общепланетарного отравления среды диоксинами.
Во многих странах мира (и в России с том числе) проводится экологический мониторинг по диоксинам в различных отраслях промышленности. В соответствии с полученными данными решаются вопросы совершенствования тех или иных технологических процессов. В США и в странах Западной Европы ведется кампания за сортировку бытовых отходов, отделение пластмассовых изделий (в Швеции, например, это практикуется уже многие годы). Кроме того, шведам удалось найти способ получения бездиоксиновой бумаги. В ФРГ, США, Нидерландах, Японии после реконструкции мусоросжигательных заводов удалось свести образование диоксинов до минимума, во Франции разработаны антидиоксиновые фильтры.
Нельзя не отметить явления синергизма - эффекта воздействия, превышающего сумму эффектов воздействия каждого из факторов.
Синергистами по отношению к диоксину могут быть: радиация, свинец, кадмий, ртуть, нитраты, хлорфенолы, соединения серы.
6.2 Полициклические ароматические углеводороды
Полициклические ароматические углеводороды (ПАУ) - насчитывают более 200 представителей, которые являются сильными канцерогенами.
К наиболее активным канцерогенам относят 3, 4 - бенз(а)пирен, который был идентифицирован в 1933 году как канцерогенный компонент сажи и смолы, а также холантрен, перилен и дибенз(а)пирен.
К малотоксичным ПАУ относят антрацен, фенантрен, пирен, флуорантен.
Канцерогенная активность реальных сочетаний полициклических ароматических углеводородов на 70-80% обусловлена бенз(а)пиреном. Поэтому по присутствию бенз(а)пирена в пищевых продуктах и других объектах можно судить об уровне их загрязнения ПАУ и степени онкогенной опасности для человека.
Канцерогенные ПАУ образуются в природе путем абиогенных процессов: ежегодно в биосферу поступают тысячи тонн бенз(а)пирена природного происхождения. Еще больше - за счет техногенных источников. Образуются ПАУ в процессах сгорания нефтепродуктов, угля, дерева, мусора, пищи, табака, причем, чем ниже температура, тем больше образуется ПАУ.
В пищевом сырье, полученном из экологически чистых растений, концентрация бенз(а)пирена 0,03-1,0 мкг/кг. Условия термической обработки значительно увеличивают его содержание до 50 мкг/кг и более. Полимерные упаковочные материалы могут играть немаловажную роль в загрязнении пищевых продуктов ПАУ, например, жир молока экстрагирует до 95% бенз(а)пирена из парафино-бумажных пакетов или стаканчиков.
Высока концентрация бенз(а)пирена и в табачном дыме.
С пищей взрослый человек получает бенз(а)пирена 0,006 мг/год. В интенсивно загрязненных районах эта доза возрастает в 5 и более раз.
ПДК бенз(а)пирена в атмосферном воздухе - 0,1 мкг/100м3, в воде водоемов - 0,005 мг/л, в почве - 0,2 мг/кг.
Бенз(а)пирен обнаружен в хлебе, овощах, фруктах, маргарине, растительных маслах, в обжаренных зернах кофе, копченостях, жареных мясных продуктах. Причем его содержание значительно колеблется в зависимости от способа технологической и кулинарной обработки или от степени загрязнения окружающей среды.
6.3 Радиоактивное загрязнение продовольственного сырья и пищевых продуктов
Источники радиоактивности, как и другие загрязнители, являются компонентами пищевых цепей: атмосфера - ветер - дождь - почва - растения - животные - человек.
Анализируя данные о взаимодействии радионуклидов с компонентами природной среды и организмом человека, необходимо отметить следующее. Радионуклиды естественного происхождения постоянно присутствуют во всех объектах неживой и живой природы, начиная с момента образования нашей планеты. При этом радиационный фон в различных регионах Земли может отличаться в 10 и более раз.
К радионуклидам естественного происхождения относят, во-первых: космогенные радионуклиды, во-вторых, радионуклиды, присутствующие в объектах окружающей среды.
Радон - один из первых открытых человеком радионуклидов. Этот благородный газ образуется при распаде изотопа радона (226Ra) и поступает в организм ингаляционным путем. Человек контактирует с радоном везде, но главным образом в каменных и кирпичных жилых зданиях (особенно в подвальных помещениях и на первых этажах), поскольку главным источником является почва под зданием и строительные материалы. Высокое содержание радона может быть в подземных водах. Доступным и эффективным способом удаления радона из воды является ее аэрация.
В результате производственной деятельности человека, связанной с добычей полезных ископаемых, сжиганием органического топлива, созданием минеральных удобрений и т.п., произошло обогащение атмосферы естественными радионуклидами, причем естественный радиационный фон постоянно меняется.
С момента овладения человеком ядерной энергией в биосферу начали поступать радионуклиды, образующиеся на АЭС, при производстве ядерного топлива и испытаниях ядерного оружия. Таким образом, встал вопрос об искусственных радионуклидах и особенностях их влияния на организм человека. Среди радионуклидов искусственного происхождения выделяют 21 наиболее распространенный, 8 из которых составляют основную дозу внутреннего облучения населения: 14С, 137Cs, 90Sr, 89Sr, 106Ru, 144Се, 131I, 95Zr.
Существуют три пути попадания радиоактивных веществ в организм человека:
при вдыхании воздуха, загрязненного радиоактивными веществами;
через желудочно-кишечный тракт - с пищей и водой;
через кожу.
Для наиболее опасных искусственных радионуклидов, к которым следует отнести долгоживущие стронций-90 (90Sr), цезий-137 (137Cs) и короткоживущий йод-131(131I), в настоящее время выявлены закономерности всасывания, распределения, накопления и выделения, а также механизмы их связи с различными биологическими структурами. Одной из главных задач по профилактике и снижению степени внутреннего облучения следует считать уменьшение всасывания радиоактивных элементов при их длительном поступлении в организм человека с пищевыми продуктами.
Эффект действия ионизирующих излучений на клетку и организм в целом можно понять, проследив изменения, происходящие на всех этапах следующей цепи: биомолекулы - клеточный компартмент-клетка-ткани-организм, и установив взаимосвязь между ними.
Принято рассматривать три этапа радиационного поражения клетки.
I этап можно назвать физическим. На этом этапе происходит ионизация и возбуждение макромолекул; при этом поглощенная энергия реализуется в слабых местах (в белках - SH-группы, в ДНК - хромофорные группы тимина, в липидах - ненасыщенные связи).
II этап - химические преобразования. На этом этапе происходит взаимодействие радикалов белков, нуклеиновых кислот, липидов с водой, кислородом, с радикалами воды и т.п. Это в свою очередь приводит к образованию гидроперекисей, ускоряет процесс окисления, вызывает множественные изменения молекул. В результате этого начальный эффект многократно усиливается. Разрушается структура биологических мембран, усиливаются другие процессы деструкции, высвобождаются ферменты, наблюдается изменение их активности.
III этап - биохимический. На этом этапе происходят нарушения, которые связаны с высвобождением ферментов и изменением их активности. Различные ферментные системы реагируют на облучение неоднозначно. Активность одних ферментов после облучения возрастает, других - снижается, третьих - остается неизменной. К числу наиболее радиочувствительных процессов в клетке относится окислительное фосфорилирование. Нарушение этого процесса отмечается через 20-30 минут при дозе облучения 100 рад. Оно проявляется в повреждении системы генерирования АТФ, без которой не обходится на один процесс жизнедеятельности.
Высокой чувствительностью обладают ДНК-комплексы (ДНК клеточного ядра в комплексе со щелочными белками, РНК, ферментами). Предполагается, что в этом случае в первую очередь поражаются связи белок - белок и белок - ДНК.
Облучение целостного организма приводит к снижению гликогена в скелетных мышцах, печени и ряде других тканей в результате нейрогуморальной реакции на облучение. Кроме этого обнаруживаются нарушения процессов распада глюкозы и высокополимерных полисахаридов.
При действии ионизирующих излучений на липиды происходит образование перекисей.
В организме при его облучении наблюдается снижение общего содержания липидов, их перераспределение между различными тканями с увеличением уровня в крови и печени. Кроме того, наблюдается угнетение ряда антиоксидантов, что в свою очередь, также способствует образованию токсичных гидроперекисей.
По характеру распределения в организме человека радиоактивные вещества можно условно разделить на следующие три группы.
Отлагающиеся преимущественно в скелете (так называемые остеотропные изотопы - стронций, барий, радий и другие).
Концентрирующиеся в печени (церий, лантан, плутоний и др.).
Равномерно распределяющиеся по системам (водород, углерод, инертные газы, железо и другие). Причем одни имеют тенденцию к накоплению в мышцах (калий, рубидий, цезий), а другие - в селезенке, лимфатических узлах, надпочечниках (ниобий, рутений).
Особое место занимает радиоактивный йод - он селективно аккумулируется щитовидной железой.
Если принять в качестве критерия чувствительности к тонизирующему излучению морфологические изменения, то клетки и ткани организма человека по степени возрастания чувствительности можно расположить в следующем порядке: нервная ткань, хрящевая и костная ткани, мышечная ткань, соединительная ткань, щитовидная железа, пищеварительные органы, легкие, кожа, слизистые оболочки, половые железы, лимфоидная ткань, костный мозг.
Из вышесказанного вытекают следующие направления по профилактике радиоактивного загрязнения окружающей среды:
охрана атмосферы Земли как природного экрана, предохраняющего от губительного космического воздействия радиоактивных частиц;
соблюдение глобальной техники безопасности при добыче, использовании и хранении радиоактивных элементов, применяемых человеком в процессе его жизнедеятельности.
Важнейшим фактором предотвращения накопления радионуклидов в организме людей является питание. Это и употребление в пищу определенных продуктов и их отдельных компонентов. Особенно это касается защиты организма от долгоживущих радионуклидов, которые способны мигрировать по пищевым цепям, накапливаться в органах и тканях, подвергать хроническому облучению костный мозг, костную ткань и т.п.
Установлено, что обогащение рациона рыбой, кальцием, фтором, витаминами А, Е, С, которые являются антиоксидантами, а также неусвояемыми углеводами (пектин) способствует снижению риска онкологических заболеваний, играет большую роль в профилактике радиоактивного воздействия наряду с радиопротекторами, к которым относятся вещества различной химической природы, в том числе и серосодержащие соединения, также как цистеин и глутатион.
Лекция 7
7.1 Метаболизм чужеродных соединений
Механизм детоксикации ксенобиотиков - две фазы. Изучение метаболизма чужеродных соединений, превращений, которые они претерпевают, попадая в организм человека, важны, в первую очередь, с точки зрения выяснения химических и биохимических механизмов детоксикации, а также с точки зрения оценки возможностей защитной системы организма по детоксикации чужеродных веществ.
Метаболизм чужеродных соединений в организме будет зависеть от множества различных факторов.
Путь ксенобиотика, его воздействие и ответную реакцию организма можно представить в виде схемы (рис. 2).
Размещено на http://www.allbest.ru/
Рис. 2. Путь и воздействие ксенобиотика в организме человека
Попадая в организм, определенная доза вещества всасывается в месте контакта, разносится и распределяется в крови и органах. Вследствие метаболистических изменений и ритмического протекания процессов детоксикации уровень его содержания падает. В тканях и клетках ксенобиотик проходит через одну или несколько мембран, взаимодействуя с рецепторами. В результате возникает ответная реакция, включаются механизмы противодействия с целью поддержания постоянства внутренней среды - гомеостаза.
Метаболизм ксенобиотиков протекает в виде двухфазного процесса:
1-ая фаза - метаболистические превращения;
2-ая фаза - реакция конъюгации.
1-ая фаза (метаболистические превращения) - связана с реакциями окисления, восстановления, гидролиза и протекает при участии ферментов, главным образом, в эндоплазматическом ретикулуме печени и реже --других органов (надпочечниках, почках, кишечнике, легких и т.д.).
Окисление. В осуществлении реакций окисления решающее значение имеют микросомальные ферменты печени. Окислительная система состоит из системы цитохрома Р-450, а также НАДФН-и НАДН-зависимых редуктаз.
Микросомальные ферменты катализируют не только окисление жирных кислот, гидроксилирование стероидов, окисление терпенов и алкалоидов, но и окисление различных лекарств, пестицидов, канцерогенных ПАУ и других ксенобиотиков.
Такое многообразие субстратов, на которое воздействует цитохром Р-450, является следствием множественных форм фермента, число которых достигает сотни. В ответ на воздействие различных ксенобиотиков в печени и других органах происходит индукция синтеза тех изоформ цитохрома Р-450, которые метаболизируют данные токсиканты, что эквивалентно реакции иммунной системы организма на воздействие чужеродных белков. Поэтому весь спектр этих ферментов обозначают как генное суперсемейство цитохрома Р-450, для которого была предложена специальная номенклатура. Например: цитохрома Р-450 1А1 и 1А2 - метаболизируют полиароматические углеводороды (1-я арабская цифра обозначает генное семейство, латинская буква - генное подсемейсто, 2-я цифра - конкретный фермент); цитохром Р-450 3А4 - афлатоксин В, цитохром Р-450 2Е1 - метаболизируют нитрозоамины и т.п.
Восстановление. Чаще всего имеют место реакции восстановления нитро- и азосоединений в амины, восстановление кетонов во вторичные спирты.
Гидролиз. Речь идет, главным образом, о гидролизе сложных эфиров и амидов, с последующей деэтерификацией и дезаминированием.
2-я фаза (реакции конъюгации) - это реакции, приводящие к детоксикации. Наиболее важные из них - это реакции связывания активных -ОН, -NH2, -СООН и -SH - групп и метаболита первичного ксенобиотика. Интересно, что некоторые ксенобиотики, в частности лекарственные средства, могут стимулировать активность ферментов, участвующих в метаболизме различных веществ (не только собственном). Такая ферментативная индукция может считаться выгодной, т.к. метаболизм и выведение токсических веществ ускоряется, если только промежуточные метаболиты не окажутся более токсичными, чем исходные вещества.
Факторы, влияющие на метаболизм чужеродных соединений. Чужеродные соединения обычно метаболизируются различными путями, образуя множество метаболитов. Скорость и направление этих реакций зависят от многих факторов, результатом действия которых могут быть изменения в картине метаболизма и, как следствие, возникают различия в токсичности.
Эти факторы по своему происхождению можно разделить на:
а) генетические (генетически обусловленные дефекты ферментов, участвующие в метаболизме чужеродных соединений);
б) физиологические (возраст, пол, состояние питания, наличие различных заболеваний);
в) факторы окружающей среды (облучение ионизирующей радиацией, стресс из-за неблагоприятных условий, наличие других ксенобиотиков).
Очень важно для процессов детоксикации, чтобы обе фазы детоксикации функционировали согласованно, с некоторым доминированием реакций конъюгации, особенно, если на первой стадии в результате метаболистических превращений из первоначальных ксенобиотиков образуются вещества с выраженной токсичностью.
Принципиально важное значение для нормального функционирования обеих фаз детоксикации имеет и соответствующий уровень эффективности антиоксидантной системы клетки, что определяется активностью антиоксидазных ферментов и уровнем низкомолекулярных антиоксидантов: токоферолов, биофлавоноидов, витамина С и др.; поскольку хорошо известно, что функционирование системы цитохрома Р-450 связано с образованием активных форм кислорода: оксидрадикала, Н2О2, которые вызывают деструкцию мембран, в том числе мембран эндоплазматического ретикулума, и, тем самым, способны подавлять активность цитохром Р-450 - зависимых ферментов и частично ферментов конъюгации, которые встроены в мембраны и активность которых связана с мембранным окружением.
Таким образом, антиоксидазная система функционирует как еще одна важная система детоксикации, обеспечивающая защиту организма от агрессивных органических свободных радикалов, перекисных производных, которые так же являются опасными факторами онкогенности, как и рассматриваемые экзогенные токсиканты.
7.2 Антиалиментарные факторы питания
Помимо чужеродных соединений, загрязняющих пищевые продукты, так называемых контаминантов - загрязнителей, и природных токсикантов, необходимо учитывать действие веществ, не обладающих общей токсичностью но способных избирательно ухудшать или блокировать усвоение нутриентов. Эти соединения принято называть антиалиментарными факторами питания.
Этот термин распространяется только на вещества природного происхождения, которые являются составными частями натуральных продуктов питания.
Перечень антиалиментарных факторов питания, достаточно обширен. Рассмотрим некоторые из них.
Ингибиторы пищеварительных ферментов. К этой группе относятся вещества белковой природы, блокирующие активность пищеварительных ферментов (пепсин, трипсин, химотрипсин, -амилаза). Белковые ингибиторы обнаружены в семенах бобовых культур (соя, фасоль и др.), злаковых (пшеница, ячмень и др.), в картофеле, яичном белке и др. продуктах растительного и животного происхождения.
Механизм действия этих соединений заключается в образовании стойких комплексов «фермент-ингибитор», подавлении активности главных пищеварительных ферментов и тем самым, снижении усвояемости белковых веществ и других макронутриентов.
К настоящему времени белковые ингибиторы достаточно хорошо изучены и подробно охарактеризованы: расшифрована первичная структура, изучено строение активных центров ингибиторов, исследован механизм действия ингибиторов и т.п.
На основании структурного сходства все белки-ингибиторы растительного происхождения можно разделить на несколько групп, основными из которых являются следующие:
Семейство соевого ингибитора трипсина (ингибитора Кунитца);
Семейство соевого ингибитора Баумана-Бирка;
Семейство картофельного ингибитора I;
Семейство картофельного ингибитора II;
Семейство ингибиторов трипсина -амилазы.
Ингибитор Кунитца и ингибитор Баумана-Бирка были выделены из семян сои. Эти ингибиторы подавляют активность трипсина и химотрипсина.
В клубнях картофеля содержится целый набор ингибиторов химотрипсина и трипсина, которые отличаются по своим физико-химическим свойствам: молекулярной массе, особенностям аминокислотного состава, изоэлектрическим точкам, термо- и рН-стабильности и т.п. Кроме картофеля, белковые ингибиторы обнаружены в других пасленовых, а именно - в томатах, баклажанах, табаке. Наряду с ингибиторами сериновых протеиназ в них обнаружены и белковые ингибиторы цистеиновых, аспартильных протеиназ, а также металлоэкзопептидаз.
Эти белковые ингибиторы растительного происхождения характеризуются высокой термостабильностью, что в целом не характерно для веществ белковой природы. Например, полное разрушение соевого ингибитора трипсина достигается лишь 20 минутным автоклавированием при 115С, или кипячением соевых бобов в течение 2-3 часов. Из этого следует, что употребление семян бобовых культур, особенно богатых белковыми ингибиторами пищеварительных ферментов, как для корма сельскохозяйственных животных, так и в пищевом рационе человека, возможно лишь после соответствующей тепловой обработки.
Цианогенные гликозиды - это гликозиды некоторых цианогенных альдегидов и кетонов, которые при ферментативном или кислотном гидролизе выделяют синильную кислоту - вызывающую поражение нервной системы.
Из представителей цианогенных гликозидов целесообразно отметить лимарин, содержащийся в белой фасоли, и амигдалин, который обнаруживается в косточках миндаля, персиков, слив, абрикос.
Биогенные амины. К соединениям этой группы относятся серотонин, тирамин, гистамин, обладающие сосудосуживающим действием.
Серотонин содержится во фруктах и овощах. Тирамин чаще всего обнаруживается в ферментированных продуктах, например в сыре до 1100 мг/кг. Содержание гистамина коррелирует с содержанием тирамина в сыре от 10 до 2500 мг/кг. В количествах более 100 мг/кг гистамин может представлять угрозу для здоровья человека.
Алкалоиды - весьма обширный класс органических соединений, оказывающих самое различное действие на организм человека. Это и сильнейшие яды, и полезные лекарственные средства. Печально известный наркотик, сильнейший галлюциноген - ЛСД - диэтиламид лизергиловой кислоты, был выделен из спорыньи, грибка, растущего на ржи.
С 1806 г. известен морфин, он выделен из сока головок мака и является очень хорошим обезболивающим средством, благодаря чему нашел применение в медицине, однако при длительном употреблении приводит к развитию наркомании.
Хорошо изучены в настоящее время так называемые пуриновые алкалоиды, к которым относятся кофеин и часто сопровождающие его теобромин и теофиллин.
Содержание кофеина в сырье и различных продуктах колеблется в достаточно широких пределах. Пуриновые алкалоиды при систематическом употреблении их на уровне 1000 мг в день вызывают у человека постоянную потребность в них, напоминающую алкогольную зависимость.
К группе стероидных алкалоидов будут относится соланины и чаконины, содержащиеся в картофеле. Иначе их называют гликоалкалоидами, они содержат один и тот же агликон (соланидин), но различные остатки сахаров.
Соланин входит в состав картофеля. Количество его в органах растения различно (мг%): в цветках - до 3540, листьях - 620, стеблях - 55, ростках, проросших на свету - 4070, кожуре - 270, мякоти клубня - 40.
При хранении зрелых и здоровых клубней к весне количество соланина в них увеличивается втрое. Особенно много его в зеленых, проросших и прогнивших клубнях. Свет, попадающий на картофель, способствует образованию в нем ядовитого гликоалкалоида, а освещенные участки кожуры и мякоти приобретают зеленый цвет.
Действие соланина на организм человека и животного сложное. В больших дозах он вызывает отравление, в малых - полезен (при концентрации его ?2,8 мг на 1 кг массы тела).
В небольших концентрациях соланин обладает противовоспалительным, антиаллергическим, обезболивающим и спазмолитическим действием. При попадании его на воспаленную кожу или слизистую оболочку отмечается быстрое уменьшение боли, зуда, отечности и воспаления тканей.
Соланин в малых количествах снижает возбудимость нервной системы, уменьшает уровень артериального давления, угнетает выработку соляной кислоты в желудке, улучшает моторную функцию кишечника, увеличивает содержание калия и уменьшает концентрацию натрия в крови.
Хороший эффект достигается при лечении им болезней сердца и почек; язвенной болезни желудка и двенадцатиперстной кишки; гастритов с повышенной кислотностью желудочного сока, запоров и бессонницы.
Некоторые другие плоды растений семейства пасленовых также характеризуются известной или предполагаемой токсичностью. К этим продуктам относятся баклажаны и томаты.
Антивитамины к ним относят две группы соединений.
1-я группа - соединения, являющиеся химическими аналогами витаминов, с замещением какой-либо функционально важной группы на неактивный радикал, т.е. это частный случай классических антиметаболитов.
2-я группа - соединения, тем или иным образом специфически инактивирующие витамины, например, с помощью их модификации, или ограничивающие их биологическую активность.
Если классифицировать антивитамины по характеру действия, как это принято в биохимии, то первая (антиметаболитная) группа может рассматриваться в качестве конкурентных ингибиторов, а вторая - неконкурентных, причем во вторую группу попадают весьма разнообразные по своей химической природе соединения и даже сами витамины, способные в ряде случаев ограничивать действие друг друга.
Рассмотрим некоторые конкретные примеры соединений, имеющих ярко выраженную антивитаминную активность.
Лейцин - нарушает обмен триптофана, в результате чего блокируется образование из триптофана ниацина - одного из важнейших водорастворимых витаминов - витамина РР.
Индолилуксусная кислота и ацетилпиридин - также являются антивитаминами по отношению к витамину РР; содержатся в кукурузе. Чрезмерное употребление продуктов, содержащих вышеуказанные соединения, может усиливать развитие пеллагры, обусловленной дефицитом витамина РР.
Аскорбатоксидаза и некоторые другие окислительные ферменты проявляют антивитаминную активность по отношению к витамину С.
Содержание аскорбатоксидазы и ее активность в различных продуктах неодинакова: наиболее активна аскорбатоксидаза в огурцах, кабачках, наименее - в моркови, свекле, помидорах. При измельчении овощей за 6 часов хранения теряется более половины витамина С, т.к. измельчение способствует взаимодействию фермента и субстрата.
Тиаминаза - антивитаминный фактор для витамина В1 - тиамина. Она содержится в продуктах растительного и животного происхождения, наибольшее содержание этого фермента отмечено у пресноводных и морских рыб, кроме того, тиаминаза продуцируется бактериями кишечного тракта, что может являться причиной дефицита тиамина.
Ортодифенолы и биофлавоноиды (вещества с Р-витаминной активностью), содержащиеся в кофе и чае, а также окситиамин, который образуется при длительном кипячении кислых ягод и фруктов, проявляют антивитаминную активность по отношению к тиамину.
Все это необходимо учитывать при употреблении, приготовлении и хранении пищевых продуктов.
Линатин - антагонист витамина В6, содержится в семенах льна. Кроме этого, ингибиторы пиродоксалевых ферментов обнаружены в съедобных грибах и некоторых видах семян бобовых.
Авидин - белковая фракция, содержащаяся в яичном белке, приводящая к дефициту биотина (витамина Н), за счет связывания и перевода его в неактивное состояние.
Гидрогенизированные жиры - являются факторами, снижающими сохранность витамина А-ретинола.
Говоря об антиалиментарных факторах питания, нельзя не сказать о гипервитаминозах. Известны два типа: гипервитаминоз А и гипервитаминоз Д. Например, печень северных морских животных несъедобна из - за большого содержания витамина А.
Факторы, снижающие усвоение минеральных веществ. К ним в первую очередь следует отнести щавелевую кислоту и ее соли (оксолаты) фитин (инозитолгексафосфорная кислота) и танины.
Продукты с высоким содержанием щавелевой кислоты способны приводить к серьезным нарушениям солевого обмена, необратимо связывать ионы кальция. Установлено, что интоксикация щавелевой кислотой проявляется в большей степени на фоне дефицита витамина Д.
Известны случаи отравлений с летальным исходом, как от самой щавелевой кислоты (при фальсификации продуктов, в частности вин, когда подкисление проводили дешевой щавелевой кислотой), так и от избыточного потребления продуктов, содержащих ее в больших количествах. Смертельная доза для взрослых людей колеблется от 5 до 150 г и зависит от целого ряда факторов. Содержание щавелевой кислоты в среднем в некоторых растениях таково (в мг/100г): шпинат - 1000, ревень - 800, щавель - 500, красная свекла - 250.
Фитин, благодаря своему химическому строению, легко образует труднорастворимые комплексы с ионами Са, Мg, Fе, Zn, и Сu. Этим и объясняется его диминерализующий эффект. Достаточно большое количество фитина содержится в злаковых и бобовых культурах: в пшенице, горохе, кукурузе его содержание ?400 мг/100г продукта, причем основная часть сосредоточена в наружном слое зерна. Хлеб, выпеченный из муки высшего сорта, практически не содержит фитина. В хлебе из ржаной муки его мало, благодаря высокой активности фитазы, способной расщеплять фитин.
Дубильные вещества, кофеин, балластные соединения могут рассматриваться как факторы, снижающие усвоение минеральных веществ.
Неблагоприятное влияние дубильных и балластных соединений на усвояемость железа тормозится аскорбиновой кислотой, цистеином, кальцием, фосфором, что указывает на необходимость их совместного использования в рационе.
Кофеин, содержащийся в кофе, активизирует выделение из организма кальция, магния, натрия, ряда других элементов, увеличивая тем самым потребность в них.
Показано ингибирующее действие серосодержащих соединений (зобогены) на усвояемость йода. К продуктам зобогенного действия относятся капуста белокочанная, цветная, кольраби, турнепс, редис, некоторые бобовые, арахис - при избыточном их потреблении, поэтому в условиях недостатка йода в воде и пище необходимо их ограниченное потребление.
Алкоголь можно рассматривать как рафинированный продукт питания, который имеет только энергетическую ценность. При окислении 1 г этанола выделяется 7 ккал энергии, что лежит между калорийностью углеводов и жиров. Алкоголь не является источником каких-либо пищевых веществ, поэтому его часто называют источником «холостых» калорий.
Попадая в организм человека, этанол под воздействием фермента - алкогольдегидрогеназы окисляется до ацетальдегида.
Алкоголь синтезируется ферментными системами организма для собственных нужд и в течение дня организм человека способен синтезировать от 1 до 9 г этилового спирта. Эндогенный алкоголь является естественным метаболитом и ферментных мощностей организма вполне хватает для его окисления в энергетических целях.
При потреблении алкоголя в больших количествах ферменты не справляются, происходит накопление этилового спирта и уксусного альдегида, что вызывает симптомы обширной интоксикации (головная боль, тошнота, аритмия сердечных сокращений). Таким образом, алкоголь можно рассматривать как антиалиментарный фактор питания, приводящий к специфическим нарушением обмена веществ.
У людей, потребляющих большие количества алкоголя, обнаруживается дефицит незаменимых веществ. Примером могут служить тяжелые формы недостаточности витаминов у алкоголиков: алкогольные формы полиневрита, пеллагры, бери-бери и т.п., а также гипогликемия, т.к. этанол блокирует синтез глюкозы из лактата и аминокислот.
Хроническое потребление алкогольных напитков приводит не только к авитаминозам, но и к нарушению углеводного, жирового и белкового обмена и заканчивается, как правило, биохимической катастрофой с тяжелыми патологиями.
Таким образом, рассмотренные компоненты пищи способны оказывать неблагоприятное воздействие на организм человека. Сведения о них свидетельствуют о необходимости их учета при составлении рационов питания, при решении ряда технологических вопросов в производстве продуктов питания, а также их кулинарной обработке.
Лекция 8
8.1 Фальсификация пищевых продуктов
С точки зрения безопасности продуктов питания значительную опасность могут представлять и некоторые виды фальсификации пищевых продуктов. Как правило, это виды ассортиментной фальсификации, которые могут привести к использованию опасных заменителей. Виды таких фальсификаций разнообразны. Примерами могут служить: фальсификация алкогольных напитков путем частичной или полной замены пищевого этилового спирта техническим спиртом, содержащим вредные примеси; приготовление «искусственных» вин; использование запрещенных пищевых добавок или применение их в повышенных количествах; недостаточное отделение примесей в крупяных продуктах, использование загрязненного растительного сырья, больных животных, испорченных полуфабрикатов и т.д.
В каждом конкретном случае требуется специальная гигиеническая оценка, основанная на современной нормативно-методической базе и осуществляемая государственными органами надзора за качеством и безопасностью пищевых продуктов.
Особый интерес представляют так называемые генетически модифицированные (трансгенные) продукты питания. Сообщение о генетически модифицированных растениях и полученных из них продуктах питания появились в начале 90-х гг. В настоящее время генетическому изменению подвергается важнейшее растительное сырье, а ведь без использования растительного сырья получают лишь очень немногие продукты.
Успехи в области генной инженерии позволяют получать новые сорта растений (причем в течение 2-3 лет) с заданными свойствами.
За счет встраивания генов, выделенных из одних организмов и несущих определенную генетическую информацию (например, устойчивость к заморозкам, гербицидам, болезням и паразитам, высокая урожайность, неполегаемость и др.) в ДНК других, были получены растения, которые называют трансгенными, т.е. с перемещенными генами.
В США в настоящее время насчитывается более 100 наименований генетически измененных продуктов, а площади в разных странах, на которых произрастают трансгенные растения, составляют по разным оценкам от 10 до 25 млн. га. Трансгенные растения выращивают в США, Канаде, Японии, Китае, Бразилии, Аргентине и многих других странах. Европейские государства занимают в этом отношении более жесткую позицию.
К трансгенным продуктам можно отнести генетически измененную сою, устойчивую к гербицидам. Как известно, соя используется для приготовления 30000 пищевых продуктов: супов, детского питания, картофельных чипсов, маргарина, салатных соусов, рыбных консервов и др. Кроме сои, наибольшее распространение получили трансгенные помидоры, кукуруза, рис, картофель, клубника, а также генетически модифицированные дрожжи и ферментные препараты, полученные из трансгенных микроорганизмов. Генная инженерия находит применение и в животноводстве, влияя на рост и продуктивность сельскохозяйственных животных.
Безопасность генетически модифицированных продуктов питания остается все еще под вопросом. Нет и не может быть однозначного ответа на вопрос о возможной опасности отдаленных последствий таких продуктов. Очевидно одно - трансгенная продукция должна проходить тщательную многофакторную проверку на безопасность и иметь специальную маркировку. Однако и в этом пока больше вопросов, чем ответов.
Все большее число стран старается регламентировать продажу «новых» пищевых продуктов. Так в законе, принятом Европарламентом, на упаковках нерафинированного масла и попкорна из генетически изменяемой кукурузы должна быть соответствующая маркировка, а на упаковке с крахмалом или полученным из него глюкозным сиропом подобной маркировки не требуется. Маркировка не требуется и на упаковке с рафинированным маслом или изготовленным из него майонезом.
Полученные из генетически измененного яблока мусс или яблочный сок должны нести соответствующую маркировку, а яблочный уксус нет.
Не фиксируется факт использования генетически измененного сырья при изготовлении лецитина и получении с его помощью шоколада и крема. Должны иметь соответствующую маркировку соевый шрот, белок, полученный из него, и готовые супы с данным белком. Корма для животных, полученные из шрота генетически измененной сои, не маркируются.
Таким образом, в странах Евросоюза в настоящее время барьер перед генетически измененной пищей сломан, однако к потребителю допускается пища, в которой обнаруживаются только следы генетических изменений.
В России с 1 июля 1999г. вступило в силу постановление Министерства здравоохранения РФ «О порядке гигиенической оценки и регистрации пищевой продукции, полученной из генетически модифицированных источников». Согласно этому документу гигиеническая экспертиза пищевых продуктов и продовольственного сырья, а также компонентов (фрагментов) для их производства, полученных из генетически модифицированных источников, должна включать определение вносимой последовательности генов, маркерных генов антибиотиков, промотеров, стабильности генетически модифицированных организмов на протяжении нескольких поколений, а также санитарно-химические показатели качества и безопасности, результаты токсикологических исследований на лабораторных животных, оценку аллергенных свойств продукта, возможных мутагенных, канцерогенных и тератогенных эффектов. Кроме этого, обязательна технологическая оценка пищевой продукции, полученной из генетически модифицированного сырья - органолептических свойств и физико-химических показателей.
В широком смысле фальсификация может рассматриваться как действия, направленные на ухудшение потребительских свойств товара или уменьшение его количества при сохранении наиболее характерных, но несуществующих для его использования по назначению свойств. Фальсификация пищевых продуктов чаще всего производится путем придания им отдельных наиболее типичных признаков, например внешнего вида при общем ухудшении или утрате остальных наиболее значимых свойств пищевой ценности, в том числе и безопасности.
Заменители и дефектные товары не относятся к фальсифицированным, если на маркировке или в товарно-сопроводительных документах указано из подлинное наименование, а цена соответствует их качеству и происхождению (например, кофейные напитки с таким наименованием не являются фальсификатами).
При фальсификации обычно подвергается подделке одна или несколько характеристик товара, что позволяет выделить несколько видов фальсификации:
ассортиментная (видовая);
качественная;
количественная;
стоимостная;
информационная.
Для каждого вида фальсификации характерны свои способы подделки товара.
При ассортиментной фальсификации подделка осуществляется путем полной или частичной замены товара его заменителем другого вида или наименования с сохранением сходства одного или нескольких признаков. Признаки, характерные для отдельных разновидностей ассортиментной классификации, представлены на рис. 3.
Для заменителей характерны определенные особенности: значительная дешевизна по сравнению с натуральным товаром, пониженные потребительские свойства, идентичность (сходство) наиболее характерных признаков (внешнего вида, цвета, вкуса и запаха, консистенции).
В зависимости от средств фальсификации, схожести свойств заменителя и фальсифицируемого продукта различают следующие способы фальсификации:
частичная замена продукта водой;
добавление в продукт низкоценного заменителя, имитирующего натуральный продукт;
замена натурального продукта имитатором.
Все заменители, применяемые при ассортиментной фальсификации, подразделяют на две группы: пищевые и непищевые.
Пищевые заменители - более дешевые продукты питания, отличающиеся пониженной пищевой ценностью и сходством с натуральным продуктом по одному или нескольким признакам.
В качестве средств ассортиментной фальсификации наиболее часто используют следующие пищевые заменители:
воду - для жидких продуктов;
другие имитаторы натурального продукта, схожие по определенным, наиболее характерным признакам.
Степень безопасности фальсифицируемого продукта зависит от качества используемой воды. При использовании недоброкачественной воды, например по микробиологическим показателям, даже разбавленный продукт может стать опасным.
К пищевым заменителям, используемым для целей фальсификации, относятся также различные имитаторы, т.е. продукты, применяемые или специально разработанные для замены натуральных продовольственных товаров. Примером могут служить кофейные напитки на основе зерновых, цикория и т.п., концентраты, сиропы, соки и напитки с использованием синтетических красителей, кислот, ароматизаторов.
При ассортиментной фальсификации происходит частичная или полная замена натурального продукта его заменителем.
Возможна также частичная или полная замена высокоценных товаров другим менее ценным товаром, относящимся к другой или той же однородной группе, но иного вида. Так, довольно часто картофельный крахмал фальсифицируется пшеничной мукой или кукурузным крахмалом. Распространенным видом фальсификации является подмена сливочного малса маргарином.
Непищевые заменители относятся к объектам органического или минерального происхождения и непригодны для пищевых целей. Многие из них могут нанести вред здоровью человека, а иногда привести и к смертельному исходу.
В качестве непищевых заменителей чаще всего применяют мел, гипс, известь, золу для примеси к муке, крахмалу.
Качественная фальсификация - подделка товаров с помощью пищевых и непищевых добавок для улучшения органолептических свойств при сохранении или утрате других потребительских свойств или замена товара высшей градации качества низшей.
Средствами этого вида фальсификации служат добавки и товары того же наименования, что и товар, указанный на маркировке, в сопроводительных документах, но низшей градации.
Способы качественной фальсификации:
использование добавок, имитирующих улучшение качества;
пересортица.
Эти способы и средства качественной фальсификации показаны на рис. 4.
В зависимости от степени вреда, наносимого фальсифицированным продуктом, различают две разновидности качественной фальсификации:
безопасная для жизни и здоровья потребителя;
опасная.
При безопасной фальсификации потребителю наносится материальный и моральный ущерб, а при опасной - кроме того, вред жизни и здоровью.
К качественной фальсификации следует отнести и пересортицу товаров. Это одна из наиболее широко распространенных разновидностей качественной фальсификации.
Пересортица - действия, направленные на обман получателя и/или потребителя путем замены товаров высших сортов низшими.
Так, вареная колбаса Отдельная 1-го сорта может быть реализована как Любительская, относящаяся к высшему сорту, кофе Робуста 1-го сорта - как Арабика высшего сорта.
Размещено на http://www.allbest.ru/
Рис. 3. Способы и средства качественной фальсификации
Количественная фальсификация - это обман потребителя за счет значительных отклонений параметров товара (массы, объема, длины и т.п.), превышающих предельно допустимые нормы отклонений.
В практике этот вид фальсификации называют недовесом или обмером. Способы и средства этой фальсификации основаны на неточных измерениях с грубыми погрешностями всегда в сторону уменьшения размеров измеряемого объекта (рис. 3).
Для количественной фальсификации чаще всего используют фальшивые средства измерений (гири, метры, измерительную посуду) или неточные измерительные технические устройства (весы, приборы и т.п.).
Стоимостная фальсификация - обман потребителя путем реализации низкокачественных товаров по ценам высококачественных товаров или товаров меньших размерных характеристик по цене товаров больших размеров.
Этот вид фальсификации - самый распространенный, так как совмещается со всеми другими видами фальсификации.
Существует несколько разновидностей стоимостной фальсификации:
реализация фальсифицированных товаров по ценам, аналогичным или лидирующим для натурального продукта;
реализация фальсифицированных товаров по пониженным ценам по сравнению с натуральным аналогом;
реализация фальсифицированных товаров по ценам, превышающим цены на натуральные аналоги.
Информационная фальсификация - обман потребителя с помощью неточной или искаженной информации о товаре.
Этот вид фальсификации осуществляется путем искажения информации в товарно-сопроводительных документах, маркировке и рекламе. Любой вид фальсификации, рассмотренный ранее, в большинстве случаев дополняется фальсификацией информации о товаре. В противном случае фальсификации легко выявляется.
Искаженная или неточная информация о товаре служит основанием считать заменитель натурального продукта фальсифицированным товаром. Так, к фальсифицированному товару относится маргарин, на маркировке которого и в товарно-сопроводительных документах указывается наименование «сливочное масло». Правильное указание на маркировке наименования продукта - «маргарин» - снимает обвинения в фальсификации.
Наряду с этой классификацией видов и способов фальсификации можно выявить еще две группы способов фальсификации в зависимости от места ее осуществления:
технологическая;
предреализационная.
Технологическая фальсификация - подделка товаров в процессе технологического цикла производства.
...Подобные документы
Организация контроля за обеспечением безопасности пищевой продукции в России. Классификация показателей качества продуктов питания, проблема их радиоактивного загрязнения. Понятие антиалиментарных факторов питания, механизм действия и виды ингибиторов.
контрольная работа [27,9 K], добавлен 20.11.2012Проблема безопасности продуктов питания. Политика в области качества. Методологические принципы создания биологически безопасных продуктов питания, основанные на выявлении критических контрольных точек. Оценка доброкачественности муки, хлеба, зерновых.
презентация [993,8 K], добавлен 11.12.2013Качество продуктов питания. Обеспечение качества и безопасности продуктов переработки зерна и макаронных изделий в РФ. Проблемы ответственности производителей за производство некачественной продукции в переходе от сертификации к декларированию.
дипломная работа [2,0 M], добавлен 29.06.2012Проблемы безопасности пищевых продуктов. Модификация, денатурализация продуктов питания. Нитраты в сырье для пищевых продуктов. Характеристика токсичных элементов в сырье и готовых продуктах. Требования к санитарному состоянию сырья и пищевых производств.
курсовая работа [87,0 K], добавлен 17.10.2014Функции процесса питания. Основные питательные вещества: белки, жиры, углеводы, витамины, вода. Значение рационального питания для развития школьников. Вред для здоровья от современных продуктов питания. Характеристика сыроедения и вегетарианства.
реферат [45,4 K], добавлен 13.01.2012Товароведная характеристика кондитерских изделий, вин и виноматериалов, растительных масел и масложировых продуктов, кисломолочных и яйцепродуктов, рыбы. Оценка качества продовольственных товаров, виды сырья и способы получения, требования к маркировке.
учебное пособие [341,8 K], добавлен 31.08.2012Методологические принципы проектирования функциональных продуктов питания. Создание продуктов питания с заданными функциональными свойствами. Производственная программа предприятия общественного питания. Организация производства кулинарной продукции.
учебное пособие [426,4 K], добавлен 26.05.2013Помещения для приема и хранения продуктов. Поддержание на необходимом уровне запасов сырья, продуктов. Хранение товаров в соответствии с научным обоснованными условиями хранения. Отпуск продукции по установленному графику. Расчет сырья по меню ресторана.
курсовая работа [98,6 K], добавлен 14.04.2009Органолептические характеристики качества и безопасности продуктов: консервы, молоко, мясо, рыба, яйца, мука, хлеб. Санитарные требования к кулинарной обработке и хранению пищевых продуктов. Болезни пищевого происхождения, вызываемые микроорганизмами.
реферат [39,6 K], добавлен 21.03.2010Роль стандартных методов исследования в оценке качества безопасности сырья, продуктов питания. Правила отбора проб сырья и подготовка их к лабораторным испытаниям. Стандартные показатели качества и признаки сырья. Методики их определения. Порча мяса.
курсовая работа [38,2 K], добавлен 12.01.2005Классификация пищевых продуктов и добавок. Этапы контроля продуктов питания: отбор пробы, приготовление смеси, выделение целевого компонента, анализ. Методы анализа пищевых продуктов: титриметрические, оптические, электрохимические и хроматометрические.
курсовая работа [60,0 K], добавлен 21.12.2014Метрологические основы контроля качества исследовательских работ. Характеристики методов и методик. Вольтамперметрические методы анализа пищевых продуктов. Теплоемкость теста при значении его влажности 39,81%. Титриметрический метод определения крахмала.
контрольная работа [205,1 K], добавлен 17.02.2011Максимальное приближение состава детского молочного питания к составу женского молока не только в количественном, но и качественном отношении. Выпуск кисломолочных адаптированных продуктов. Ассортимент современных молочных продуктов детского питания.
курсовая работа [52,4 K], добавлен 26.02.2014Правовое регулирование отношений в области обеспечения качества и безопасности сырья и пищевых продуктов. Нитрозоамины, полициклические ароматические углеводороды: источники их поступления и влияние на организм человека, яды пептидной формы (а-амантин).
контрольная работа [21,5 K], добавлен 24.07.2010Составление рейтинга вредных продуктов питания. Исследование их разрушительного воздействия на организм человека. Характеристика полезных свойств овощей, ягод и фруктов. Золотые правила питания. Описания продуктов, содержащих белки, углеводы, клетчатку.
презентация [7,1 M], добавлен 26.10.2015Характеристика пищевой и биологической ценности основных пищевых продуктов. Биологические опасности, связанные с пищей, генно-модифицированные продукты. Уровни воздействия техногенных факторов на организм человека в процессе поглощения продуктов питания.
контрольная работа [32,6 K], добавлен 17.06.2010Свойства и пищевая ценность продуктов питания. Энергетические, биологические, физиологические и органолептические показатели, усвояемость и доброкачественность. Виды, классификация и ассортимент сахара, его химический состав, условия и сроки хранения.
контрольная работа [23,9 K], добавлен 05.10.2010Значение и состояние новой отрасли продуктов питания из картофеля. Сырьевая база и типы предприятий по производству продуктов питания из картофеля. Преимущества картофелепродуктов по сравнению со свежим картофелем. Развитие производства.
контрольная работа [11,5 K], добавлен 05.02.2007Основные источники пищи, которые используются при создании комбинированных продуктов питания. Добавление к основному продукту сырья животного и растительного происхождения с целью регулирования состава конечного продукта. Пищевые и непищевые источники.
контрольная работа [24,2 K], добавлен 13.12.2012Характеристика общих понятий в области химического состава продуктов. Классификация и свойства дубильных веществ. Роль, особенности и состав чая, основные показатели его качества. Характеристика танина, метод его определения и сравнение результатов.
курсовая работа [362,6 K], добавлен 24.06.2010